
Patch Me If You Can: A Study on the Effects of
Individual User Behavior on the End-Host

Vulnerability State

Armin Sarabi1, Ziyun Zhu2, Chaowei Xiao1,
Mingyan Liu1, and Tudor Dumitras,2

1 University of Michigan, Ann Arbor
{arsarabi,xiaocw,mingynan}@umich.edu
2 University of Maryland, College Park
{zhuziyun,tdumitra}@umiacs.umd.edu

Abstract. In this paper we study the implications of end-user behavior
in applying software updates and patches on information-security vul-
nerabilities. To this end we tap into a large data set of measurements
conducted on more than 400,000 Windows machines over four client-side
applications, and separate out the impact of user and vendor behavior on
the vulnerability states of hosts. Our modeling of users and the empirical
evaluation of this model over vulnerability states of hosts reveal a pecu-
liar relationship between vendors and end-users: the users’ promptness in
applying software patches, and vendors’ policies in facilitating the instal-
lation of updates, while both contributing to the hosts’ security posture,
are overshadowed by other characteristics such as the frequency of vul-
nerability disclosures and the vendors’ swiftness in deploying patches.

1 Introduction

Software vulnerabilities represent a valuable resource for attackers. Exploits for
these vulnerabilities can allow miscreants to control the vulnerable hosts re-
motely. Unpatched vulnerabilities also present a threat for enterprises, as an
outward facing machine with an exploitable vulnerability can provide unautho-
rized access to the company’s internal network [26]. Moreover, the emergence
of exploit kits [14], makes it easy for attackers to compromise hosts in an auto-
mated fashion. To counter these threats, software vendors create and dissemi-
nate patches that users then install to remove vulnerabilities on their machines.
Vendors have also increased the automation of their software updating mecha-
nisms [9,13] in an attempt to accelerate the patching process to sidestep possible
tardiness on the part of the end users.

It follows that the vulnerability state of any given end-host at any given time,
reflected in the number of known but unpatched vulnerabilities, and unpatched
vulnerabilities with known exploits, is the result of a combination of factors,
including (1) the user’s updating behavior, (2) the software products’ patch
release timeliness with respect to the disclosure of vulnerabilities, (3) the update



2

Findings Implications

+ The user behavior can be summarized using
single parameter distributions.

Users’ willingness to patch does not seem to de-
pend on the type of improvements in new releases.

+ The geometric distribution provides a good
fit, even for products with silent updates.

This simple model significantly simplifies the anal-
ysis of the relationship between user behavior and
the vulnerability state of their machines.

+ Silent updates lead to shorter windows of vul-
nerability for end-hosts (as expected).

The product vendors can improve the vulnerabil-
ity state by adopting a silent updating mechanism.

- Even with silent updates, the majority of
hosts have long windows of vulnerability.

The large number of security flaws in client-side
applications limits the benefits of silent updates.

- Many hosts have long windows of susceptibil-
ity to known exploits.

Exploit kits present a direct threat to these hosts.

Table 1: Summary of findings. +/- indicate positive and negative impacts.

mechanisms employed to deploy patches on hosts, and (4) the frequency at which
vulnerabilities are disclosed and exploits are developed. While the latter three
elements have been extensively studied in the literature—see e.g., [2–5, 7, 8, 18,
20, 22, 25] on vulnerability disclosure and patch releases, [11, 17, 21, 23, 29] on
patch deployment, and [4, 6, 14, 24] on exploits—relatively less is known about
the impact of individual user behavior. Prior work in this area has introduced
several hypotheses on why users might delay patching vulnerabilities [15,16,28],
and aggregated patching measurements for individual vulnerabilities over the
general population and over selected groups of users [17].

In this paper, we present a broad field study of individual user behavior, in-
cluding more than 400,000 users over a period of 3 years (01/2010 to 12/2012),
and their updating activities concerning 1,822 vulnerabilities across 4 software
products. The updating automation for these applications ranges from prompt-
ing users to install patched versions to silent updates, which require minimal
user interaction. Our goal is to understand (1) how users behave on an individ-
ual level, and (2) how different updating behaviors relate to the vulnerability
state of their machines, and how this relationship differs across products.

To achieve the above goal, we employ a combination of empirical analysis
and mathematical modeling. In summary, our main contributions are as follows.
We propose methods for quantifying the user updating behavior from field mea-
surements of patch deployment. Furthermore, we conduct a systematic study
of vulnerability patching, from the perspective of individual users (rather than
individual vulnerabilities), and quantify the corresponding vulnerability state
of the users’ machines. Finally, building on insights from our measurements, we
create and evaluate a parameterized model for individual patching behavior, and
discuss its implications for end-host security. Table 1 summarizes our findings.

2 Data sets and their processing

We utilize a corpus of patch-deployment measurements collected by Nappa et
al., on user hosts that include average users, as well as professionals, software



3

developers, and security analysts, and mostly consist of Windows XP/Vista/7
machines [17]. These measurements were conducted by observing the installation
of subsequent versions of different applications, and are derived from the WINE
data set [10]. The set of security flaws affecting each version are extracted from
NVD [19], using the CVE-ID of the vulnerability, resulting in 1,822 vulnera-
bilities. We analyze users’ patching behavior over 4 products: Google Chrome,
Mozilla Firefox, Mozilla Thunderbird, and Adobe Flash Player, and only include
hosts that have recorded more than 10 events for at least one application. This
results in a data set consisting of 11,017,973 events over 426,031 unique hosts,
99.3% of which are between 01/2010 and 12/2012.

Although an open vulnerability indicates that the application could be ex-
ploited, few vulnerabilities are actually exploited in the wild. We collect exploit
data from (1) public descriptions of Symantec’s anti-virus signatures [27] and (2)
metadata about exploit kits from Contagiodump [12]. Combining both sources
of exploit information results in exploit release dates for 21 CVEs. The median
time between vulnerability disclosure and an exploit kit targeting it is 17 days.

For Firefox, Flash Player, and Thunderbird, we manually scrape release his-
tory logs, either provided on the vendor’s website, or collected by a third party,
to find out when each version is released to the public. We have collected the
results along with the source for each entry in a single document 3.

2.1 Curated Data

Host state Each update event corresponds to a (machine ID, product, version,
timestamp) tuple, indicating the installation of a software on the host. However,
the WINE database provides no information on when the product has been
removed, or if the user has installed multiple product lines in parallel (e.g. Firefox
3.6, and 4.0). We utilize the following heuristic to update the state of a machine
after each event. Assume that an event at time t signals the installation of
version v belonging to product line `, and we have detected the presence of
versions St− = {(`1, v1), . . . , (`n, vn)} on the machine prior to the event. For
each `i in St− , if there are no observations for the same line within 6 months
of the current event, we remove the (`i, vi) pair from St− . We then add the
(`, v) pair, or update the corresponding pair in St− if the same product line is
already installed on the host, to obtain the state St after the event. We then
take the union of vulnerabilities that affect each version in St from NVD, as the
set of vulnerabilities present on the host. The subset of vulnerabilities that have
already been disclosed, or exploited, represent the machine’s security posture.
Version release date For Firefox, Flash Player, and Thunderbird, we can
obtain the official release dates for each version by scraping version release notes
from the vendor, or release histories collected by a third party. For Chrome, we
tap into the patch measurement data to estimate release dates for each version.
In previous work, Nappa et al. [17] identify the release date automatically, by
selecting the first date when the version appears in WINE. However, we found

3 We will release this list to the community upon paper publication.



4

0 20 40 60 80
Time (days)

0

2

4

6

V
ul

ne
ra

bi
lit

ie
s

15.0.1
16.0.1
16.0.2
17.0.0

Vulnerability
Disclosure

(a)

0 20 40 60 80
Time (days)

0

1

2

3

4

V
ul

ne
ra

bi
lit

ie
s User update

(b)

Fig. 1: The number of vulnerabilities in successive Firefox versions (left) and
following a user’s update events (right). Each color represent a single version.

that this approach can be unreliable in some cases. The binary that corresponds
to a new version might appear in the wild half a year before it is made available
on the release channel. We observe that on a release date there is usually a high
volume of patching events. We thus first rank the dates by the count of patching
events, and then identify the patch release date as the earliest day among the
10 dates with top ranks. We compared the results from this method with the
release dates for Firefox and we found that they match for all the versions.

Purpose of updates To determine if users are influenced by the purpose of
the updates, we identify four types of software releases: introducing new features
Ifeats, fixing bugs Ibugs, patching security vulnerabilities Ivulns, or introducing
a new product line ImajV er. Using these four categories, we manually label the
versions for Firefox and Flash Player. Since the release notes are not available for
every build and they switched to silent updates on 2012-08-28 and 2012-03-28,
respectively, the number of versions we labeled is 30 and 39, respectively.

User updates To study the frequency of irregular user behavior, we first obtain
the number of events that result in the presence of more than one product line
on a host. For Chrome, Flash Player, Firefox, and Thunderbird, 0.9%, 4.9%,
1.2% and 0.3% of events lead to the installation of more than one product line.
For Flash Player, we further analyze the number of vulnerabilities associated
with each product line. On average, in the presence of multiple product lines,
79.5% of vulnerabilities come from the lowest product version installed on the
machine. Therefore, we take the lowest application version on the machine as its
current state, and only consider a new event as a version upgrade if it updates
the lowest installed version. Note that for evaluating whether a machine is prone
to a known vulnerability, we will still use the complete set of installed versions.

Finally, for each state transition that updates the lowest installed version,
we need to extract the user’s delay in applying the update. We first take the
timestamps for the current and previous events (denoted by T k

u and T k−1
u ), and

extract the first time an update was released for the previously installed version
(denoted by Tr). The user’s delay is then Sk

u := T k
u − max(T k−1

u , Tr). This
means that we measure the users’ delay from the day an update is available
for the installed version, or the product installation date, whichever comes last;



5

Product Users > 0.05 > 0.01

Chrome 167592 87.8% 97.6%
Firefox 21174 74.6% 93.0%
Flash Player 7722 98.2% 99.9%
Thunderbird 1857 86.5% 97.5%

Table 2: Chi-squared test results over user update delays. We cannot reject the
hypothesis that these sequences are drawn from a geometric distribution.

the latter takes effect when the user installs an outdated version. Note that
successive versions do not necessarily follow a chronological order, as multiple
product lines are often developed in parallel. For each release, we take the next
version in the same line to be the update for that release. For end-of-life releases,
we pick the first version in the subsequent line as the next logical update.

Figure 1a depicts a sample scenario for 4 successive releases of Firefox, re-
leased at times t = 0, 35, 50, 75 (t = 0 corresponds to “2012-09-11”). Firefox
v15.0.1 is prone to 6 vulnerabilities, all of which are undisclosed at the time of
release. However, these vulnerabilities are made public at times t = 34, 36, 53, 76,
and patched in subsequent versions. Figure 1b illustrates a sample user in our
data set who installs these versions at t = 5, 37, 58, 84, respectively. Note that
with each update, the user inherits the set of vulnerabilities in the new release.
An update is made available for the first version at time t = 35, and the user
initiates a software update at time T 1

u = 37, therefore the user’s delay for the
first update event is S1

u = 2 days. Similarly, S2
u = 8 days, and S3

u = 9 days.

3 Analysis of user behavior and its security implications

3.1 Modeling a user’s patching delay

We assume that the user’s update delays are drawn from a probability distribu-
tion specific to the (user, product) pair. In previous work, the survival function
for number of hosts without a security patch has been modeled as an exponen-
tial decay process [21, 23]. We note that a geometric distribution for a user’s
delay in applying a software update leads to the same model for the survival
function. We independently test this assumption by performing a chi-squared
goodness-of-fit test between each sequence and a geometric distribution whose
parameter is calculated using a maximum likelihood estimate. The output of
the test is a p-value: small p-values reject the null hypothesis “The samples are
drawn from a geometric distribution”. Table 2 summarizes our results, for each
product we have included the number of users tested, and the percentage with
p-values higher than significance levels of 5% and 1%. For the test, we ignore
users with fewer than 20 update events. Our results show that for the majority
of users the geometric distribution is a good fit.

The above results suggest that the users’ response to new product releases are
fairly “simple-minded”, in the sense that they can be well-modeled using a one-



6

0 20 40 60 80
 

0

0.2

0.4

0.6

0.8

1

V
ul

ne
ra

bi
lit

y 
du

ra
tio

n

(a)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

V
ul

ne
ra

bi
lit

y 
du

ra
tio

n

Median
First quartile
Third quartile

(b)
Chrome

0 20 40 60 80
 

0

0.2

0.4

0.6

0.8

1

 

(c)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

 

Median
First quartile
Third quartile

(d)
Firefox

0 20 40 60 80
 

0

0.2

0.4

0.6

0.8

1

 

(e)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

 

Median
First quartile
Third quartile

(f)
Flash Player

Fig. 2: Scatter plots of normalized vulnerability duration vs. average user delay
in days (top), and the mean, and first and third quartiles for different user

types (bottom). Each point in the scatter plots corresponds to a single user. In
2c the yellow/red dots are users active in 2010/only active starting 2011.

parameter distribution. In what follows, we examine the relationship between
patch delays and vulnerability states. Note that due to this single-parameter
characterization, the average patching delay is sufficient for summarizing user
behavior, and we shall only rely on sorting users by this measure.

3.2 Vulnerability state

We take the fraction of time that a host remains susceptible to at least one known
vulnerability as an indicator of its security posture or vulnerability state. Figures
2a, 2c, and 2e display scatter plots of this measure for Chrome, Firefox, and
Flash Player, respectively. For each figure we have randomly selected 5000 users,
where each point represents one user. A point’s x and y coordinates correspond
to the average patch delay of that host, and its measured vulnerability state. The
histogram at the bottom of each plot shows the distribution of users with respect
to their average patch time; generated for users with an observation interval of at
least one year, resulting in 140,588 sample points for Chrome, 64,016 for Firefox,
55,042 for Flash Player. Note that the majority of hosts are observed for intervals
smaller than 3 years, and we have omitted hosts with less than 10 update events
(see Section 2). Therefore, our study does not capture users with average patch
delays greater than roughly 100 days; longer observation windows are required
to accurately assess the behavior of such users.



7

Vulnerability state as a function of average patch delay We further
group users with similar behavior by sorting them according to their estimated
patch delay, and create bins consisting of 500 users. We calculate the median
vulnerability duration, and the first and third quartiles in each bin; the results
are illustrated in Figures 2b, 2d, and 2f. We observe that a user with equal delays
in each product experiences similar vulnerability duration. At 20 days, the user
will remain vulnerable for 60% of the time, at 40 days this increases to 80%.

Across the three products, Chrome users clearly are more likely to have a
lower patch delay (as shown in the histograms), likely the effect of silent update,
whereas Flash users are the most tardy. However, given the same average delay,
the amount of vulnerabilities a user faces is very consistent across all products.

Outliers In Figure 2c we see high variability in vulnerability durations for users
with similar patch times. Upon further inspection, we discovered two vulnera-
bilities for Firefox, CVE-2010-0654 and CVE-2010-1585, that were published on
“2010-02-18” and “2010-04-28”, but first patched on “2010-07-20” and “2011-03-
01”, respectively. As a result, users that have been observed during 2010, have
remained vulnerable for most of that year, regardless of their behavior. In Figure
2c, we have used a lighter color to display hosts that have been observed at any
time during 2010. The rest of the hosts (those that have opted in after 2010),
exhibit similar variability to Chrome and Flash Player users.

Comparison across products We further calculated the average vulnerability
duration, over all users of each application. Note that these values are affected
by the following properties of each product: (i) the distribution of different user
types (the histograms in Figure 2), and (ii) the expected vulnerability duration
for each user type (Figures 2b, 2d, and 2f). For Chrome, Firefox, Flash Player,
and Thunderbird, the average host was susceptible to at least one vulnerability
for 53.5%, 59.9%, 68.7%, and 55.7% of days. It follows that the improvement
provided by different updating mechanisms in these applications is marginal.

A host’s vulnerability state is influenced by two conditions. First, for a single
vulnerability, the patch should be applied before the vulnerability is publicly
disclosed. Nevertheless, even if the user misses the disclosure date, the dam-
age can be minimized by prompt patching. However, when taking into account
successive vulnerabilities, if the user does not apply the patch before the next
vulnerability is disclosed, the clock is reset, and now they will have to apply a
new patch to secure their machine. Quantitatively, for Chrome and Firefox, our
data set includes 124, and 114 vulnerability disclosures between 2010 and 2012,
resulting in an average of approximately 10 days between successive disclosures.
However, our estimated results show that the average patch times for users of
Chrome and Firefox, is 9.9 and 15.6 days, respectively, meaning that users of-
ten cannot patch a vulnerability before the next one is discovered. For Chrome,
adopting silent updates does not seem to provide the necessary margin to see
any significant effect on the vulnerability duration of hosts.

Breakdown of the vulnerability window Note that the vulnerability of a
machine can be caused due to the vendor’s failure to release a patch before a vul-
nerability is disclosed, or the user’s negligence in installing the patch. We found



8

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

V
ul

ne
ra

bi
lit

y 
du

ra
tio

n

(a)

0 20 40 60 80
Patch delay (days)

0

0.2

0.4

0.6

0.8

1

 

Median
First quartile
Third quartile

(b)

Fig. 3: Scatter plot (left) and mean, and first and third quartiles (right)
for exploited vulnerabilities of Flash Player.

that, summed over all users, for Chrome, Flash Player, Firefox, and Thunder-
bird, 59.3%, 61.6%, 47.9% and 55.7% of days where a machine was susceptible
to a known vulnerability was caused by user negligence.

3.3 Susceptibility to vulnerability exploits

Being prone to known vulnerabilities does not necessarily translate into an im-
minent threat, as the machine can only be breached through a real exploit. We
perform a similar study on the percentage of days that a host remains suscep-
tible to an exploitable vulnerability. Figures 3a and 3b display the scatter plot
and vulnerability trends for 15 exploits of Flash Player. We did not have a suffi-
cient amount of exploits for Chrome and Firefox, we were only able to find one
known exploit for Chrome, and 2 for Firefox. Comparing these plots to 2a-2f,
we observe the same correlation between average patch times and vulnerabil-
ity states. However, for similar patching delays, we generally see lower risk for
known exploits. This is due to the small number of exploited vulnerabilities for
Flash. Nevertheless, we observe that many hosts are susceptible to exploits more
than 50% of the time, highlighting the threat exploit kits present to end-hosts.

3.4 Factors that impact user behavior

Version-specific factors Suppose we take an interval of size 2T and look at
the total number of updating events that occur within the first and second half
of the interval, across all users and for a specific subset of releases of a given
product, and denote these by N1 and N2, respectively. We can then define a
population-wide willingness to update as W = 1 − (N2/N1)1/T . When looking
at a period immediately following a release, if more users consider a new patch
important and apply the patch promptly, then W tends to be high. Conversely,
if more users hesitate to install the new patch, then more patching events occur
at the second half of observation period resulting in a lower W .

For Firefox and Flash Player, we extract four features Ivulns, Ibugs, Ifeats,
and ImajV er, as described in Section 2. For each feature, we split the versions



9

Aplication Ivulns Ibugs Ifeats ImajV er

Flash Player 0.860 0.416 0.736 0.419
Firefox 0.109 0.226 0.126 0.027

Table 3: p-values from T-test
on version-specific factors.

Country Chrome Firefox Flash Thunderbird
All 9.9 15.6 29.7 15.2
AU 10.6 16.3 30.1 15.1
CA 10.4 15.6 30.7 14.6
DE 10.9 15.3 24.9 14.7
FR 10.4 16.2 28.8 14.4
IT 8.8 15.9 26.1 13.5
JP 13.0 14.2 26.6 16.3
NL 10.4 15.2 28.5 14.7
PL 8.2 13.8 26.9 14.2
UK 9.2 15.7 28.3 13.9
US 10.5 15.5 32.1 15.4

Table 4: Average patch times by country.

into two groups: those that have the feature and those that do not, and measure
W within each group. We then conduct a statistical hypothesis test to deter-
mine if the updates from one group are deployed faster than the ones from the
other group. Specifically, we perform a T-test between two groups with the null
hypothesis “There is no difference in the mean of W”. Low p-values from the
T-test indicate that the factor affects the user’s behavior. Here, we choose the
significance level α = 0.05. As we perform multiple hypothesis tests on the same
data set, increasing the likelihood that we will find a significant result by pure
chance, we apply the Bonferroni correction [1], by dividing α by the number of
hypotheses tested. The adjusted α is 0.0125. The results are shown in Table 3.
ImajV er for Firefox is the only factor with p-value below 0.05. However, this is
not statistically significant after applying Bonferroni correction. This indicates
that changes in versions have no statistically significant effect on user behavior.

Note that our results do not necessarily reflect users’ indifference to these
categorizations. In a recent user study [15], 80% of users state that update cate-
gories can influence their decision on applying a software update, and two-thirds
react positively to a prototype that tags each update with one of five categories.
Our results indicate that for the examined products, this information may not
be readily available (we had to manually tag the release notes ourselves), which
in turn causes users to behave independently of the update’s intent.

Different countries and patch delivery Table 4 shows the average time
to patch for the top 10 countries with the largest numbers of users. Note that
Chrome uses silent updates, and therefore has the lowest patch times. Firefox
and Thunderbird versions prior to 15.0, and 16.0 (released 2012-08-28, and 2012-
10-09, respectively) download updates in the background and prompt users for
installation. Flash Player versions prior to 11.2 (released 2012-03-28) prompt
users to download and install updates, and consequently exhibit the longest
patch times. All three products switch to silent updates after the indicated dates;
however these changes do not apply to the majority of our samples. For all four
products, patching behavior is remarkably consistent, suggesting that cultural
differences among these countries do not play a significant role in user behavior.



10

4 Related work

Rescorla [23] studied a 2002 OpenSSL vulnerability and observed two waves of
patching: one in response to the vulnerability disclosure and one after the release
of the Slapper worm exploit. Ramos [21] analyzed several remotely-exploitable
vulnerabilities and reported a slow decay rate in some cases and some vulner-
abilities that did not decay at all. Yilek et al. [29] scanned OpenSSL servers
affected by a 2008 key generation vulnerability in Debian Linux and found a
high patch rate in the first 30 days, followed by patching waves for the next six
months. Durumeric et al. [11] showed that more than 50% of servers affected by
the recent Heartbleed vulnerability in OpenSSL remained vulnerable after three
months. Zhang et al. [30] showed that, even after patching OpenSSL, most web-
sites remained vulnerable because they had not revoked certificates that may
have been compromised owing to Heartbleed. The rate of updating is consid-
erably higher for systems that employ automated updates [9, 13]. Gkantsidis et
al. [13] concluded that 80% of Windows Update users receive patches within 24
hours after their release. Dübendorfer et al. [9] suggested that Google Chrome’s
silent update mechanism is able to update 97% of active browser instances within
21 days. Nappa et al. [17], measured vulnerability decay in 10 client-side appli-
cations and identified security threats presented by multiple installations of the
same program and by shared libraries distributed with several applications. Al-
hazmi et al. [2] examined five different vulnerability discovery models, fitting the
models using data from three operating systems.

On factors that may affect vulnerability patching and user behavior, Schnei-
der et al. [16] proposed several hypotheses, including an under-appreciation of
risks and a fear of destabilizing other software. Vaniea et al. [28] suggested that
negative experiences with past updates affect the users’ willingness to deploy
patches. Mathur et al. [15] study 30 users’ updating practices, and design and
evaluate a prototype updating interface based on their feedback.

5 Conclusions

In this paper we have conducted an in-depth analysis of the dynamics between
vendors and consumers when it comes to software security. To the best of our
knowledge, this is the first study on how individual behavior can influence the se-
curity state of a user’s machine over long periods, where the continuous discovery
of vulnerabilities, patch deployment by vendors, and the installation of patches
create windows of opportunities for malicious entities to exploit open vulnerabil-
ities on the machine. We have shown that frequent updating, and steps taken by
vendors to speed up the installation of patches, provide marginal benefits when
the rate at which new vulnerabilities are introduced into the product’s code is
high. Consequently, developers’ should exercise due diligence when shipping new
products to end-users, as the detrimental effects of releasing vulnerable applica-
tions to the public often cannot be eliminated by prompt patch deployment.

Our results also represent a first step toward understanding the deployment-
specific barriers for updating software. We observe that user behavior can be



11

modeled well using a simple and elegant mathematical model. We do not ob-
serve clusters of users with respect to the patching delay or the vulnerability
state. Moreover, users do not make patching decisions depending on the type
of improvements introduced with each new release (possibly due to how this in-
formation is presented), and the willingness to patch does not vary significantly
across different countries. However, users seem to exhibit different behavior for
different products, suggesting that vendors may be able to influence the users’
patching delays. For example, Figure 2 suggests that the vulnerability duration
for Flash Player exhibits a lower variability than for Chrome and Firefox, despite
the lack of a silent updating mechanism. This consistency may result from the
fact that users are compelled to upgrade when sites remove backward compat-
ibility for older Flash versions. A deeper understanding of these barriers could
enable improvements in the software updating process.

Although we have shown that users’ behavior can effectively be explained
using a simple model, we are not able to build similar profiles for vendors. This
is partly due to lack of a large data set on software vulnerability cycles. The
set of unique vulnerability disclosures and patch deployments concerning the
products under examination was too small to carry out a comprehensive study
on product behavior. Such an analysis could close the loop when assessing the
security posture of an end-user, by predicting the host’s vulnerability state across
different products, or for new products entering the market. Finally, leveraging
additional data sources that can reveal the whole extent of user behavior, such
as extending the study to other operating systems, and measuring periods of
time where the system or a specific application are not used (this would lead to
an overestimation of the vulnerability window in our current analysis) are other
possible directions for future work.

References

1. Abdi, H.: Bonferroni and Šidák corrections for multiple comparisons. Sage (2007)
2. Alhazmi, O.H., Malaiya, Y.K.: Modeling the vulnerability discovery process. In:

International Symposium on Software Reliability Engineering (2005)
3. Alhazmi, O.H., Malaiya, Y.K., Ray, I.: Measuring, analyzing and predicting se-

curity vulnerabilities in software systems. Computers & Security 26(3), 219–228
(2007)

4. Arbaugh, W.A., Fithen, W.L., McHugh, J.: Windows of vulnerability: A case study
analysis. IEEE Computer 33(12), 52–59 (2000)

5. Arora, A., Krishnan, R., Nandkumar, A., Telang, R., Yang, Y.: Impact of vulner-
ability disclosure and patch availability - An empirical analysis. In: Workshop on
the Economics of Information Security (2004)

6. Bilge, L., Dumitras,, T.: Before we knew it: An empirical study of zero-day attacks
in the real world. In: ACM Conference on Computer and Communications Security
(2012)

7. Cavusoglu, H.C.H., Raghunathan, S.: Emerging issues in responsible vulnerability
disclosure. In: Workshop on Information Technology and Systems (2004)

8. Clark, S., Collis, M., Blaze, M., Smith, J.M.: Moving targets: Security and rapid-
release in Firefox. In: ACM SIGSAC Conference on Computer and Communica-
tions Security (2014)



12

9. Dübendorfer, T., Frei, S.: Web browser security update effectiveness. In: Interna-
tional Workshop on Critical Information Infrastructures Security (2009)

10. Dumitras,, T., Shou, D.: Toward a standard benchmark for computer security re-
search: The Worldwide Intelligence Network Environment (WINE). In: Workshop
on Building Analysis Datasets and Gathering Experience Returns for Security
(2011)

11. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., et al.: The
matter of Heartbleed. In: Internet Measurement Conference (2014)

12. Exploit kits. http://contagiodump.blogspot.com
13. Gkantsidis, C., Karagiannis, T., Rodriguez, P., Vojnovic, M.: Planet scale software

updates. In: ACM SIGCOMM Computer Communication Review (2006)
14. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., et al.: Manufac-

turing compromise: The emergence of exploit-as-a-service. In: ACM Conference on
Computer and Communications Security (2012)

15. Mathur, A., Engel, J., Sobti, S., Chang, V., Chetty, M.: “They keep coming back
like zombies”: Improving software updating interfaces. In: Symposium on Usable
Privacy and Security (2016)

16. Mulligan, D.K., Schneider, F.B.: Doctrine for cybersecurity. Daedalus, Journal of
the American Academy of Arts and Sciences 140(4), 70–92 (2011)

17. Nappa, A., Johnson, R., Bilge, L., Caballero, J., Dumitras,, T.: The attack of the
clones: A study of the impact of shared code on vulnerability patching. In: IEEE
Symposium on Security and Privacy (2015)

18. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software
components. In: ACM Conference on Computer and Communications Security
(2007)

19. NIST: National Vulnerability Database. https://nvd.nist.gov
20. Ozment, A., Schechter, S.E.: Milk or wine: Does software security improve with

age? In: USENIX Security Symposium (2006)
21. Ramos, T.: The laws of vulnerabilities. In: RSA Conference (2006)
22. Rescorla, E.: Is finding security holes a good idea? In: IEEE Security and Privacy

(2005)
23. Rescorla, E.: Security holes... who cares. In: USENIX Security Symposium (2003)
24. Sabottke, C., Suciu, O., Dumitras,, T.: Vulnerability disclosure in the age of social

media: Exploiting Twitter for predicting real-world exploits. In: USENIX Security
Symposium (2015)

25. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of soft-
ware vulnerability life cycles. In: International Conference on Software Engineering
(2012)

26. Shankland, S.: Heartbleed bug undoes web encryption, reveals Yahoo pass-
words. http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-

reveals-user-passwords (2014)
27. Symantec Corporation: Symantec threat explorer. http://www.symantec.com/

security_response/threatexplorer/azlisting.jsp (2012)
28. Vaniea, K., Rader, E.J., Wash, R.: Betrayed by updates: How negative experiences

affect future security. In: ACM Conference on Human Factors in Computing (2014)
29. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys

are public: Results from the 2008 Debian OpenSSL vulnerability. In: Internet Mea-
surement Conference (2009)

30. Zhang, L., Choffnes, D., Dumitras,, T., Levin, D., Mislove, A., et al.: Analysis of
SSL certificate reissues and revocations in the wake of Heartbleed. In: Internet
Measurement Conference (2014)

http://contagiodump.blogspot.com
https://nvd.nist.gov
http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-reveals-user-passwords
http://www.cnet.com/news/heartbleed-bug-undoes-web-encryption-reveals-user-passwords
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp

	Patch Me If You Can: A Study on the Effects of Individual User Behavior on the End-Host Vulnerability State

