
An Online Learning Approach to Improving the Quality of
Crowd-Sourcing

Yang Liu, Mingyan Liu
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor
Email: {youngliu,mingyan}@eecs.umich.edu

ABSTRACT

We consider a crowd-sourcing problem where in the process of la-
beling massive datasets, multiple labelers with unknown annota-
tion quality must be selected to perform the labeling task for each
incoming data sample or task, with the results aggregated using
for example simple or weighted majority voting rule. In this pa-
per we approach this labeler selection problem in an online learn-
ing framework, whereby the quality of the labeling outcome by a
specific set of labelers is estimated so that the learning algorithm
over time learns to use the most effective combinations of labelers.
This type of online learning in some sense falls under the family
of multi-armed bandit (MAB) problems, but with a distinct feature
not commonly seen: since the data is unlabeled to begin with and
the labelers’ quality is unknown, their labeling outcome (or reward
in the MAB context) cannot be directly verified; it can only be es-
timated against the crowd and known probabilistically. We design
an efficient online algorithm LS_OL using a simple majority vot-
ing rule that can differentiate high- and low-quality labelers over
time, and is shown to have a regret (w.r.t. always using the optimal
set of labelers) of O(log2 T) uniformly in time under mild assump-
tions on the collective quality of the crowd, thus regret free in the
average sense. We discuss performance improvement by using a
more sophisticated majority voting rule, and show how to detec-
t and filter out “bad” (dishonest, malicious or very incompetent)
labelers to further enhance the quality of crowd-sourcing. Exten-
sion to the case when a labeler’s quality is task-type dependent is
also discussed using techniques from the literature on continuous
arms. We present numerical results using both simulation and a re-
al dataset on a set of images labeled by Amazon Mechanic Turks
(AMT).

Categories and Subject Descriptors

F.1.2 [Modes of Computation]: Online computation; I.2.6 [Artificial

Intelligence]: Learning; H.2.8 [Database Applications]: Data min-
ing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.

Copyright c© 2015 ACM 978-1-4503-3486-0/15/06 ...$15.00.

http://dx.doi.org/10.1145/2745844.2745874.

General Terms

Algorithm, Theory, Experimentation

Keywords

Crowd-sourcing, online learning, quality control

1. INTRODUCTION
Machine learning techniques often rely on correctly labeled data

for purposes such as building classifiers; this is particularly true for
supervised discriminative learning. As shown in [19,22], the quali-
ty of labels can significantly impact the quality of the trained classi-
fier and in turn the system performance. Semi-supervised learning
methods, e.g. [5,15,25] have been proposed to circumvent the need
for labeled data or lower the requirement on the size of labeled data;
nonetheless, many state-of-the-art machine learning systems such
as those used for pattern recognition continue to rely heavily on su-
pervised learning, which necessitates cleanly labeled data. At the
same time, advances in instrumentation and miniaturization, com-
bined with frameworks like participatory sensing, rush in enormous
quantities of unlabeled data.

Against this backdrop, crowd-sourcing has emerged as a viable
and often favored solution as evidenced by the popularity of the A-
mazon Mechanical Turk (AMT) system. Prime examples include
a number of recent efforts on collecting large-scale labeled image
datasets, such as ImageNet [7] and LabelMe [21]. The concept of
crowd-sourcing has also been studied in contexts other than pro-
cessing large amounts of unlabeled data, see e.g., user-generated
map [10], opinion/information diffusion [9], and event monitor-
ing [6] in large, decentralized systems.

Its many advantages notwithstanding, the biggest problem with
crowd-sourcing is quality control: as shown in several previous s-
tudies [12, 22], if labelers (e.g., AMTs) are not selected careful-
ly the resulting labels can be very noisy, due to reasons such as
varying degrees of competence, individual biases, and sometimes
irresponsible behavior. At the same time, the cost in having a large
amount of data labeled (payment to the labelers) is non-trivial. This
makes it important to look into ways of improving the quality of the
crowd-sourcing process and the quality of the results generated by
the labelers.

In this paper we approach the labeler selection problem in an
online learning framework, whereby the labeling quality of the la-
belers is estimated as tasks are assigned and performed, so that an
algorithm over time learns to use the more effective combinations
of labelers for arriving tasks. This problem in some sense can be
cast as a multi-armed bandit (MAB) problem, see e.g., [4, 16, 23].
Within such a framework, the objective is to select the best of a
set of choices (or “arms”) by repeatedly sampling different choices

(referred to as exploration), and their empirical quality is subse-
quently used to control how often a choice is used (referred to as
exploitation). However, there are two distinct features that set our
problem apart from the existing literature in bandit problems. First-
ly, since the data is unlabeled to begin with and the labelers’ quality
is unknown, a particular choice of labelers leads to unknown quali-
ty of their labeling outcome (mapped to the “reward” of selecting a
choice in the MAB context). Whereas this reward is assumed to be
known instantaneously following a selection in the MAB problem,
in our model this remains unknown and at best can only be esti-
mated with a certain error probability. This poses significant tech-
nical challenge compared to a standard MAB problem. Secondly,
to avoid having to deal with a combinatorial number of arms, it
is desirable to learn and estimate each individual labeler’s quality
separately (as opposed to estimating the quality of different combi-
nations of labelers). The optimal selection of labelers then depends
on individual qualities as well as how the labeling outcome is com-
puted using individual labels. In this study we will consider both a
simple majority voting rule as well as a weighted majority voting
rule and derive the respective optimal selection of labelers given
their estimated quality.

Due to its online nature, our algorithm can be used in real time,
processing tasks as they arrive. Our algorithm thus has the advan-
tage of performing quality assessment and adapting to better labeler
selections as tasks arrive. This is a desirable feature because gen-
erating and processing large datasets can incur significant cost and
delay, so the ability to improve labeler selection on the fly (rather
than waiting till the end) can result in substantial cost savings and
improvement in processing quality. Below we review the literature
most relevant to the study presented in this paper in addition to the
MAB literature cited above.

Within the context of learning and differentiating labelers’ ex-
pertise in crowd-sourcing systems, a number of studies have looked
into offline algorithms. For instance, in [8], methods are proposed
to eliminate irrelevant users from a set of user-generated dataset; in
this case the elimination is done as post-processing to clean up the
data since the data has already been labeled by the labelers (tasks
have been performed). In [13] an iterative algorithm is proposed
that infers labeling quality using a process similar to belief propa-
gation and it is shown that label aggregation based on this method
outperforms simple majority voting. Another example is the fami-
ly of matrix factorization or matrix completion based methods, see
e.g., [24], where labeler selection is implicitly done through the
numerical process of finding the best recommendation for a partic-
ipant. Again this is done after the labeling has already been done
for all data by all (or almost all) labelers. This type of approaches
is more appropriate when used in a recommendation system where
data and user-generated labels already exist in large quantities.

Recent study [14] has examined the fundamental trade-off be-
tween labeling accuracy and redundancy in task assignment in crowd-
sourcing systems. In particular, it is shown that a labeling accuracy
of 1−ε for each task can be achieved with a per-task assignment re-
dundancy no more than O(K/q · log(K/ε)); thus more redundancy
can be traded for more accurate outcome. In [14] the task assign-
ment is done in a one-shot fashion (thus non-adaptive) rather than
sequentially with each task arrival as considered in our paper, thus
the result is more applicable to offline settings similar to those cited
in the previous paragraph.

Within online solutions, the concept of active learning has been
quite intensively studied, where the labelers are guided to make
the labeling process more efficient. Examples include [12], which
uses a Bayesian framework to actively assign unlabeled data based
on past observations on labeling outcomes, and [18], which uses

a probabilistic model to estimate the labelers’ expertise. However,
most studies on active learning require either an oracle to verify the
correctness of the finished tasks which in practice does not exist, or
ground-truth feedback from indirect but relevant experiments (see
e.g., [12]). Similarly, existing work on using online learning for
task assignment also typically assumes the availability of ground
truth (as in MAB problems). For instance, in [11] online learning
is applied to sequential task assignment but ground-truth of the task
performance is used to estimate the performer’s quality.

Our work differs from the above as we do not require an ora-
cle or the availability of ground-truth; we instead impose a mild
assumption on the collective quality of the crowd (without which
crowd-sourcing would be useless and would not have existed). Sec-
ondly, our framework allows us to obtain performance bounds on
the proposed algorithm in the form of regret with respect to the op-
timal strategy that always uses the best set of labelers; this type of
performance guarantee is lacking in most of the work cited above.
Last but not least, our algorithm is broadly applicable to gener-
ic crowd-sourcing task assignments rather than being designed for
specific type of tasks or data.

Our main contributions are summarized as follows.

1. We design an online learning algorithm to estimate the qual-
ity of labelers in a crowd-sourcing setting without ground-
truth information but with mild assumptions on the quality
of the crowd as a whole, and show that it is able to learn the
optimal set of labelers under both simple and weighted ma-
jority voting rules and attains no-regret performance guaran-
tees (w.r.t. always using the optimal set of labelers).

2. We similarly provide regret bounds on the cost of this learn-
ing algorithm w.r.t. always using the optimal set of labelers.

3. We show how our model and results can be extended to the
case where the quality of a labeler may be task-type depen-
dent, as well as a simple procedure to quickly detect and fil-
ter out “bad” (dishonest, malicious or incompetent) labelers
to further enhance the quality of crowd-sourcing.

4. Our validation includes both simulation and the use of a real-
world AMT dataset.

The remainder of the paper is organized as follows. We formu-
late our problem in Section 2. In Sections 3 and 4 we introduce our
learning algorithm along with regret analysis under a simple major-
ity and weighted majority voting rule, respectively. We extend our
model to the case where labelers’ expertise may be task-dependent
in Section 5. Numerical experiments are presented in Section 6.
Section 7 concludes the paper.

2. PROBLEM FORMULATION AND PRE-

LIMINARIES

2.1 The crowd-sourcing model
We begin by introducing the following major components of the

crowd-sourcing system we consider.

1. User. There is a single user with a sequence of tasks (un-
labeled data) to be performed/labeled. Our proposed online
learning algorithm is to be employed by the user in making
labeler selections. Throughout our discussion the terms task

and unlabeled data will be used interchangeably.

2. Labeler. There are a total of M labelers, each may be select-
ed to perform a labeling task for a piece of unlabeled data.

The set of labelers is denoted by M = {1,2, ...,M}. A la-
beler i produces the true label for each assigned task with
probability pi independent of the task; a more sophisticated
task-dependent version is discussed in Section 5. This will
also be referred to as the quality or accuracy of this label-
er. We will assume no two labelers are exactly the same,
i.e., pi 6= p j,∀i 6= j and we consider non-trivial cases with
0< pi < 1,∀i. These quantities are unknown to the user a pri-
ori. We will also assume that the accuracy of the collection of

labelers satisfies p̄ := ∑M
i=1

pi

M > 1
2 , and that M > log2

2(p̄−1/2)2 .

The justification and implication of these assumptions are
discussed in more detail in Section 2.3.

Our learning system works in discrete time steps t = 1,2, ...,T .
At time t, a task k ∈ K arrives to be labeled, where K could be
either a finite or infinite set. For simplicity of presentation, we will
assume that a single task arrives at each time, and that the labeling
outcome is binary: 1 or 0; however, both assumptions can be fairly
easily relaxed1. For task k, the user selects a subset St ⊆ M to
label it. The label generated by labeler i ∈ St for data k at time t is
denoted by Li(t).

The set of labels {Li(t)}i∈St
generated by the selected labelers

then need to be combined to produce a single label for the data;
this is often referred to as the information aggregation phase. Since
we have no prior knowledge on the labelers’ accuracy, we will first
apply the simple majority voting rule over the set of labels; later we
will also examine a more sophisticated weighted majority voting
rule. Mathematically, the majority voting rule at time t leads to the
following label output:

L∗(t) = argmaxl∈{0,1} ∑
i∈St

ILi(t)=l , (1)

with ties (i.e., ∑i∈St
ILi(t)=0 = ∑i∈St

ILi(t)=1, where I denotes the
indicator function) broken randomly.

Denote by π(St) the probability of obtaining the correct label
following the simple majority rule above, and we have:

π(St) = ∑
S:S⊆St ,|S|≥⌈ |St |+1

2
⌉
∏
i∈S

pi · ∏
j∈St\S

(1− p j)

︸ ︷︷ ︸

Majority wins

+
∑

S:S⊆St ,|S|= |St |
2

∏i∈S pi ·∏ j∈St\S(1− p j)

2
︸ ︷︷ ︸

Ties broken equally likely

. (2)

Denote by ci a normalized cost/payment per task to labeler i and
consider the following linear cost function

C (S) = ∑
i∈S

ci, S ⊆ M . (3)

Extensions of our analysis to other forms of cost functions are fea-
sible though with more cumbersome notations. Denote

S∗ = argmaxS⊆M π(S) , (4)

thus S∗ is the optimal selection of labelers given each individual’s
accuracy. We also refer to π(S) as the utility for selecting the set
of labelers S and denote it equivalently as U(S). C (S∗) will be
referred to as the necessary cost per task. In most crowd-sourcing
systems the main goal is to obtain high quality labels while the
cost accrued is a secondary issue. For completeness, however, we
will also analyze the tradeoff between the two. Therefore we shall

1Indeed in our experiment shown later in Section 6, our algorithm
is applied to a non-binary multi-label case.

adopt two objectives when designing an efficient online algorithm:
choosing the best set of labelers while keeping the cost low.

It should be noted that one can also combine labeling accuracy
and cost to form a single objective function, such as π(S)−C (S).
The resulting analysis is quite similar to and can be easily repro-
duced from that presented in this paper .

2.2 Off-line optimal selection of labelers
Before addressing the learning problem, we will first take a look

at how to efficiently derive the optimal selection S∗ given accuracy
probabilities {pi}i∈M . This will be a crucial step repeatedly in-
voked by the learning procedure we develop next, to determine the
set of labelers to use given a set of estimated accuracy probabilities.

The optimal selection is a function of the values {pi}i∈M and
the aggregation rule used to compute the final label. While there is
a combinatorial number of possible selections, the next two results
combined lead to a very simple and linear-complexity procedure in
finding the optimal S∗.

THEOREM 1. Under the simple majority vote rule, the optimal

number of labelers s∗ = |S∗| must be an odd number.

THEOREM 2. The optimal set S∗ is monotonic, i.e., if we have

i ∈ S∗ and j 6∈ S∗ then we must have pi > p j .

Proofs of the above two theorems can be found in the appendices.
Using these results, given a set of accuracy probabilities the optimal
selection under the majority vote rule consists of the top s∗ (an odd
number) labelers with the highest quality; thus we only need to
compute s∗, which has a linear complexity of O(M/2). A set that
consists of the highest m labelers will henceforth be referred to as
a m-monotonic set, and denoted as Sm ⊆ M .

2.3 The lack of ground truth
As mentioned, a key difference between our model and many

other studies on crowd-sourcing as well as the basic framework of
MAB problems is that we lack ground-truth in our system; we e-
laborate on this below. In a standard MAB setting, when a player
(the user in our scenario) selects a set of arms (labelers) to activate,
she immediately finds out the rewards associated with those select-
ed arms. This information allows the player to collect statistics on
each arm (e.g., sample mean rewards) which is then used in her
future selection decisions. In our scenario, the user sees the labels
generated by each selected labeler, but does not know which ones
are true. In this sense the user does not find out about her reward
immediately after a decision; she can only do so probabilistically
over a period of time through additional estimation devices. This
constitutes the main conceptual and technical difference between
our problem and the standard MAB problem.

Given the lack of ground-truth, the crowd-sourcing system is on-
ly useful if the average labeler is more or less trustworthy. For
instance, if a majority of the labelers produce the wrong label most
of the time, unbeknownst to the user, then the system is effective-
ly useless, i.e., the user has no way to tell whether she could trust
the outcome so she might as well abandon the system. It is there-
fore reasonable to have some trustworthiness assumption in place.
Accordingly, we have assumed that p̄ = ∑M

i=1
pi

M > 0.5, i.e., the av-
erage labeling quality is higher than 0.5 or a random guess; this is a
common assumption in the crowd-sourcing literature (see e.g., [8]).
Note that this is a fairly mild assumption: not all labelers need to
have accuracy pi > 0.5 or near 0.5; some labeler may have arbitrar-
ily low quality (∼ 0) as long as it is in the minority.

Denote by Xi a binomial random variable with parameter pi to
model labeler i’s outcome on a given task: Xi = 1 if her label is

correct and 0 otherwise. Using Chernoff Hoeffding’s inequality we
have

P(
∑M

i=1 Xi

M
> 1/2) = 1−P(

∑M
i=1 Xi

M
≤ 1/2)

= 1−P(
∑M

i=1 Xi

M
− p̄ ≤ 1/2− p̄)

≥ 1− e−2M·(p̄−1/2)2

.

Define amin :=P(∑M
i=1 Xi

M > 1/2); this is the probability that a simple
majority vote over the M labelers is correct. Therefore, if p̄ > 1/2

and further M > log2
2(p̄−1/2)2 , then 1−e−2M·(p̄−1/2)2

> 1/2, meaning

a simple majority vote would be correct most of the time. Through-
out the paper we will assume both these conditions are true. It also
follows that we have:

P(
∑i∈S∗ Xi

s∗
> 1/2)≥ P(

∑M
i=1 Xi

M
> 1/2),

where the inequality is due to the definition of the optimal set S∗.

3. LEARNING THE OPTIMAL LABELER

SELECTION
In this section we present an online learning algorithm LS_OL

that over time learns each labeler’s accuracy, which it then uses to
compute an estimated optimal set of labelers using the properties
given in the previous section.

3.1 An online learning algorithm LS_OL

The algorithm consists of two types of time steps, exploration
and exploitation, as is common to online learning. However, the de-
sign of the exploration step is complicated by the additional estima-
tion needs due to the lack of ground-truth revelation. Specifically,
a set of tasks will be designated as “testers” and may be repeated-
ly assigned to the same labeler in order to obtain consistent results
used for estimating her label quality. This can be done in one of t-
wo ways depending on the nature of the tasks. For tasks like survey
questions (e.g. those with multiple choices), a labeler may indeed
be prompted to answer the same question (or equivalent variants
with alternative wording) multiple times, usually not in succession,
during the survey process. This is a common technique used by
survey designers for quality control by testing whether a participant
answers questions randomly or consistently, whether a participant
is losing attention over time, and so on, see e.g., [20]. For tasks like
labeling images, a labeler may be given identical images repeatedly
or each time with small, added iid noise.

With the above in mind, the algorithm conceptually proceeds as
follows. A condition is checked to determine whether the algorithm
should explore or exploit in a given time step. If it is to exploit,
then the algorithm selects the best set of labelers based on current
quality estimates to label the arriving task. If it is to explore, then
the algorithm will either assign an old task (an existing tester) or
the new arriving task (which then becomes a tester) to the entire set
of labelers M depending on whether all existing testers have been
labeled enough number of times. Because of the need to repeatedly
assign an old task, some new tasks will not be immediately assigned
(those arriving during an exploration step while an old task remains
under-labeled). These tasks will simply be given a random label
(e.g., with error probability 1/2) but their numbers are limited by
the frequency of an exploration step (∼ log2 T), as we shall detail
later.

Before proceeding to a more precise description of the algorithm,
a few additional notions are in order. Denote the n-th label outcome

(via majority vote over M labelers in exploration) for task k by
yk(n). Denote by y∗k(N) the label obtained using majority rule over
the N label outcomes yk(1),yk(2), · · · ,yk(N):

y∗k(N) =

{

1,
∑N

n=1 Iyk(n)=1

N > 0.5
0, otherwise

, (5)

with ties broken randomly. It is this majority label after N tests on
a tester task k that will be used to analyze different labeler’s perfor-
mance. A tester task is always assigned to all labelers for labeling.
Following our earlier assumption that the repeated assignments of
the same task use identical and independent variants of the task, we
will also take the repeated outcomes yk(1),yk(2), · · · ,yk(N) to be
independent and statistically identical.

Denote by E(t) the set of tasks assigned to the M labelers dur-
ing exploration steps up to time t. For each task k ∈ E(t) denote
by N̂k(t) the number of times k has been assigned. Consider the
following random variable defined at each time t:

O(t) = I|E(t)|≤D1(t) or ∃k∈E(t) s.t. N̂k(t)≤D2(t)
,

where

D1(t) =
1

(1
maxm:m odd m·n(Sm)

−α)2 · ε2
· log t ,

D2(t) =
1

(amin −0.5)2
· log t ,

and n(Sm) is the number of all possible majority subsets (for exam-
ple when |Sm|= 5, n(Sm) is the number of all possible subset of size
being at least 3) of Sm, ε a bounded constant, and α a positive con-
stant such that α < 1

maxm:m odd m·n(Sm)
. Note that O(t) captures the

event when either an insufficient number of tester tasks have been
assigned under exploration or some tester task has been assigned
insufficient number of times in exploration.

Our online algorithm for labeler selection is formally stated in
Figure 1. The LS_OL algorithm can either go on indefinitely or
terminate at some time T . As we show below the performance
bound on this algorithm holds uniformly in time so it does not mat-
ter when it terminates.

3.2 Main results
The standard metric for evaluating an online algorithm in the

MAB literature is regret, the difference between the performance
of an algorithm and that of a reference algorithm which often as-
sumes foresight or hindsight. The most commonly used is the weak

regret measure with respect to the best single-action policy assum-
ing a priori knowledge of the underlying statistics. In our problem
context, this means to compare our algorithm to the one that always
uses the optimal selection S∗. It follows that this weak regret, up to
time T , is given by

R(T) = T ·U(S∗)−
T

∑
t=1

U(St) ,

RC (T) =
T

∑
t=1

C (St)−T ·C (S∗) ,

where St is the selection made at time t by our algorithm; if t hap-
pens to be an exploration step then St = M and U(St) is either 1/2
due to random guess of an arriving task that is not labeled, or amin

when a tester task is labeled for the first time. R(T) and RC (T)
respectively capture the regret of the learning algorithm in perfor-

Online Labeler Selection: LS_OL

1: Initialization at t = 0: Initialize the estimated accuracy
{ p̃i}i∈M to some value in [0,1]; denote the initialization task
as k, set E(t) = {k} and N̂k(t) = 1.

2: At time t a new task arrives: If O(t) = 1, the algorithm ex-
plores.

2.1: If there is no task k ∈ E(t) such that N̂k(t) ≤ D2(t),
then assign the new task to M and update E(t) to in-
clude it and denote it by k; if there is such a task,
randomly select one of them, denoted by k, to M .
N̂k(t) := N̂k(t)+1; obtain the label yk(N̂k(t));

2.2: Update y∗k(N̂k(t)) (using the alternate indicator function
notation I(·)):

y∗k(N̂k(t)) = I(
∑

N̂k(t)
t̂=1

yk(t̂)

N̂k(t)
> 0.5) .

2.3: Update labelers’ accuracy estimate ∀i ∈ M :

p̃i =
∑k∈E(t),k arrives at time t̂ I(Li(t̂) = y∗k(N̂k(t)))

|E(t)| .

3: Else if O(t) = 0, the algorithm exploits and computes:

St = argmaxm Ũ(Sm) = argmaxS⊆M π̃(S) ,

which is solved using the linear search property, but with the
current estimates { p̃i} rather than the true quantities {pi},
resulting in estimated utility Ũ() and π̃(). Assign the new
task to those in St .

4: Set t = t +1 and go to Step 2.

Figure 1: Description of LS_OL

mance and in cost. Define:

∆max = max
S 6=S∗

U(S∗)−U(S), δmax = max
i6= j

|pi − p j| ,

∆min = min
S 6=S∗

U(S∗)−U(S), δmin = min
i6= j

|pi − p j| .

ε is a constant such that ε < min{∆min
2 , δmin

2 }. For analysis we as-

sume U(Si) 6= U(S j) if i 6= j2. Define the sequence {βn}: βn =
∑∞

t=1
1
tn . Our main theorem is stated as follows.

THEOREM 3. The regret can be bounded uniformly in time:

R(T)≤ U(S∗)

(1
maxm:m odd m·n(Sm)

−α)2 · ε2 · (amin −0.5)2
· log2(T)

+∆max(2
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε β2−z) , (6)

2This can be precisely established when pi 6= p j,∀i 6= j.

RC (T)≤ ∑i/∈S∗ ci

(1
maxm:m odd m·n(Sm)

−α)2 · ε2
· logT

+
∑i∈M ci

(1
maxm:m odd m·n(Sm)

−α)2 · ε2 · (amin −0.5)2
· log2(T)

+(M−|S∗|) · (2
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε β2−z) , (7)

where 0 < z < 1 is a positive constant.

First note that the regret is nearly logarithmic in T and therefore it
has zero average regret as T → ∞; such an algorithm is often re-
ferred to as a zero-regret algorithm. Secondly the regret bound is
inversely related to the minimum accuracy of the crowd (through
amin). This is to be expected: with higher accuracy (a larger amin)
of the crowd, crowd-sourcing generates ground-truth outputs with
higher probability and thus the learning process could be acceler-
ated. Finally, the bound also depends on maxm m · n(Sm) which is

roughly on the order of O(2m
√

m√
2π

).

3.3 Regret analysis of LS_OL
We now outline key steps in the proof of the above theorem. This

involves a sequence of lemmas; the proofs of most can be found in
the appendices. There are a few that we omit for brevity; in those
cases sketches are provided.

Step 1: We begin by noting that the regret consists of that arising
from the exploration phase and from the exploitation phase, denot-
ed by Re(T) and Rx(T), respectively:

R(T) = E[Re(T)]+E[Rx(T)] .

The following result bounds the first element of the regret.

LEMMA 1. The regret up to time T from the exploration phase

can be bounded as follows:

E[Re(T)]≤U(S∗) · (D1(T) ·D2(T)) . (8)

We see the regret depends on the exploration parameters as product.
This is because for tasks arriving in exploration steps, we assign it
at least D2(T) times to the labelers; each time when re-assignment
occurs, a new arriving task is given a random label while under an
optimal scheme each missed new task means a utility of U(S∗).

Step 2: We now bound the regret arising from the exploitation
phase as a function of the number of times the algorithm uses a
sub-optimal selection when the ordering of the labelers is correct,
and the number of times the estimates of the labelers’ accuracy re-
sult in a wrong ordering. The proof of the lemma below is omitted
as it is fairly straightforward.

LEMMA 2. For the regret from exploitation we have:

E[Rx(T)]≤ ∆max

(

E[
T

∑
t=1

(E1(t)+E2(t))]

)

. (9)

Here E1(t) = ISt 6=S∗ , conditioned on correct ordering of labelers,

counts the event when a sub-optimal section (other than S∗) was

used at time t based on the current estimates { p̃i}. E2(t) counts the

event when at time t the set M is sorted in the wrong order because

of erroneous estimates { p̃i}.

Step 3: We proceed to bound the two terms in (9) separately. In
this part of the analysis we only consider those times t when the
algorithm exploits.

LEMMA 3. At time t we have:

E[E1(t)]≤
M

∑
m=1

m odd

m ·n(Sm) · (2

t2
+

1

α · ε · t2−z
) . (10)

The idea behind the above lemma is to use a union bound over all
possible events where the wrong set is chosen when the ordering of
the labelers is correct according to their true accuracy.

LEMMA 4. At time t we have:

E[E2(t)]≤ M(
2

t2
+

1

α · ε · t2−z
) . (11)

Step 4: Summing up all above results and rearranging terms lead
to the theorem. Specifically,

E[Rx(T)]≤ ∆max

M

∑
m=1

m odd

2
T

∑
t=1

m ·n(Sm) · (2

t2
+

1

α · ε · t2−z
)

+∆max ·M ·
T

∑
t=1

(
2

t2
+

1

α · ε · t2−z
)

≤ 2 ·∆max

M

∑
m=1

m odd

m ·n(Sm) ·
∞

∑
t=1

(
2

t2
+

1

α · ε · t2−z
)

+∆max ·M ·
∞

∑
t=1

(
2

t2
+

1

α · ε · t2−z
)

= ∆max(2 ·
M

∑
m=1

m odd

m ·n(Sm)+M) · (2β2 +
1

α · ε β2−z) .

Since β2−z < ∞ for z < 1, we have bounded the exploitation regret
by a constant. Summing over all terms in E[Re(T)] and E[Rx(T)]
we obtain the main theorem.

3.4 Cost analysis of LS_OL
We now analyze the cost regret. Following similar analysis we

first note that it can be calculated separately for the exploration and
exploitation steps. For exploration steps we know the cost regret is
bounded by

∑
i/∈S∗

ci ·D1(T)+ ∑
i∈M

ci ·D1(T) · (D2(T)−1)

where the second term is due to the fact for all costs associated with
task re-assignments are treated as additional costs.

For exploitation steps the additional cost is upper-bounded by

(M−|S∗|) ·E[
T

∑
t=1

(E1(t)+E2(t))] .

Using earlier results we know the cost regret RC (T) will be sim-
ilar to R(T) with both terms bounded by either a log term or a
constant. Plugging in D1(T),D2(T),E[∑

T
t=1(E2(t)],E[∑

T
t=1 E2(t)]

we establish the regret for RC (T) as claimed in our main result.

3.5 Discussion
We end this section with a discussion on how to relax a number

of assumptions adopted in our analytical framework.

3.5.1 IID re-assignments

The first concerns the re-assignment of the same task (or iid
copies of the same task) and the assumption that the labeling out-
come each time is independent. In the case where iid copies are

available, this assumption is justified. In the case when the exact
same task must be re-assigned, enforcing a delay between succes-
sive re-assignments can make this assumption more realistic. Sup-
pose the algorithm imposes a random delay τk, a positive random
variable uniformly upper-bounded by τk ≤ τmax,∀k. Then follow-
ing similar analysis we can show the regret is at most τmax times
larger, i.e., it can be bounded by τmax ·R(T), where R(T) is as de-
fined in Eqn.(6).

3.5.2 Prior knowledge on several constants

The second assumption concerns the selection of constant ε by
the algorithm and the analysis which requires knowledge on ∆min

and δmin. This assumption however can be removed by using a
decreasing sequence εt . This is a standard technique that has been
commonly used in the online learning literature, see e.g., [3,17,23].
Specifically, let

εt =
1

logη (t)
, for some η > 0 .

Replace log(t) with log1+2η (t) in D1(t) and D2(t) it can be shown
that ∃T0 s.t. : εT0

< ε . Thus the regret associated with using an

imperfect εt is bounded by ∑
T0

t=1 2εt =∑
T0

t=1
2

logη t
=CT0

, a constant.

3.5.3 Detecting bad/incompetent labelers

The last assumption we discuss concerns the quality of the set
of labelers, assumed to satisfy the condition min{amin, p̄} > 0.5.
Recall the bounds were derived based on this assumption and are
indeed functions of amin. While in this discussion we will not seek
to relax this assumption, below we describe a simple “vetting” pro-
cedure that can be easily incorporated into the LS_OL algorithm
to quickly detect and filter out outliner labelers so that over the re-
maining labelers we can achieve higher values of amin and p̄, and
consequently a better bound. The procedure keeps count of the
number of times a labeler differs from the majority opinion during
the exploration steps, then over time we can safely eliminate those
with high counts.

The justification behind this procedure is as follows. Let ran-
dom variable Zi(t) denote whether labeler i agrees with the major-
ity vote in labeling a task in a given assignment in exploration step
t: Zi(t) = 1 if they disagree and 0 otherwise. Then

P(Zi(t) = 1) = (1− pi) ·π(M)+ pi · (1−π(M))

= π(M)+ pi · (1−2π(M)) , (12)

where recall π(M) is the probability the majority vote is correct.
Under the same assumption amin > 1/2 we have π(M)> 1/2, and
it follows that P(Zi(t) = 1) is decreasing in pi, i.e., the more ac-
curate a labeler is, the less likely she is going to disagree with the
majority vote, as intuition would suggest. It further follows that for
pi > p j we have

εi j := E[Zi(t)−Z j(t)]< 0 .

Similarly, if we consider the disagreement counts over N assign-
ments, ∑N

t=1 Z j(t), then for pi > p j we have

P(
N

∑
t=1

Zi(t)<
N

∑
t=1

Z j(t))

= P(
∑N

t=1(Zi(t)−Z j(t))

N
< 0)

= P(
∑N

t=1(Zi(t)−Z j(t))

N
− εi j <−εi j)

≥ 1− e−2ε2
i jN . (13)

That is, if the number of assignments N is on the order of logT/ε2
i j ,

then the above probability approaches 1, which bounds the likeli-
hood that labeler i (higher quality) will have fewer number of dis-
agreements than labeler j. Therefore if we rank and order the label-
ers in decreasing order of their accumulated disagreement counts
then the worst labeler is going to be at the top of the list with
increasing probability (approaching 1). If we eliminate the worst
performer, then we improve amin which leads to better bounds as
shown in Eqn. (6) and Eqn. (7). Compared to the exploration step-
s detailed earlier where in order to differentiate labelers’ expertise
(by estimating pi) O(log2 T) assignments are needed, here we only
need O(logT) assignments, a much faster process. In practice, we
could decide to remove the worst labeler when the probability of
not making an error (per Eqn. (13)) exceeds a certain threshold.

4. WEIGHTED MAJORITY VOTE AND IT-

S REGRET
The crowd-sourced labeling performance could be improved by

employing more sophisticated majority voting mechanism. Specif-
ically, under our online learning algorithm LS_OL, statistics over
each labeler’s expertise could be collected with significant confi-
dence; this enables a weighted majority voting mechanism. In this
section we analyze the regret of a similar learning algorithm using
weighted majority voting.

4.1 Weighted Majority Voting
We start with defining the weights. At time t, after observing

labels produced by the labelers, we can optimally (a posteriori) de-
termine the mostly likely label of the task by solving the following:

argmaxl∈{0,1} P(L∗(t) = l|L1(t), ...,LM(t)) . (14)

Suppose at time t the true label for task k is 1. Then we have,

P(L∗(t) = 1|L1(t), ...,LM(t))

=
P(L1(t), ...,LM(t),L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L1(t), ...,LM(t)|L∗(t) = 1) ·P(L∗(t) = 1)

P((L1(t), ...,LM(t))

=
P(L∗(t) = 1)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=1

pi · ∏
i:Li(t)=0

(1− pi) .

And similarly we have

P(L∗(t) = 0|L1(t), ...,LM(t))

=
P(L∗(t) = 0)

P((L1(t), ...,LM(t))
· ∏

i:Li(t)=0

pi · ∏
i:Li(t)=1

(1− pi) .

Following standard hypothesis testing procedure and assuming e-
qual priors P(L∗(t) = 1) = P(L∗(t) = 0), a true label of 1 can be
correctly produced if

∏
i:Li(t)=1

pi · ∏
i:Li(t)=0

(1− pi)

> ∏
i:Li(t)=0

pi · ∏
i:Li(t)=1

(1− pi) .

with ties broken randomly and equally likely. Take log(·) on both
sides and the above condition reduces to

∑
i:Li(t)=1

log
pi

1− pi
> ∑

j:L j(t)=0

log
p j

1− p j
.

Indeed if p1 = ...= pM the above reduces to |{i : Li(t) = 1}|> |{i :
Li(t) = 0}| which is exactly the simple majority rule. Under the

weighted majority vote, each labeler i’s decision is modulated by
weight log pi

1−pi
. When pi > 0.5, the weight log pi

1−pi
> 0, which

may be viewed as an opinion that adds value; when pi < 0.5, the
weight log pi

1−pi
< 0, an opinion that actually hurts; when pi = 0.5

the weight is zero, an opinion that does not count as it mounts to
a random guess. The above constitutes the weighted majority vote
rule we shall use in a revised learning algorithm and the regret anal-
ysis that follow.

Before proceeding to the regret analysis, we again first charac-
terize the optimal labeler set selection assuming known labelers’
accuracy. In this case the odd-number selection property no longer
holds, but thanks to the monotonicity of log pi

1−pi
in pi we have

the same monotonicity property in the optimal set and a linear-
complexity solution space.

THEOREM 4. Under the weighted majority vote and assuming

pi ≥ 0.5,∀i, the optimal set S∗ is monotonic, i.e., if we have i ∈ S∗

and j 6∈ S∗ then we must have pi > p j .

The assumption of all pi ≥ 0.5 is for simplicity in presentation,
because a labeler with pi < 0.5 is equivalent to another with pi :=
1− pi by flipping its label.

4.2 Main results
We now analyze the performance of a similar learning algorithm

using weighted majority vote. The algorithm LS_OL is modified
as follows. Denote by

W (S) = ∑
i∈S

log
pi

1− pi
, ∀S ⊆ M , (15)

and W̃ its estimated version when using estimated accuracies p̃i.
Denote by δW

min = minS 6=S′,W (S) 6=W (S′) |W (S)−W (S′)| and let ε <

δW
min/2. At time t (assuming in exploitation), the algorithm selects

the estimated optimal set St . These labelers then return their label-
s that divide them into two subsets, say S (with one label) and its
complement St\S (with the other label). If W̃ (S) ≥ W̃ (St\S)+ ε ,
we will call S the majority set and take its label as the voting out-
come. If |W̃ (S)−W̃ (St\S)| < ε , we will call them equal sets and
randomly select one of the labels as the voting outcome. Intuitively
ε serves as a tolerance that helps to remove the error due to inac-
curate estimations. In addition, the constant D1(t) is revised to the
follow:

D1(t) = (
1

maxm max{4C ·m,m ·n(Sm)} −α)2 · ε2 · log t,

where C is a constant satisfying

C > max
i

max{1+ ε/4

pi
,

1− ε/4

1− pi
,

ε/4

pi
,

ε/4

1− pi
} .

With above modifications in mind, we omit the detailed algorith-
m description for a concise presentation. We have the following
theorem on the regret of this revised algorithm (RC (T) has a very
similar format and its detail is omitted).

THEOREM 5. The regret under weighted majority vote can be

bounded uniformly in time:

R(T)≤ U(S∗)

(1
maxm max{4C·m,m·n(Sm)} −α)2 · ε2 · (amin −0.5)2

log2 T

+∆max(2 ·
M

∑
m=1

m ·n(Sm)+M+
M2

2
) · (2β2 +

1

α · ε β2−z) .

Again the regret is on the order of O(log2 T) in time. It has a
larger constant compared to that under simple majority vote. How-
ever, the weighted majority vote has a better optimal solution, i.e.,
we are converging slightly slower to a however better target. Mean-
while note that by using weighted majority vote on the testers, amin

can be also be potentially increased which leads to a better upper
bound.

The proof of this theorem is omitted for brevity and because most
of it is similar to the case of simple majority vote. There is howev-
er one main difference: under the weighted majority vote there is
additional error in computing the weighted majority vote. Whereas
under simple majority we simply find the majority set by count-
ing the number of votes, under weighted majority the calculation

of the majority set is dependent on the estimated weights log p̃i

1− p̃i

which inherits errors in { p̃i}. This additional error, associated with
bounding the error of getting

W̃ (Ŝ)−W̃ (S\Ŝ)< ε, when W (Ŝ)>W (S\Ŝ)

and

W̃ (Ŝ)−W̃ (S\Ŝ)≥ ε, when W (Ŝ) =W (S\Ŝ)

for Ŝ ⊆ S ⊆ M , can be separately bounded using similar method-
s as shown in the simple majority vote case (bounding estimation
error with a sufficiently large number of samples) and can again be
factored into the overall bound. This is summarized in the follow-
ing lemma.

LEMMA 5. At time t, for set Ŝ ⊆ S ⊆ M and its complement

S\Ŝ, if W (Ŝ)>W (S\Ŝ), then at an exploitation step t, ∀ 0 < z < 1,

P(W̃ (Ŝ)−W̃ (S\Ŝ)< ε)≤ |S| · (2

t2
+

1

α · ε · t2−z
) .

Moreover, if W (Ŝ) =W (S\Ŝ), then

P(|W̃ (Ŝ)−W̃ (S\Ŝ)|> ε)≤ |S| · (2

t2
+

1

α · ε · t2−z
) .

The rest of the proof can be found in the appendices.

5. LABELERS WITH DIFFERENT TYPES

OF TASKS
We now discuss an extension where labelers’ difference in their

quality in labeling varies according to different types of data sam-
ples/tasks. For example, some are more proficient with labeling
image data while some may be better at annotating audio data. In
this case we can use contextual information to capture these differ-
ences, where a specific context refers to a different data/task type.
There are two cases of interest from a technical point of view: when
the space of all context information is finite, and when this space
is infinite. We will denote a specific context by w and the set of all
contexts as W .

In the case of discrete context, |W | < ∞ and we can apply the
same algorithm to learn, for each combination {i,w}i∈M ,w∈W , the
pairwise labeler-context accuracy. This extension is rather straight-
forward except for a longer exploration phase. In fact, since ex-
ploration is needed for each labeler i under each possible context
w, we may expect the regret to be |W | times larger compared to
the previous R(T). This indeed can be more precisely established
using the same methodology.

The case of continuous context information is more challenging,
but can be dealt with using the technique introduced in [2] for ban-
dit problems with a continuum of arms. The main idea is to divide

the infinite context information space into a finite but increasing
number of subsets. For instance, if we model the context informa-
tion space as W = [0,1] then we can divide this unit interval into
v(t) sub-intervals:

[0,
1

v(t)
], ..., [

v(t)−1

v(t)
,1] ,

with v(t) being an increasing sequence of t. Denote these intervals
as Bi(t), i = 1,2...,v(t), which become more and more fine-grained
with increasing t and increasing v(t).

Given these intervals the learning algorithm works as follows.
At time t, for each interval Bi(t) we compute the estimated optimal
set of labelers by calculating the estimated utility of all subsets of
labelers, and this is done over the entire interval Bi(t) (contexts
within Bi(t) are viewed as a bundle). If at time t we have context
wi ∈ Bi(t) then this estimated optimal set is used. The regret of this
procedure consists of two parts. The first part is due to selecting a
sub-optimal set of labelers for Bi(t) (owing to incorrect estimates
of the labelers’ accuracy). This part of the regret is bounded by
O(1/t2). The second part of the regret arises from the fact that
even if we compute the correct optimal set for interval Bi(t), it may
not be optimal for the specific context wt ∈ Bi(t). However, when
Bi(t) becomes sufficiently small, and under a uniform Lipschitz
condition we can bound this part of the regret as well.

Taken together, if we revise the condition for entering the explo-
ration phase (constants D1(t) and D2(t)) to grow on the order of
O(tz log t) instead of log t, for some constant 0 < z < 1, then the
regret R(T) in this case is on the order of T z logT ; thus it remains
sub-linear and therefore has a zero average regret, but this is worse
than the log bound we can obtain in other cases.

We omit all technical details since they are rather direct exten-
sions combining our earlier results with the literatures on continu-
ous arms.

6. NUMERICAL EXPERIMENT
In this section we validate the proposed algorithms with a few

examples using both simulation and real data.

6.1 Simulation study
Our first setup consists of M = 5 labelers, whose quality {pi}

are randomly and uniformly generated to satisfy a preset amin as
follows: select {pi} randomly between [amin,1]. Note that this is
a simplification because not all {pi} need to be above amin for the
requirement to hold. An example of these are shown in Table 1 (for
amin = 0.6) but remain unknown to the labelers. A task arrives at
each time t. We assume a unit labeling cost c = 0.02. The exper-

L1 L2 L3 L4 L5

pi 0.763 0.781 0.625 0.783 0.727

Table 1: An example of the simulation setup.

iments are run for a period of T = 2,000 time units (2,000 tasks
in total). The results shown below are the average over 100 run-
s. Denote by G1,G2 the exploration constants concerning the two
constants (in D1(t) and D2(t)) that control the exploration part of
the learning. G1,G2 are set to be sufficiently large based on the
other parameters:

(G1,G2) = (
1

(1
maxm:m odd m·n(Sm)

−α)2 · ε2
,

1

(amin −0.5)2
) .

0 500 1000 1500 2000
0

1

2

3

4

5

6

Time steps

A
c
c
u

m
a

te
d

 r
e

g
re

ts

(a) Accumulative regret

1 1000 2,000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time steps
R

(T
)/

T

(b) Average regret R(T)/T

Figure 2: Regret of the LS_OL algorithm.

We first show the accumulative and average regret under the sim-
ple majority vote rule in Figure 2. From the set of figures we ob-
serve a logarithmic increase of accumulated regret and correspond-
ingly a sub-linear decrease for its average over time. The cost regret
RC (T) has a very similar trend as mentioned earlier (recall the re-
gret terms of RC (T) align well with the those in R(T)) and is thus
not show here. We then compare the performance of our labeler
selection to the naive crowd-sourcing algorithm, by taking a sim-
ple majority vote over the whole set of labelers each time. This is
plotted in Figure 3 in terms of the average reward over time. There
is a clear performance improvement after an initialization period
(where exploration happens).

0 200 400 600 800 1000
0.65

0.7

0.75

0.8

Time

A
v

e
ra

g
e

 r
e

w
a

rd

w/ LS_OL

Full crowd-sourcing

Figure 3: Performance comparison: online labeler selection v.s.
full crowd-sourcing (majority vote)

In addition to the logarithmic growth, we are interested in how
the performance is affected by the inaccuracy of the crowd exper-
tise. These results are shown in Figure 4. We observe the effect of
different choices of amin = 0.6,0.7,0.8. As expected, we see when
amin is small, the verification process of the labels takes more sam-
ples to become accurate. Therefore in the process more error is
introduced in the estimation of the labelers’ qualities, which results
in slower convergence.

We next compare the performance between simple majority vote
and weighted majority vote (both with LS_OL). One example trace
of accumulated reward comparison is shown in Figure 5; the ad-
vantage of weighted majority vote can be seen clearly. We then
repeat the set of experiments and average the results over 500 run-
s; the comparison is shown in Table 2 under different number of
candidate labelers (all of their labeling qualities are uniformly gen-
erated).

500 1000 1500 2000
0

0.5

1

Time steps

A
v
e

ra
g

e
 e

rr
o

r
ra

te

a_min = 0.6
a_min = 0.7
a_min = 0.8

Figure 4: Effect of amin: higher amin leads to much better perfor-
mance.

0 20 40 60 80 100
0

50

100

Time steps

A
c
c
u

m
u

la
te

d
 r

e
w

a
rd

Simple majority voting
Weighted majority voting

Figure 5: Comparing weighted and simple majority voting within
LS_OL.

M 5 10 15 20

Full crowd-sourcing (majority vote) 0.5154 0.5686 0.7000 0.7997

Majority vote w/ LS_OL 0.8320 0.9186 0.9434 0.9820

Weighted majority vote w/ LS_OL 0.8726 0.9393 0.9641 0.9890

Table 2: Average reward per labeler: there is a clear gap between
with and without using LS_OL.

6.2 Study on a real AMT dataset
We also apply our algorithm to a dataset shared at [1]. This

dataset contains 1,000 images each labeled by the same set of 5
AMTs. The labels are on the scale from 0 to 4 indicating how
many scenes are seen from each image, such as field, airport, ani-
mal, etc. A label of 0 implies no scene can be discerned. Besides
the ratings from the AMTs, there is a second dataset from [1] sum-
marizing keywords for scenes of each image. We also analyze this
second dataset and count the number of unique descriptors for each
image and use this count as the ground-truth, to which the results
from AMT are compared.

We start with showing the number of disagreements each AMT
has with the group over the 1000 images. The total numbers of
disagreement of the 5 AMTs are shown in Table 3, while Figure 6
shows the cumulative disagreement over the set of images ordered
by their numerical indices in the database. It is quite clear that
AMT 5 shows significant and consistent disagreement with the rest.
AMT 3 comes next while AMTs 1, 2, and 4 are clearly more in
general agreement.

AMT1 AMT2 AMT3 AMT4 AMT5

of disagreement 348 353 376 338 441

Table 3: Total number of disagreement each AMT has.

0 200 400 600 800 1000
0

100

200

300

400

Ordered image number

#
 o

f
d

is
a

g
re

e
m

e
n

t

AMT1
AMT2
AMT3
AMT4
AMT5

Figure 6: Cumulated number of disagreements.

The images are not in sequential order, as the original experi-
ment was not done in an online fashion. To test our algorithm, we
will continue to use their numerical indices to order them as if they
arrived sequentially in time and feed them into our algorithm. By
doing so we essentially test the performance of conducting this type
of labeling tasks online whereby the administrator of the tasks can
dynamically alter task assignments to obtain better results.

In this experiment we use LS_OL with majority vote and with
the addition of the detection and filtering procedure discussed in
Section 3.5.3, which is specified to eliminate the worst labeler after
a certain number of steps such that the error in the rank ordering
is less than 0.1. The algorithm otherwise runs as described earli-
er. Indeed we see this happen around step 90, as highlighted in
Figure 7 along with a comparison to using the full crowd-sourcing
method with majority vote. The algorithm also eventually correctly
estimates the best set to consist of AMTs 1, 2, and 4. All images’
labeling error as compared to the ground-truth at the end of this
process is shown as a CDF (error distribution over the images) in
Figure 8; note the errors are discrete due to the discrete labels. It is
also worth noting that under our algorithm the cost is much lower
because AMT 5 was soon eliminated, while AMT 3 was only used
very infrequently once the correct estimate has been achieved.

0 200 400 600 800 1000
0.8

1

1.2

1.4

1.6

1.8

Ordered image number

A
v
e
ra

g
e
 e

rr
o
r

ra
te

Full crowd
w/ LS_OL

AMT5 ruled out

Figure 7: Average error comparison: online labeler selection v.s.
full crowd-sourcing.

7. CONCLUSION
To our best knowledge, this is the first work formalizing and ad-

dressing the issue of learning labelers’ quality in an online fashion
for the crowd-sourcing problem and proposing solutions with per-
formance guarantee. We developed and analyzed an online learning
algorithm that can differentiate high and low quality labelers over
time and select the best set for labeling tasks with O(log2 T) regret
uniform in time. In addition, we showed how performance could
be further improved by utilizing more sophisticated voting tech-
niques. We discussed the applicability of our algorithm to more
general cases where labelers’ quality varies with contextually dif-

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Error in labeling

C
D

F

Full Crowd : avg=1.63
w/ LS_OL: avg=1.36

Figure 8: Labeling error distribution comparison.

ferent tasks and how to detect and remove malicious labelers when
there is a lack of ground-truth. We validate our results via both
synthetic and real world AMT data.

Acknowledgment

This work is partially supported by the NSF under grant CNS-
1422211 and DHS under grant HSHQDC-13-C-B0015.

8. REFERENCES
[1] AMT dataset.

http://tamaraberg.com/importanceDataset/.

[2] AGRAWAL, R. The Continuum-Armed Bandit Problem.
SIAM journal on control and optimization 33, 6 (1995),
1926–1951.

[3] ANANDKUMAR, A., MICHAEL, N., TANG, A. K., AND

SWAMI, A. Distributed algorithms for learning and cognitive
medium access with logarithmic regret. Selected Areas in

Communications, IEEE Journal on 29, 4 (2011), 731–745.

[4] AUER, P., CESA-BIANCHI, N., AND FISCHER, P.
Finite-time Analysis of the Multiarmed Bandit Problem.
Mach. Learn. 47 (May 2002), 235–256.

[5] CHAPELLE, O., SINDHWANI, V., AND KEERTHI, S. S.
Optimization Techniques for Semi-supervised Support
Vector Machines. The Journal of Machine Learning

Research 9 (2008), 203–233.

[6] CHOFFNES, D. R., BUSTAMANTE, F. E., AND GE, Z.
Crowdsourcing Service-level Network Event Monitoring.
SIGCOMM Comput. Commun. Rev. 40, 4 (Aug. 2010),
387–398.

[7] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND

FEI-FEI, L. ImageNet: A Large-Scale Hierarchical Image
Database.

[8] GHOSH, A., KALE, S., AND MCAFEE, P. Who moderates
the moderators?: Crowdsourcing abuse detection in
user-generated content. In Proceedings of the 12th ACM

Conference on Electronic Commerce (New York, NY, USA,
2011), EC ’11, ACM, pp. 167–176.

[9] GUILLE, A., HACID, H., FAVRE, C., AND ZIGHED, D. A.
Information diffusion in online social networks: A survey.
ACM SIGMOD Record 42, 2 (2013), 17–28.

[10] HAKLAY, M., AND WEBER, P. Openstreetmap:
User-generated Street Maps. Pervasive Computing, IEEE 7,
4 (2008), 12–18.

[11] HO, C.-J., AND VAUGHAN, J. W. Online task assignment in
crowdsourcing markets. In AAAI’12 (2012), pp. –1–1.

[12] HUA, G., LONG, C., YANG, M., AND GAO, Y.
Collaborative Active Learning of a Kernel Machine

Ensemble for Recognition. In Computer Vision (ICCV), 2013

IEEE International Conference on (2013), IEEE,
pp. 1209–1216.

[13] KARGER, D. R., OH, S., AND SHAH, D. Iterative learning
for reliable crowdsourcing systems. In Advances in neural

information processing systems (2011), pp. 1953–1961.

[14] KARGER, D. R., OH, S., AND SHAH, D. Efficient
crowdsourcing for multi-class labeling. In ACM

SIGMETRICS Performance Evaluation Review (2013),
vol. 41, ACM, pp. 81–92.

[15] KULIS, B., BASU, S., DHILLON, I., AND MOONEY, R.
Semi-supervised Graph Clustering: a Kernel Approach.
Machine learning 74, 1 (2009), 1–22.

[16] LAI, T. L., AND ROBBINS, H. Asymptotically Efficient
Adaptive Allocation Rules. Advances in Applied

Mathematics 6 (1985), 4–22.

[17] LIU, H., LIU, K., AND ZHAO, Q. Learning in a changing
world: Non-bayesian restless multi-armed bandit. Tech. rep.,
DTIC Document, 2010.

[18] LONG, C., HUA, G., AND KAPOOR, A. Active Visual
Recognition with Expertise Estimation in Crowdsourcing. In
Computer Vision (ICCV), 2013 IEEE International

Conference on (2013), IEEE, pp. 3000–3007.

[19] NATARAJAN, N., DHILLON, I., RAVIKUMAR, P., AND

TEWARI, A. Learning with Noisy Labels. In Advances in

Neural Information Processing Systems (2013),
pp. 1196–1204.

[20] REA, L. M., AND PARKER, R. A. Designing and

conducting survey research: A comprehensive guide. John
Wiley & Sons, 2012.

[21] RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., AND

FREEMAN, W. T. LabelMe: A Database and Web-Based
Tool for Image Annotation. Int. J. Comput. Vision 77, 1-3
(May 2008), 157–173.

[22] SHENG, V. S., PROVOST, F., AND IPEIROTIS, P. G. Get
Another Label? Improving Data Quality and Data Mining
Using Multiple, Noisy Labelers. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge

discovery and data mining (2008), ACM, pp. 614–622.

[23] TEKIN, C., AND LIU, M. Online Learning of Rested and
Restless Bandits. Information Theory, IEEE Transactions on

58, 8 (2012), 5588–5611.

[24] ZHONG, E., FAN, W., AND YANG, Q. Contextual
collaborative filtering via hierarchical matrix factorization. In
SDM’12 (2012), pp. 744–755.

[25] ZHU, X., AND GOLDBERG, A. B. Introduction to

Semi-Supervised Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning.

Appendices

Proof of Theorem 1

We prove by contradiction. Suppose m is even and we order all
selected users by their labeling capability in descending order p1 ≥
...≥ pm. We now prove

π(p1, ..., pm−1)≥ π(p1, ..., pm) (16)

Consider the following. By adding pm, the gain for π(p1, ..., pm−1)

is
pm·P(T1)

2 , where

T1 = {# of correct labels = # of wrong labels−1}.

That is, only when the number of correct labels is exactly the same
as the number of wrong labels less one does adding a m-th correct
label change the outcome of the majority vote (in this case there is
a tie so the label changes with probability 1/2); when the former
number is smaller or bigger, adding one more vote does not change

the results. On the other hand, the loss is
(1−pm)·P(T2)

2 , where

T2 = {# of correct labels = # of wrong labels+1}.

We now compare pm ·P(T1) and (1− pm) ·P(T2). Within the set
T2, each event is of the form where some labeler i gives the correct
label while the rest are half correct and half wrong. Denote this
event by ωi and by ω−i the event that the rest of the labels (given
by those other than i) are half right and half wrong. Note for each
ωi there is a corresponding event ω̂i ∈ T1 where i gives the wrong
labels while the rest are half correct and half wrong. Since pi ≥ pm

we have

(1− pm)· pi ·P(ω−i)≥ pm · (1− pi) ·P(ω−i) . (17)

At the same time, P(ωi) = pi ·P(ω−i),P(ω̂i) = (1− pi) ·P(ω−i),
i.e., (1− pm) ·P(ωi)≥ pm ·P(ω̂i). This is true for all ωi. Therefore
we have

(1− pm) ·P(T2)

= (1− pm) ·P(∪i ωi)

= ∑
ωi

(1− pm) ·P(ωi)

≥ ∑
ω̂i

pm ·P(ω̂i) = pm ·P(T1) (18)

Therefore we have proved π(p1, ..., pm−1) ≥ π(p1, ..., pm). More-
over

U({1,2, ...,m−1})−U({1,2, ...,m})
= π(p1, ..., pm−1)−π(p1, ..., pm)> 0. (19)

Therefore a selection of an even number of labelers can always be
improved by removing the least accurate labeler, resulting in an odd
number of labelers in the selection.

Proof of Theorem 2

Consider a m-set S. Suppose there is a i /∈ S and a j ∈ S such that
pi > p j. Then the probability of making a correct annotation is
given by

PS(# of correct labels > # of wrong labels)

=p j ·P(T1)+(1− p j) ·P(T2)

where

T1 = {# correct label > # wrong label−1 in S\ j} (20)

T2 = {# correct label > # wrong label+1 in S\ j} (21)

Now replace j with i and denote Ŝ = S\ j∪{i} we have

P
Ŝ
(# of correct labels > # of wrong labels)

=pi ·P(T1)+(1− pi) ·P(T2) .

It follows that

P
Ŝ
−PS = (pi − p j) · (P(T1)−P(T2)) . (22)

If an event ω ∈ T2 we must also have ω ∈ T1, thus we have T2 ⊂ T1;
therefore P(T1)− P(T2) > 0, and we conclude that P

Ŝ
− PS > 0,

completing the proof.

Proof of Lemma 1

Denote by n(T) the number of times an exploration phase has been
activated up to time T . Since for labeler i there is at most D1(T) ·
D2(T) number of exploration phases, we have

n(T) =
T

∑
i=1

Iat least one task in exploration phase at t

≤
D1(t)

∑
k=1

T

∑
i=1

I task k in reassignment phase at t ≤ D1(T) ·D2(T) ,

where the first inequality comes from union bound. Then

E[Re(T)]≤U(S∗) ·n(T) =U(S∗) · (D1(T) ·D2(T)) .

Proof of Lemma 3

Firstly notice via union bound we have the following bound at any
time t:

E[E1(t)]≤
M

∑
m=1

m odd

P(Ũ(Sm)≥ Ũ(S∗)) . (23)

Now consider each term in the above summation P(Ũ(Sm)≥ Ũ(S∗)).
We will use the following fact to bound it.

LEMMA 6. The probability of using a sub-optimal selection Sm

is bounded as follows,

P(Ũ(Sm)≥Ũ(S∗))≤ P(Ũ(Sm)>U(Sm)+ ε)

+P(Ũ(S∗)<U(S∗)− ε) , (24)

and for S ∈ {Sm,S∗} we have

P(|Ũ(S)−U(S)|> ε)

≤ n(S) ·∑
i∈S

P(| p̃i − pi|>
ε

n(S) · |S|) . (25)

We shall now use the above lemma; its own proof is given later in
this appendix.

Consider each term P(| p̃i − pi|> ε
n(S)·|S|) in the lemma

P(| p̃i − pi|>
ε

n(S) · |S|)

= P(| p̃i − pi|>
ε

n(S) · |S| |
∑k:k∈E(t) Iy∗k=0

|E(t)| ≤ α · ε
tz

)

︸ ︷︷ ︸

Term 1

·P(∑k:k∈E(t) Iy∗k=0

|E(t)| ≤ α · ε
tz

)

+P(| p̃i − pi|>
ε

n(S) · |S| |
∑k:k∈E(t) Iy∗k=0

|E(t)| >
α · ε

tz
)

·P(
∑k:k∈E(t) Iy∗k=0

|E(t)| >
α · ε

tz
)

︸ ︷︷ ︸

Term 2

(26)

where 0 < z < 1 is a constant. This is different from the classical
learning problem in the sense we need to deal with extra errors
associated with imperfect feedbacks. The first term takes care of
the event when the sum of error is lower than certain threshold
while the second term captures the other case.

For Term 1 the conditional probability is bounded as follows:

P(| p̃i − pi|>
ε

n(S) · |S| |
∑k:k∈E(t) Iy∗k=0

|E(t)| ≤ α · ε
tz

)

≤ P(| p̃i − pi|> (
1

n(S) · |S| −
α

tz
) · ε)

≤ 2 · e−2((1
n(S)·|S|− α

tz
)·ε)2·D1(t) ≤ 2

t2
, (27)

since D1(t) =
1

(1
n(S)·|S|−α)2·ε2

· log t. Consider Term 2,

P(
∑k:k∈E(t) Iy∗k=0

|E(t)| >
α · ε

tz
)≤

E[∑k:k∈E(t) Iy∗
k
=0]

|E(t)|
α·ε
tz

=

∑k:k∈E(t) E[Iy∗
k
=0]

|E(t)|
α·ε
tz

, (28)

by the Markov inequality. Note more strict bound could be ob-
tained via other bounding techniques. Consider each term in the
summation

E[Iy∗k=0] = P(y∗k = 0)

= P(
N̂k(t)

∑
n=1

Iyk(n) > 0.5 · N̂k(t))

≤ e−2(amin−0.5)2·N̂k(t) ≤ 1

t2
,

where N̂k(t) is the number of feedbacks received for task k up-
to time t; the inequality is due to the fact that N̂k(t) ≥ D2(t) ≥
1/(amin − 0.5)2 log t. This means that for each labeler, it has per-
formed on at least D1(T) tasks, and each task must have at least
D2(T) testing results available.

Consequently we have

P(
∑k∈E(t) Iy∗k=0

|E(t)| >
α · ε

tz
)≤ 1/t2

α · ε/tz
=

1

α · ε · t2−z
.

The other two terms in the summation are bounded by 1 since they
are probability measures. Summing up, we have

P(|Ũ(S)−U(S)|> ε)≤ n(S) · |S| · (2

t2
+

1

α · ε · t2−z
) . (29)

Summing over Sm,m odd completes the proof.

Proof of Lemma 4

We have the following fact:

E[E2(t)]≤ P(∪i∈M | p̃i − pi|> ε)

≤ ∑
i∈M

P(| p̃i − pi|> ε) .

This is because if | p̃i − pi| ≤ ε , ∀i then we must have for pi > p j,

p̃i − p̃ j ≥ pi − ε − p j − ε > 0,

which means there is no error in ordering. Similarly as above we
have

P(| p̃i − pi|> ε)≤ 2

t2
+

1

α · ε · t2−z
. (30)

Therefore,

E[E2(t)]≤ M(
2

t2
+

1

α · ε · t2−z
) . (31)

Proof of Lemma 6

We first bound the inequality in Eqn.(24). To see why this inequal-
ity is true, consider the following fact

{ω : Ũ(Sm)≥ Ũ(S∗)} ⊆
{ω : Ũ(Sm)>U(Sm)+ ε}∪{ω : Ũ(S∗)<U(S∗)− ε} , (32)

since if Ũ(Sm)≤U(Sm)+ ε, Ũ(S∗)≥U(S∗)− ε , we then have

Ũ(Sm)−Ũ(S∗)≤U(Sm)+ ε −U(S∗)+ ε

≤−∆min +2ε <−∆min +∆min = 0 ,

which contradicts the fact that Ũ(Sm)≥ Ũ(S∗). Thus

P(Ũ(Sm)≥ Ũ(S∗))≤ P(Ũ(Sm)>U(Sm)+ ε)

+P(Ũ(S∗)<U(S∗)+ ε) ,

by the union bound. The bounding effort then reduces to bounding
each of above probabilities. Note that for any set S, plug in U(S)
we have

|Ũ(S)−U(S)|= | ∑
S
′
:S

′⊆S, |S′ |≥⌈ |S|
2
⌉
(∏
i∈S

′
p̃i ∏

S\S
′
(1− p̃ j))

− ∏
i∈S

′
pi ∏

S\S
′
(1− p j))| . (33)

Therefore

P(|Ũ(S)−U(S)|> ε) = P(∑
S
′
:S

′⊆S, |S′ |≥⌈ |S|
2
⌉
|∏

i∈S
′
p̃i ∏

S\S
′
(1− p̃ j)

− ∏
i∈S

′
pi ∏

S\S
′
(1− p j)|> ε)

≤ ∑
S
′
:S

′⊆S, |S′ |≥⌈ |S|
2
⌉
P(|∏

i∈S
′
p̃i ∏

S\S
′
(1− p̃ j)

− ∏
i∈S

′
pi ∏

S\S
′
(1− p j)|>

ε

n(S)
) ,

where the last inequality comes from the union bound. We further
use the following results (which can be proved separately but the
proof is omitted) to separate the above product terms into summa-
tions.

LEMMA 7. For k ≥ 1 and two sequences {li}m
i=1 and {qi}m

i=1
and 0 ≤ li,qi ≤ 1,∀i = 1, ...,k., we have

|
m

∏
i=1

li −
m

∏
j=1

q j| ≤
m

∑
i=1

|li −qi| . (34)

Using this result, we have

| ∏
i∈S

′
p̃i ∏

j∈S\S
′
(1− p̃ j)− ∏

i∈S
′
pi ∏

j∈S\S
′
(1− p j)|

≤ ∑
i∈S

′
| p̃i − pi|+ ∑

j∈S\S
′
|(1− p̃ j)− (1− p j)|

= ∑
i∈S

| p̃i − pi| .

Therefore using the union bound we have

P(|∏
i∈S

′
p̃i ∏

S\S
′
(1− p̃ j)− ∏

i∈S
′
pi ∏

S\S
′
(1− p j)|>

ε

n(S)
)

≤ ∑
i∈S

P(| p̃i − pi|>
ε

n(S) · |S|) .

Therefore summing up all of the above we have

P(|Ũ(S)−U(S)|> ε)

≤ ∑
S
′
:S

′⊆S, |S′ |≥⌈ |S|
2
⌉
∑
i∈S

P(| p̃i − pi|>
ε

n(S) · |S|)

= n(S) ·∑
i∈S

P(| p̃i − pi|>
ε

n(S) · |S|) . (35)

Proof of Theorem 4

We prove this by contradiction. Suppose there exists a pair (i, j),
i ∈ S, j /∈ S such that pi < p j. We discuss the following cases. First

of all as we already noted we have log pi

1−pi
< log

p j

1−p j
. Consider

the following fact the probability for correct labeling is given by

Pc = pi ·P(T1)+(1− pi) ·P(T2)+
P(T3)

2
, (36)

where

T1 = { ∑
u∈Sc

log
pu

1− pu
> ∑

e∈Sw

log
pe

1− pe
− log

pi

1− pi
} ,

T2 = { ∑
u∈Sc

log
pu

1− pu
> ∑

e∈Sw

log
pe

1− pe
+ log

pi

1− pi
} ,

and

T3 = {A tie occurs}, (37)

where Sc 6= Sw and Sc ∪Sw =M −{i}, indicating the set of correct
and wrong labelers respectively. Essentially the first two events
correspond to cases when there is a majority group (including and
excluding i respectively) and T3 corresponds to the case when there
is a tie.

Changing pi to p j since

P(T
j

1)≥ P(T1), P(T2)≥ P(T
j

2) ,

if pi > 0.5, where T
j

q ,q ∈ {1,2} correspond to Tq,q ∈ {1,2} by
replacing i with j. And we have

p j ·P(T j
1)+(1− p j) ·P(T j

2)

− pi ·P(T1)− (1− pi) ·P(T2)

≥ (p j − pi) · (P(T1)−P(T2))≥ 0 .

For T3 consider the case pi is in Sc. Then changing pi to p j will
break the equilibrium and the probability of a correct output will
become

p j ·P(Sc) ·P(Sw)> pi ·P(Sc) ·P(Sw) =
P(T3)

2
, (38)

where P(Sc),P(Sw) correspond to the probabilities from the correct
and wrong labelers, i.e.,

P(Sc) = ∑
u∈Sc

pu, P(Sw) = ∑
e∈Sw

(1− pe) , (39)

and the last inequality comes from the fact that in the equal case
the probabilities of the label being either 0 or 1 are equivalent with
each other.

Proof of Lemma 5

First of all we have

P(W̃ (Ŝ)−W̃ (S\Ŝ)< ε)≤ P(W̃ (Ŝ)−W (Ŝ)<−ε/2)

+P(W̃ (S\Ŝ)−W (S\Ŝ)> ε/2) .

This is because otherwise if

W̃ (Ŝ)−W (Ŝ)≥−ε/2,

W̃ (S\Ŝ)−W (S\Ŝ)< ε/2 ,

we have

W̃ (Ŝ)−W̃ (S\Ŝ)≥W (Ŝ)−W (S\Ŝ)− ε ≥ ε , (40)

which gives us a contradiction.
Consider each term above we have,

P(W̃ (Ŝ)−W (Ŝ)<−ε/2)

≤ ∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
|> ε

2|Ŝ|
)

≤ ∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
|> ε

2|Ŝ|
|| p̃i − pi| ≥

ε

4C|Ŝ|
)

·P(| p̃i − pi| ≥
ε

4C|Ŝ|
)+

∑
i∈Ŝ

P(| log
p̃i

1− p̃i
− log

pi

1− pi
| ≥ ε

2|Ŝ|
|| p̃i − pi|<

ε

4C|Ŝ|
)

·P(| p̃i − pi|<
ε

4C|Ŝ|
)

≤ ∑
i∈S

P(| p̃i − pi| ≥
ε

4C|Ŝ|
)≤ |Ŝ|(2

t2
+

1

α · ε · t2−z
) .

Since

D1(t)≥ 1/(
1

maxm 4C ·m −α) log t, α <
1

maxm 4C ·m ,

as well as the fact that when | p̃i − pi| ≤ ε
4C|Ŝ| and

C > max
i

max{1+ ε/4

pi
,

1− ε/4

1− pi
,

ε/4

pi
,

ε/4

1− pi
} ,

we have

| log
p̃i

1− p̃i
− log

pi

1− pi
| ≤ 2C · | p̃i − pi|<

ε

2|Ŝ|
,

where we have used the following results.

LEMMA 8. With p̃i, pi bounded away from 0 and 1 we have,

| log
p̃i

1− p̃i
− log

pi

1− pi
| ≤ 2C · | p̃i − pi| , (41)

where C is a constant satisfying,

C > max
i

max{ 1

pi
,

1

p̃i
,

1

1− pi
,

1

1− p̃i
}. (42)

Similarly we have

P(W̃ (S\Ŝ)−W (S\Ŝ)> ε/2)≤ |S\Ŝ|(2

t2
+

1

α · ε · t2−z
) .

Combine above we have

P(W̃ (Ŝ))−W̃ (S\Ŝ)< ε)≤ |S| · (2

t2
+

1

α · ε · t2−z
) .

For the other case when W (Ŝ) =W (S\Ŝ) we have,

P(|W̃ (Ŝ)−W̃ (S\Ŝ)|> ε)≤ P(|W̃ (Ŝ)−W (Ŝ)| ≥ ε/2)

+P(|W̃ (S\Ŝ)−W (S\Ŝ)| ≥ ε/2)

≤ |S| · (2

t2
+

1

α · ε · t2−z
) , (43)

where the second inequality is established similarly as in the first
case.

Proof of Lemma 7

We prove the claim by induction. Notice when m= 1 the inequality
holds trivially. When m = 2 we have

|l1 · l2 −q1 ·q2|

= |(l1 −q1) ·
l2 +q2

2
+(l2 −q2) ·

l1 +q1

2
|

≤ |(l1 −q1) ·
l2 +q2

2
|+ |(l2 −q2) ·

l1 +q1

2
|

= |l1 −q1| · |
l2 +q2

2
|+ |l2 −q2| · |

l1 +q1

2
|

≤ |l1 −q1|+ |l2 −q2| . (44)

The last inequality used the fact

| l1 +q1

2
| ≤ 1, | l2 +q2

2
| ≤ 1 .

Suppose the inequality holds for m.

|
m+1

∏
i=1

li −
m+1

∏
j=1

q j|= |
m

∏
i=1

li · lm+1 −
m

∏
j=1

q j ·qm+1|

≤ |
m

∏
i=1

li −
m

∏
j=1

q j|+ |lm+1 −qm+1|

≤
m+1

∑
i=1

|li −qi| , (45)

where the second inequality comes from the induction basis for
m = 2, since

0 ≤
m

∏
i=1

li,
m

∏
j=1

q j ≤ 1 ,

and the last inequality uses the induction hypothesis.

Proof of Lemma 8

Observe the following facts:

| log
p̃i

1− p̃i
− log

pi

1− pi
|

= | log p̃i − log pi + log(1− pi)− log(1− p̃i)|
≤ | log p̃i − log pi|+ | log(1− pi)− log(1− p̃i)|
≤ 2C| p̃i − pi| , (46)

since all four terms are bounded from 0 and the last inequality
comes from classical inequality of log(·) functions.

