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Abstract—The capabilities of electric loads participating in load
curtailment programs are often unknown until the loads have been
told to curtail (i.e., deployed) and observed. In programs in which
payments are made each time a load is deployed, we aim to pick
the “best” loads to deploy in each time step. Our choice is a
tradeoff between exploration and exploitation, i.e., curtailing poorly
characterized loads in order to better characterize them in the
hope of benefiting in the future versus curtailing well-characterized
loads so that we benefit now. We formulate this problem as a
multi-armed restless bandit problem with controlled bandits. In
contrast to past work that has assumed all load parameters are
known allowing the use of optimization approaches, we assume
the parameters of the controlled system are unknown and develop
an online learning approach. Our problem has two features not
commonly addressed in the bandit literature: the arms/processes
evolve according to different probabilistic laws depending on the
control, and the reward/feedback observed by the decision-maker is
the total realized curtailment, not the curtailment of each load. We
develop an adaptive demand response learning algorithm and an
extended version that works with aggregate feedback, both aimed
at approximating the Whittle index policy. We show numerically
that the regret of our algorithms with respect to the Whittle index
policy is of logarithmic order in time, and significantly outperforms
standard learning algorithms like UCB1.

I. INTRODUCTION

Electric loads participating in demand response programs
provide a variety of benefits to electric power systems including
increased power system reliability and power market efficiency
[1]. However, the responses of loads to curtailment signals are
uncertain [2] because load behavior is complex and influenced
by a variety of stochastic factors including weather and human
behavior. Generally, detailed load models are unavailable and
we do not have full access to realtime information about load
models, states, or disturbances due to limited communications.
Subsequently, a load’s ability to curtail is often only known
after it has been told to curtail (i.e., deployed) and observed.
This results in a tradeoff between exploration and exploitation
[3], i.e., pursuing potential gain from poorly characterized loads
so as to improve our characterization which hopefully leads to
future gains versus harvesting immediate benefits from well-
characterized loads.

In this paper, we formulate load curtailment as a multi-armed
restless bandit problem, where a decision maker must repeatedly
select multiple arms/processes from a set, generating state-
dependent rewards unknown a priori. The system is “restless”
because the states evolve regardless of the control. Here the
decision maker is a load aggregator (e.g., a utility company or
third party curtailment service provider) with a fixed budget. We
assume the aggregator must pay a load each time it is deployed

and therefore selects only a portion of the loads for deployment
in each time step. The aggregator’s goal is to deploy the “best”
loads which allow her to maximize load curtailment subject to
her budget.

There has been a considerable amount of research on bandit
problems over the past few decades along two directions. The
first class of problems, referred to as the optimization version of
the bandit problem within this paper, concerns the case where
the reward process associated with each arm is described by a
well-defined probabilistic model. In this case, the problem is in
essence a stochastic control problem (e.g., a Markov Decision
Process), and the objective is to derive a sequential decision
process that maximizes a total reward (average or discounted)
over a finite or infinite horizon. Index policies have often been
used as solutions to bandit problems in this category. Specifically,
each arm is associated with a (scalar) index and the arms are
selected in a greedy fashion with respect to their indices. Seminal
results include the Gittins index [4] for rested bandits where the
state of an arm remains static when not selected, and Whittle’s
heuristic index [5] for restless bandits where the state of an arm
continues to evolve regardless of the control.

The second class of problems, referred to as the learning
version of the bandit problem within this paper, concerns the
case where the reward process is unknown. This further splits
into two cases: In the first, the process is assumed to follow
a certain probabilistic model with unknown parameters, e.g.,
a Markov chain with unknown transition probabilities or an
i.i.d. process with unknown probability distribution. This is
commonly referred to as the stochastic bandit, see e.g., [6].
In the second, the reward process is assumed arbitrary, i.e., no
probabilistic structure is imposed, which is often used to capture
an adversarial process. This is commonly referred to as the non-
stochastic bandit, see e.g., [7]. The performance of a learning
policy is typically measured by the regret, defined as the gap
between the rewards obtained by the given policy and that of a
reference policy (typically one used by a genie/oracle).

Under the optimization version, [3] formulated demand re-
sponse as a multi-armed restless bandit problem, assuming a
two-state Markovian model, and calculated the Whittle index
policy. It was shown to outperform a naive greedy policy by 5–
10%. Prior knowledge of the state transition probabilities, which
are assumed different for the uncontrolled and controlled system,
is key to deriving the indices. The two-state model sufficiently
approximates the dynamic response capability of a variety of
types of loads and is analytically tractable; however, in a realistic
system with highly heterogeneous loads it would be difficult to



obtain all necessary load parameters, especially the parameters
associated with the controlled response.

Here, we relax assumptions on knowledge of the system
parameters by applying the learning version of the multi-armed
restless bandit problem. Specifically, we assume the dynamic
behavior of loads can be modeled with a set of two-state
Markov chains as in [3], but unlike [3] we assume the transition
probabilities of the controlled system are unknown a priori.
Therefore, we solve a stochastic bandit problem.

Past work on multi-armed bandit learning algorithms has
mainly focused on reward processes that are uncontrolled
Markov chains, meaning that the control decision does not affect
the underlying state transitions. In other words, each reward
process is governed by a single set of transition probabilities,
so the state transitions are independent of the decision maker’s
actions. This setting most aptly captures problems in which the
selection of an arm does not physically alter that arm. Examples
include the celebrated UCB1 algorithm [8] and its derivatives
(e.g., [9], [10]), which are concerned with uncontrolled i.i.d. pro-
cesses, and [6] and [11], which focus on uncontrolled finite-state
Markov chains. A notable exception is [12], which considered
a controlled Markov chain; however, in this study there is only
one arm/process and consequently its states are always perfectly
observed. Past work also heavily relies on obtaining observations
(of the state or the reward) from each of the selected/activated
arms, even if multiple are activated at a time. This allows
us to learn each arm directly and separately. However, the
demand response problem presents two challenges: 1) load are
governed by different statistics when the system is controlled and
uncontrolled [3], and 2) individual feedback from each deployed
load is often unobservable in a practical system; the feedback
is instead of the form of a (noisy) aggregate load curtailment.
These challenges render existing multi-armed bandit learning
algorithms inapplicable to the demand response problem.

In light of the above discussion, we seek a solution to the
demand response problem by formulating it as a multi-armed
restless bandit learning problem for controlled Markov processes
with noisy aggregate feedback. We propose an efficient online
learning algorithm that is adaptive to the dynamic response
capability of each load and empirically reliable for a broad class
of loads. The remainder of this paper is organized as follows. We
present our system model and the proposed learning algorithm
in Section II and III. We numerically evaluate the performance
of this algorithm in Section IV and Section V concludes.

II. SYSTEM MODEL AND PRELIMINARIES

A. Model

Consider a system that consists of N electric loads that can
be deployed by an aggregator, indexed by [N ] = {1, 2, . . . , N}.
The dynamics of a load are illustrated in Fig. 1 and described
by a pair of two-state Markov chains, one characterizing state
transitions when the load is active (i.e., deployed) and one
characterizing state transitions when the load is passive (i.e.,
not deployed). In each case, the load may be in one of two
states, available for load curtailment or unavailable. For example,
a refrigerator is available if it is powered on and within its

Fig. 1. A two-state Markov chain model representing a load’s availability for
load curtailment, as in [3].

temperature limits, and unavailable if it is powered off or outside
its temperature limits.

Formally, we will denote a load by a controlled time-
homogeneous Markov chain {X

k

(t)}1
t=1, 8k 2 [N ], where

X

k

(t) 2 {0, 1}. The curtailment capacity (in units of power)
of load k is given by a constant c

k

> 0 whenever it is available.
Let U

k

(t) be the control of load k by the aggregator at time
t with U

k

(t) = 1 if load k is selected and 0 otherwise. The
corresponding Markov chains induced by the control actions are
given by

P(X
k

(t+ 1) = j|X
k

(t) = i, U

k

(t) = 1) = P

k

ij

,

P(X
k

(t+ 1) = j|X
k

(t) = i, U

k

(t) = 0) = Q

k

ij

,

where P

k

= [P

k

ij

]2⇥2 is the transition matrix under deployment
or the active transition matrix, and Q

k

= [Q

k

ij

]2⇥2 the passive
transition matrix, as shown in Fig. 1. To put in the context of
the bandit problem framework, a load maps to an arm, and the
deployment of a load maps to the activation or playing of an
arm.

We assume that the passive matrices Q

k

are known to the
aggregator, while the active matrices P

k

are unknown. Such an
assumption is justified for the following reasons. A model for the
uncontrolled behavior of the load could be determined based on
the type of load and manufacturer’s specifications. When a load
signs up to participate in a demand response program it could
be required to provide this information to the load aggregator.
However, it is unreasonable to assume that we would have a
good model of the controlled behavior of the load. The best
way to build such a model is to observe the load’s response
to curtailment signals over time. This could be done before the
load begins to participate in the program, or, as proposed here,
while it is participating in the program. In the latter, we must
use online learning.

The decision making of the aggregator is sequential, and the
decision epochs are given by discrete time slots t = 1, 2, . . .. In
each slot, the aggregator chooses up to K loads to participate in
demand response, where K < N .

The aggregator can only obtain feedback/measurements from
deployed loads. In particular, this feedback takes an aggregated
form in practice especially when K and N are large, i.e., the
aggregator only gets to observe the total amount of realized
curtailment, but not the amount of curtailment achieved for each
load. This results in significant challenge to the design of a



learning algorithm which typically tries to estimate the quality
and dynamics of each individual process/arm. In this paper, we
will first present a learning algorithm assuming the simpler case,
whereby the aggregator can observe individual states on each
activated load (Section III-A). We then extend our algorithm to
the case when only noisy aggregate measurements of curtailed
capacity are available to the aggregator (Section III-B).

The control actions U

k

(t) for all k 2 [N ] are determined by
a control rule g

t

at time t, based on all past observations and
control actions. The collection of control rules over time g =

(g1, g2, . . .) will be called a policy in this paper. The objective
of the aggregator is to maximize the expected discounted infinite-
horizon kW capacity

Eg

( 1
X

t=0

↵

t

N

X

k=1

c

k

U

k

(t)X

k

(t)

)

,

subject to the constraint
P

N

k=1 Uk

(t) = K for all t, where
0 < ↵ < 1 is the discounting factor and we use the superscript
g to emphasize the dependence of the expectation operator on
the policy g. This objective function can be used to maximize
curtailment of demand responsive loads during system peaks,
which is a common objective in traditional demand response
programs, e.g., [13].

If in addition to Q

k

, we also know P

k

for each k 2 [N ],
then the problem would reduce to the well-studied restless
bandit problem of the optimization version. While a general
structured solution to this type of problems remains elusive (and
the hardness of this problem has been shown to be PSPACE-
complete [14]), various heuristic policies have been proposed in
the literature for specific problems. These often take the form of
index policies, where a scalar index is computed at each step for
each arm using only statistics of that arm, and arm(s) with the
highest index (indices) are selected for play. Of particular interest
is the Whittle index policy, which is suboptimal in general,
but optimal under the relaxation E{

P

N

k=1 Uk

(t)} = K, i.e.,
requiring on average K arms are played at each time rather than
exactly K arms are played at each time. This is widely used as
an efficient heuristic solution in many problem instances.

Below we give a brief review of the Whittle index policy
derived in [3] for the above problem assuming both P

k

and
Q

k

are known. Then in Section III we present two learning
algorithms, one in the case of explicit feedback from each active
load and one in the case of aggregate feedback, that attempt to
track the performance of this policy by estimating the unknown
matrices P

k

and computing an approximate version of this policy.

B. The Whittle index policy and the regret measure

Let ⇡

k

(t) be the probability that X

k

(t) = 1 given all past
observations and control actions, i.e., the belief state at time t,
which is a sufficient statistic for optimal control [15]. The value
of the aggregator’s objective can then be written as

Eg

( 1
X
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↵

t

N

X
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c
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)
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The evolution of the belief state is given by
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(1)

where the operator �

k

evolves the belief state when load k is
passive, i.e.,

�

k

⇡

k

(t) = Q

k

11⇡k

(t) +Q

k

01(1� ⇡

k

(t)).

Under certain order conditions on the transition probabilities,
[3] derived the Whittle index w

k

, which can be computed
with extremely low complexity and is detailed in Appendix A.
The Whittle index policy can be then summarized as follows,
assuming known transition probability matrices.

Whittle Index Policy
Initialization: Set the belief state ⇡

k

= 1/2 for all k 2 [N ]

For time t = 1, 2, . . . , T do:

1) Compute the Whittle index w

k

for each load k.
2) Dispatch the K loads with largest indices.
3) Observe the states of the active (deployed) loads, and

update the belief state ⇡

k

as in (1) for all loads.

The computation of the Whittle indices explicitly relies on
the complete knowledge of the active and the passive transition
matrices (see the Appendix A). In the case when the active
transition matrices P

k

are unknown, which we consider in this
paper, we measure the performance of a given policy g with
respect to the Whittle index policy with complete knowledge,
denoted by g

W

. In particular, we use the notion of regret, which
is given by the gap between the total undiscounted kW capacity
that can be curtailed by g

W

and that by g. Formally, let

G(g, T ) = Eg

(

T

X

t=0

N

X

k=1

c

k

U

k

(t)X

k

(t)

)

,

and we then define the regret R(g, T ) of the policy g by

R(g, T ) = G(g

W

, T )�G(g, T ).

We consider a policy as efficient if the regret is sublinear over
time, i.e., R(g, T ) = o(T ), or so-called no regret for the average
regret. A logarithmic growth rate of the regret is typically order
optimal in the context of learning uncontrolled processes with
probabilistic models1, with respect to various baseline policies
(e.g., a static policy and the resulting regret is often called the
weak regret, or the optimal dynamic policy that gives rise to the
notion of strong regret).

In the next section, we present a policy that learns the active
transition matrices when they are unknown over time and mimics
or tracks the Whittle index policy with estimated parameters.
We show in Section IV that the proposed algorithm empirically
exhibits logarithmic regret; formally establishing this result is
part of our ongoing work.

1For arbitrary but bounded processes associated with each arm, the order
optimal regret is in general affine in the square root of time, see e.g. [7].



III. ADAPTIVE DEMAND RESPONSE ALGORITHMS

A. Learning with individual load observations

Our basic learning algorithm, referred to as the Adaptive
Demand Response Learning Algorithm (ADRLA), works under
the assumption that individual load feedback upon deployment is
available. This is then extended to the case where only aggregate
feedback is available in the next subsection. ADRLA is similar
in structure to the well-known "-greedy algorithm (see e.g.
[8]) and works as follows. The discrete time slots are divided
into blocks of equal length 2dN/Ke. Each block is either an
exploitation block or an exploration block, with the probability
of being the latter diminishing inversely proportional to the index
of the block. Over time the algorithm computes an estimated
active matrix ˆ

P

k

for each load k. In an exploitation block, the
algorithm uses the estimates ˆ

P

k

to compute the Whittle indices
and plays those with the highest indices. In an exploration block,
the algorithm improves the estimates ˆ

P

k

: it sequentially samples
loads in batches of size K (except possibly the last batch if N is
not a multiple of K) for two consecutive slots, so as to observe
an active state transition. It maintains a matrix C

k

of counters, of
which the (i, j) entry C

k

ij

is the total number of active transitions
observed from state i to j in exploration, i, j 2 {0, 1}. The
estimate ˆ

P

k

is then formed by

ˆ

P

k

ij

=

C

k

ij

C

k

i0 + C

k

i1

. (2)

In other words, ADRLA maintains the sample mean estimates of
the transition probabilities in the active transition matrices. The
ADRLA algorithm is detailed as follows. Here the constants L

and "

b

control the rate of learning/exploration. There typically
needs to be a lower bound on the value of L as a sufficient
condition for sub-linear regret, while the choice of a diminishing
"

b

, inversely proportional to time, may lead to logarithmic regret
as it does for sample mean-based algorithms like UCB1 [8] or
RCA [8].

Adaptive Demand Response Learning Algorithm
Parameter: A constant L > 0.
Initialization (for all k):

1) Set the initial belief state ⇡

k

= 1/2.
2) Set the counter C

k

of active transitions by C

k

ij

= 1 for all
entries, and form ˆ

P

k

as in (2) for all i.
3) Define a sequence "

b

by "

b

= min{1, L

b

} for all b 2 N.
For block b = 1, 2, . . . , n do

- With probability 1� "

b

enter an EXPLOIT block and with
probability "

b

enter an EXPLORE block.
- EXPLOIT:

For ` = 1, 2, . . . , 2dN/Ke do
1) Compute the Whittle index w

k

for each load k using
ˆ

P

k

and Q

k

.
2) Dispatch the K loads with the largest indices.
3) Observe the states of the active loads, and update

⇡

k

as in (1) using ˆ

P

k

and Q

k

for all loads.
- EXPLORE:

For ` = 1, 2, . . . , dN/Ke do

1) Dispatch loads from k = (` � 1)K + 1 to
min{`K,N} for two consecutive slots and observe
states i

1
k

and i

2
k

for each active load k.
2) Update ⇡

k

after observing i

1
k

in the first slot.
Increase the transition counter C

k

i

1
ki

2
k

by one after
observing i

2
k

and update ˆ

P

k

for each active load k.
Update ⇡

k

for the second slot.
ADRLA is used in this paper as a heuristic solution; its

regret performance is empirically examined in the next section.
A more rigorous treatment of its regret performance is part of
our ongoing work. Also note that the operation of ADRLA does
not rely on the stationarity of load dynamics, and is applicable
when the response capability of loads are given by controlled
nonhomogeneous Markov chains.

B. Learning with noisy aggregate curtailment measurement

In this subsection, we extend ADRLA to the more realistic
scenario in which only noisy aggregate curtailment is mea-
sured and observed by the demand response aggregator. This
extension will be referred to as the ADRLA-A algorithm. In
this case, instead of observing the individual state X

k

of each
active load, the aggregator is only given the feedback Y (t) =

P

N

k=1 ckUk

(t)X

k

(t)+Z(t) at time t, where Z(t) is an observa-
tion noise. We adopt the Bayesian inference framework proposed
in [3], which we briefly describe as follows. Assume that the
distribution of Y (t), conditional on the total curtailed capacity
P

k

c

k

U

k

(t)X

k

(t) =

P

k

c

k

u

k

x

k

, is given by f(y;

P

i

c

k

u

k

x

k

),
where x

u

= (x

k

, k : u

k

= 1)

> 2 {0, 1}K denotes a particular
realization of the states of the active loads. Let p(x

u

) be the
prior distribution of the states. Then the posterior distribution of
the states of active loads is given by

p(x

u|y) =
f(y;

P

k

c

k

x

k

u

k

)p(x

u

)

p(y)

where p(y) =

P

x

u f(y;

P

k

c

k

u

k

x
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)p(x

u

). Consequently, the
marginal distribution of an active load k is

p

k

(i|y) =
X

x

u:xk=i

p(x

u|y),

where i 2 {0, 1}, and accordingly the belief state evolves as

⇡

k

(t+ 1) =

(

P

k

01pk(0|y) + P

k

11pk(1|y), U

k

(t) = 1

�

k
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k

(t), U

k

(t) = 0 ,

(3)

given the aggregate measurement y. The computation of the
marginal distribution involves enumerating exponentially many
values of the state vector x, but low-complexity approximations
are available in [3], which are detailed in Appendix B. The
ADRLA-A algorithm consists of adapting ADRLA such that the
belief state is now updated using (3) after observing the noisy
aggregate measurement y.

IV. NUMERICAL RESULTS

In this section, we report the numerical results on the perfor-
mance of the proposed ADRLA and ADRLA-A algorithms. We
consider 1,000 loads, and in each time slot, the aggregator can
deploy 200 loads.



We first conduct two sets of numerical tests considering two
different load populations:

1) heterogeneous loads: the transition matrices of each load
are independently and randomly generated, and

2) homogeneous loads: all loads share the same set of tran-
sition matrices, which are randomly generated.

All the numeric value of parameters are generated subject to
the order conditions in Appendix A. The performance metrics
that we consider include the regret and the ratio between the
average curtailment capacities of ADRLA or ADRLA-A and the
Whittle index policy. Recall that the belief states are updated
using (1) in ADRLA, and (3) in ADRLA-A. When the feedback
is in aggregate, we assume that the measurement has a normal
distribution with the true aggregate curtailment capacity as mean
and K as variance, which is known to ADRLA-A for the
Bayesian inference. For each set of tests, 100 sample paths
are generated to produce empirical mean values of performance
metrics. Moreover, we also consider the comparison with an
efficient online learning algorithm for uncontrolled processes,
and we report the results for the multiple-play version of the
UCB1 algorithm [16] (see Appendix C), assuming individual
measurements are available when using UCB1. The multi-play
UCB1 is theoretically shown to have a sublinear regret for
i.i.d. processes with respect to the optimal static policy2 under
appropriate parameter setup. The baseline policy is always the
Whittle index policy described in Section II with full knowledge
of transition matrices and individual feedback. Our results are
summarized in Figs. 2 and 3.
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Fig. 2. Policy performance for heterogenous loads.
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Fig. 3. Policy performance for homogeneous loads.

As can be seen, the proposed adaptive learning algorithms
empirically result in near logarithmic regrets (the regret over the

2Note that for i.i.d. processes, the optimal dynamic and static policies are
equivalent, i.e., always pulling the arms with the greatest mean values.

logarithm of time tends to be upper bounded by a constant),
and the average curtailment capacity can achieve at least 78%
of that of the Whittle index policy by the time horizon we
set (an applicable value of the horizon may vary depending on
the applications). The UCB1 algorithm is designed for learning
uncontrolled processes and its behavior is in general unpre-
dictable with controlled dynamics. In our experiment, though its
initial behavior depends on the setup of parameters, the perfor-
mance of UCB1 is eventually much inferior with the learning
rate learning rate parameter L = 2 (see Appendix C) than
ADRLA/ADRLA-A, and similar performance gap is observed
for other values of L in UCB1. We also make a cautious remark
that ADRLA/ADRLA-A do not “converge” in the sense that
exploration will be performed infinitely often as the time horizon
extends, but the total time spent in exploration is only logarithmic
of the horizon as how the sequence "

b

is chosen.
We further reduce the range of parameters in the transition

matrices, and target the situation that would be more commonly
expected in demand response programs. In particular, we con-
sider the case in which active loads are much less available than
passive loads. For example, the parameters can be constrained
as Q

k

11 � 0.5, 0.4  Q

k

01  Q

k

11, P k

11  0.1, and P

k

11 and P

k

01

further satisfy the order conditions (see Appendix A). We report
the results in Fig. 4 for the previous example with heterogenous
loads (i.e., the value of parameters are randomly generated for
each load but consistent with the constraints). ADRLA and
ADRLA-A are much more similar in performance in this case,
and other observation is similar to the previous tests. Similar
results can be observed for homogeneous loads in this setup,
which are omitted due to the space limit.
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Fig. 4. Policy performance for heterogenous loads that are much less available
when active, than passive.

V. CONCLUDING REMARKS

Demand response aggregators interact with large numbers of
uncertain electric loads and must make deployment decisions
without full information. There is a great need for simple,
scalable control policies that can handle uncertainty and partial
information. The algorithms presented here are heuristics but due
to their simplicity they are powerful tools, allowing aggregators
to learn about loads even as they benefit from adaptive demand
response.
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APPENDIX A
WHITTLE INDEX FOR TWO-STATE MARKOV CHAINS [3]
The steady state distribution of a continually passive load k

from time t is given by ⇡̄

k

= lim

n!1 �

n

k

⇡

k

(t) =

Q

k
01

1�(Qk
11�Q

k
01)

,
where �

n

k

is the n-fold composition of �
k

. Assume that
1) P

k

01  Q

k

01, an unavailable load does not become available
more likely after deployment.

2) P

k

01  P

k

11, an available active load is more likely to
remain available than an unavailable active one to become
so.

3) Q

k

01  Q

k

11, similar interpretation as above for passive
loads.

4) P

k

11  ⇡̄

k

, a continually passive load has a greater
chance to be available than an available active load has
of becoming so.

The Whittle index w

k

(⇡

k

) for each load, provided its current
belief state ⇡

k

, is then computed using its own parameters,
where we have omitted the superscript of the load index for
the simplicity of notation:

w(⇡) =

(

cA/B, if ⇡ < ⇡̄

c⇡, if ⇡ � ⇡̄
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P11), and ⌧1 and ⌧2 are de-

fined as ⌧1 = max
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when � = Q11 � Q01 > 0.
In the case when � = 0, ⌧1 and ⌧2 are given by

⌧1 =

(

0, if ⇡  P01

1, if ⇡ > P01
and ⌧2 =

(

0, if ⇡  P11

1, if ⇡ > P11
.

APPENDIX B
APPROXIMATIONS IN BAYESIAN INFERENCE FROM

AGGREGATE MEASUREMENTS [3]
Let c =

P

k

c

k

/N , and then
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Assuming the independence among the states of loads, p(xu

) is
then given by a Poisson-Binomial distribution. Further applying
the Poisson approximation, it follows that
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where �

u

=

P

k:uk=1 ⇡k

. Moreover, when K is large, the pois-
son distribution can be approximated by the normal distribution
with mean and variance �

u (or �

u � ⇡

k

) for computational
efficiency in the above evaluation of p

k

, which we use in our
implementation.

APPENDIX C
THE UCB1 ALGORITHM FROM [8], [16]

The UCB1 algorithm maintains two set of variables x̄

k

and
⌧

k

(t) over time, where x̄

k

(t) is the empirical probability that
load k is available when deployed and observed, and ⌧

k

is the
total number of times that load k has been dispatched over
time t. UCB1 associates with each load an index given by the
upper confidence bound x̄

k

+

q

L ln t

⌧k
, hence the name, and the

algorithm is detailed as follows.

UCB1
Parameter: A constant L > 0.
Initialization: Set x̄

k

= 1/2 and ⌧

k

= 1 for all k 2 [N ]

For time t = 1, 2, . . . , T do:

1) Dispatch the K loads with largest values of x̄
k

+

q

L ln t

⌧k
.

2) Observe the states x

k

of active loads. Update x̄

k

by
x̄k⌧k+xk
⌧k+1 and ⌧

k

by ⌧

k

+ 1 for each active load.


