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Abstract In multirate multicast different users in the same multicast group can receive services at
different rates depending on their own requirements and the congestion level of the network. In this two-
part paper we present a general framework for addressing the optimal rate control problem in multirate
multicast where the objective is the maximization of a social welfare function expressed by the sum of
the users’ utility functions. In Part II we present a market based mechanism and an adjustment process
that have the following features. They satisfy the informational constraints imposed by the nature of
multirate multicast; and when they are combined with the results of Part I they result in an optimal
solution of the corresponding centralized multirate multicast problem.

1 Introduction

Multicasting provides an efficient method of transmitting data in real time applications from one
source to many users. The source sends one copy of a message to its users and this copy is replicated
only at the branching points of a multicast tree. Real time examples of such multicast applications
are audio/video broadcasting, teleconferencing, distributed databases, financial information, electronic
newspapers, weather maps and experimental data.

Conventional multicast studies the problem in which the rate received by all the users of the same
multicast group is constant. The inherent problem with such a formulation is that a constant rate will
overwhelm the slow receivers while starving the fast ones. Multi-rate transmissions can be used to address
this problem by allowing a receiver to obtain data at a rate that satisfies its requirements. One way of
achieving this is through hierarchical encoding of the transmission, in which a signal is encoded into
multiple layers that can be incrementally combined to improve quality. These hierarchical encoding type
of transmission schemes have been investigated both for audio and video transmissions over the Internet
[2], [31] and over ATM networks [10]. Internet protocols for adding and dropping layers for hierarchical
encoding type of transmissions are presented in [11] and [14].

In this two-part paper we present a market based mechanism (described by a Tâtonnement process)
for multirate multicast. We have already compared our approach with other existing approaches to
multicast service provisioning (e.g., [3, 5, 8, 9, 19–22, 24, 25, 27, 32]) in Part I of this paper. In Part I
we also pointed out that the Tâtonnement process we present can be viewed as a hierarchical process
consisting of two layers: the lower layer and the upper layer (cf. Section 3.2.1). We addressed the problem
of the lower layer in Part I of the paper. In Part II we present a market based mechanism and describe an
adjustment process that have the following features. They satisfy the informational constraints imposed
by the nature of multirate multicast; and when they are combined with the results of Part I, they result
in an optimal solution to the corresponding centralized multirate multicast problem.
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The remainder of this paper is organized as follows. In Section 2 we formally present the centralized
multi-rate multicast problem. In Section 3 we describe and analyze a competitive market economy which
leads to a decentralized rate allocation that achieves a solution of the centralized multi-rate multicast
problem. Numerical results on the convergence of the algorithms are given in Section 4. We discuss and
critique our results in Section 5, and we conclude the paper in Section 6.

2 The Multicast Problem

In this section we present the mathematical formulation of a network multicast problem.

2.1 The model, terminology and notation

Consider a network consisting of a set of L unidirectional links, each link l ∈ L having finite capacity
cl. The network is used by a set M of multicast groups. Each multicast group m ∈ M is specified by
{sm, Rm, Lm}, where sm is the unique source node, Rm is the set of receiver nodes, and Lm is the set
of links used by the group. Since each multicast group is a tree, we are going to use the terms multicast
group and multicast tree interchangeably.

Fig. 1 A multicast tree.

We now present some terminology used for the multicast groups that is similar to terminology devel-
oped in [8, 9]. We start by looking at the nodes that are part of an arbitrary multicast group m. There
are four types of nodes in this group: the source node sm, receiver nodes r ∈ Rm, junction nodes and
non-junction nodes. The junction nodes are the nodes that are connected to more than two links of Lm,
i.e. they are connected to a link which will lead to the source and to two or more other links which will
lead to some subset of Rm. We denote the set of all the junction nodes of multicast group m by R̂m, and
we let R̃m , R̂m ∪ Rm. The non-junction nodes are all the nodes, excluding the source node, that are
connected to exactly two links of Lm.

From this moment on we are going to assume that for every receiver node in m there is a unique link
l ∈ Lm connected to it, i.e. the receiver nodes are terminal nodes with an unique incoming link. For our
formulation there is no loss in generality by making this assumption, since if r ∈ Rm is a receiver node
but not a terminal node, we can replace the receiver node by a new terminal node r′, which is connected
to r by an infinite capacity link.

We denote by R , ∪m∈MRm the set of all receiver nodes over all the multicast groups, and by Rl,m

the set of all the receivers of multicast group m ∈ M using link l ∈ L.
We define a branch to be the set of links that are between a source/junction node and its immediate

downstream junction/receiver node. Note that the set of branches of m ∈ M forms a partition of Lm.
Also note that each branch j can be associated with its “downstream” junction/receiver node, which
will be denoted by r(j). Denote the set of branches associated with receiver nodes by Jm, and the set of
branches associated with all junction nodes by Ĵm. Let J̃m , Jm ∪ Ĵm be the set of all branches over
multicast group m ∈ M .

The parent of a receiver/junction node r ∈ R̃m refers to the closest junction/source node in the
“upstream” path toward the source. Similarly the parent of a branch j ∈ J̃m, if it exists, is the closest
branch in the “upstream” path toward the source. We denote the parent of node r ∈ R̃m by Πm(r) and
the parent of branch j ∈ J̃m by πm(j). The children of a junction/source node r ∈ R̂m ∪ {sm} are the
set of receiver/junction nodes which have r as their parent and it will be denoted by Chm(r).
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2.2 The Optimization Problem

We assume that we have a unique user connected to each receiver node r ∈ R. For each user we
have a utility function Ur(xr), where xr is the rate at which r receives data. This utility function can
be interpreted both from the point of perceived quality of service received and the amount paid in order
to receive the service. Since there is a unique user connected to each receiver node, we will use the same
notation when we talk about the receiver nodes or the users connected to these nodes.

We make the following assumptions:

Assumption 1 The utility functions Ur(xr) are strictly concave, differentiable and increasing.

Assumption 2 Rate xr is assumed to be a continuous variable.

Assumption 3 Rate allocations are done along fixed multicast trees with fixed number of users.

Assumption 1 reflects the fact that users have diminishing returns on the goods consumed. Assumption
2 is an approximation to the actual problem. This approximation is made in most multirate multicast
problems in the literature, e.g. [3, 8, 9], with notable exceptions [22, 23]. Based on these assumptions we
formulate the following static network multicast problem for the model of Section 2.1

max
xr,r∈R

∑

r∈R

Ur(xr) Max 1

such that: ∑

m∈M

max
r∈Rl,m

xr ≤ cl, ∀ l ∈ L (2.1)

xr ≥ 0, ∀ r ∈ R (2.2)

Constraint (2.1) is also known as the capacity constraint. For this constraint to be satisfied, on each
link, the totality of the rates used by each multicast tree can not exceed the link capacity. The capacity
constraint insures that for all the multicast trees, the rate on each branch of a tree is less than or equal
to the rate on its parent branch.

Noting that the constraints (2.1) and (2.2) make the set of feasible solutions (x’s) compact, and
since U ′

rs are assumed to be continuous, Weierstrass’s Theorem [28, p.823] guarantees the existence of a
solution of Max 1.

3 A Market Based Realization of the Solution of Problem Max 1

In this section we present a market based mechanism which achieves a solution to Problem Max 1,
and satisfies the informational constraints imposed by the nature of the network multicast problem (these
informational constraints are described at the beginning of Section 3.1).

We proceed as follows: We first describe a competitive market economy consisting of two types of
agents: network and users. Then, within the context of this market we specify a procedure used by the
network which leads to an allocation that achieves a solution to Problem Max 1.

3.1 Description of the Market

The market economy adopted in this section is composed of two types of agents: network (or network
manager) and users. The network communicates directly with each user, and the users do not commu-
nicate with one another. The messages exchanged by the market agents are service prices and service
demands. The network manager is assumed to know the topology of the network and the resources avail-
able to the network, but has no a priori information about the number of users that will request services
and the preferences (utility function) of each user. The users are assumed to know their own preferences
(utility function) but have no information about the number and preferences of other users requesting
services, or the topology and the resources available to the network. Further, as mentioned in Section
1, the users are unaware of the method of delivery of services (i.e. they do not know whether service
provisioning is unicast or multicast).
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The assumption that the network manager has complete knowledge of the network topology and
resources is not an unrealistic one. For example, a corporate intranet or VPN (virtual private network)
may have a single provider of resources and services, who is likely to have such knowledge about the
network, and who will assume the roll of network management in collecting aggregate excess demand
on links and adjusting link prices. In particular, some resource/service providers use very sophisticated
network management tools to monitor in real time the proper functions of a network (e.g., events such as
congestion, fault, server up and downs), and to issue appropriate response/commands. Such monitoring
requires complete knowledge of the network (e.g., topology, resources, router/link capacities), as well as
separate network management protocols to pass information to and form the management site. These
tools can easily be used to acquire information on aggregate excess demands and to adjust link prices.

For conceptual clarity we decompose the network manager into two distinct entities: service provider
and auctioneer. The market features and the relation between the market agents are as follows: The
resource traded at each link is the available communication rate (i.e. bandwidth or capacity). The rate
at each link is available to the service provider as raw material. The rate price at link l ∈ L will be
denoted by λl. The service provider sets up services and the corresponding prices for each unit of these
services and then sells these services to the users. Based on the service prices announced by the service
provider the users demand a certain amount of service from the network in order to maximize their
utility functions. Based on the user demands the auctioneer updates the price per unit of rate on each
link.

We make the assumption that the service provider and users are price takers. They act as if their
behavior has no effect on the equilibrium prices reached by the market allocation process. This assumption
is justified by the fact that the users are unaware of the type of service received and they do not know
the number of users requesting service from the network. The price taking assumption and the fact that
we try to maximize the users utilities imply that: (i) the service provider will not attempt to make a
profit; and (ii) the service prices are directly derived from resource prices. A further discussion of the
price taking assumption appears in [30, Section 5].

3.1.1 Service provider The service provider receives from the auctioneer a rate price λl for each link l
of the network. Based on these link prices the task of the service provider is to compute for each user
r ∈ R the price per unit of service p(r, λ). A major challenge in solving multirate multicast problems
through pricing is the determination of the set of users’ price {p(r, λ)} per unit of service from the set
of link prices λ. This issue was addressed in Part I of this two-part paper.

In Part I we presented a distributed algorithm which, for a fixed set of link prices λ, computes price
shares γm = {γr,l,m|r ∈ Rm, l ∈ Lm} and service prices p(r, γ(λ)) that satisfy the following.

Property 1

1. λl =
∑

r∈Rm

γr,l,m, ∀ l ∈ Lm ; (3.1)

2. p(r, λ) , p(r, γm(λ)) =
∑

l∈L

γr,l,m, ∀ r ∈ Rm ; (3.2)

3. Let xr(p(r, λ)) , argmaxx>0{Ur(x)− p(r, λ)× x} be the demand requested by user r given the price
per unit of service p(r, λ). Then,

∑

r∈Rm

xr(p(r, λ))× p(r, λ) =
∑

l∈Lm

λl × max
r∈Rl,m

xr(p(r, λ)) (3.3)

and ∑

r∈Rm

Ur(xr(p(r, λ))) ≥
∑

r∈Rm

Ur(xr(pr∗)) (3.4)

for all pr∗ satisfying
∑

r∈Rm

xr(pr∗)× pr∗ ≥
∑

l∈Lm

λl × max
r∈Rl,m

xr(pr∗). (3.5)
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3.1.2 Users Users are price takers and request service from the service providers. For each user r ∈ Rm

of the multicast tree m ∈ M the service provider announces a service price p(r, λ). Based on its service
price, each user determines its desired service rate by solving:

xr(p(r, λ)) , argmax
x

{Ur(x)− p(r, λ)× x} (3.6)

3.1.3 Auctioneer The role of the auctioneer is to regulate the prices of the resources, based on the
aggregate excess demand vector z(λ),

zl(λ) ,
∑

m∈M

max
r∈Rl,m

xr(p(r, λ))− cl (3.7)

at every link l ∈ L.

3.2 The Market Mechanism

3.2.1 The Mechanism for General Concave Utility Functions We present a market mechanism, de-
scribed by an algorithm, called Algorithm (~), that describes how the market works. The algorithm
proceeds iteratively as follows:

Step 1: The multicast trees are fixed.
Step 2: The auctioneer announces prices λ per unit of rate at each link of the network.
Step 3: The service provider receives the link prices λ announced by the auctioneer. Given the link

prices, the service provider communicates with the users via an iterative process in order to determine
the optimal service price. During the iterative process the service provider and the users exchange
prices per unit of service p and service demands x(p), with x(p) satisfying (3.6). The iterative process
used in this paper is described by the algorithm presented in Part I of the paper.
Step 3.1: During the iterative process between the service provider and users, the auctioneer checks

if the sign of the excess demand z(λ) on any link is positive. If this is the case then the auctioneer
interrupts the iterative process and proceeds to Step 4. If z(λ) ≤ 0 at all links, the process
terminates.

Step 4: The auctioneer updates the link prices λ and announces them to the service provider. The
process loops back to Step 3.

excess demand
Sign of 

User

Service provider

(excess demand)

Yes No

x
p

λp(r,    )

λ

Outer loop Inner loop

x

Auctioneer

Fig. 2 Market mechanism.
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The above steps are pictorially shown in Figure 2. The figure illustrates the fact that the algorithm
contains two loops: an outer loop and an inner loop. Thus the above market based mechanism can be
viewed as a two-level hierarchical process. The inner loop is the lower level of the hierarchy, and the outer
loop is the upper level of the hierarchy. The inner loop describes the iterative process used by the service
provider to determine user service prices (hence user demands) for fixed link prices set by the auctioneer.
The outer loop determines the iterative process used by the auctioneer to determine link prices based on
excess demand. The iterative process of the inner loop is guided by the results developed in Part I of the
paper. The iterative process of the outer loop is described by Scarf’s Algorithm [26]. A detailed description
of this algorithm is presented in [29, Appendices A,B]. It may be possible to use algorithms other then
Scarf’s at the outer loop, however, to prove convergence of such algorithms we may need to impose
additional constraints on the users’ utility functions (e.g. second order differentiability of the utility
functions). In Section 3.3 we show this mechanism eventually leads to a resource allocation that achieves
a solution to Problem Max 1. Consequently, the algorithm described in this section “approximates” in a
finite number of steps an optimal solution to the original resource allocation problem (Problem Max 1)
and satisfies the informational constraints imposed by the decentralization of information at the network.

Remark 1 As noted before, the inner loop of the pricing mechanism described above uses the algorithm
presented in Part I of this paper. If the set of prices {λ} per unit of rate on the links is not optimal
then there exist links for which the sign of the excess demand function is determined in finite time (i.e.,
the execution of the inner loop will terminate in finite time). This in turn ensures that each stage of
the outer loop for which the prices per unit of rate are not optimal is finite. When the price per unit of
rate on each link is optimal then Algorithm (~) will result in optimal prices per unit of service for each
user, and this, in turn, will result in an optimal resource allocation (i.e., an optimal solution to Problem
Max 1.

3.2.2 The Mechanism for Parameterized Concave Utility Functions The case where the users’ utility
functions come from a class which is parameterized by a finite number of parameters deserves special
attention. In this case the service provider can determine in the first iteration of the outer loop the users’
utility functions. This can be accomplished in a finite number of iterations of the inner loop. After the
first iteration of the outer loop the rate allocation problem becomes a centralized decision problem (a
nonlinear mathematical programming problem) which can be solved by standard techniques [1, 12, 17, 18].
In Appendix A we present examples of parameterized families of utility functions. For each family we
determine the number of iterations required in the execution of the inner loop in order to completely
specify the users’ utility functions.

3.3 The Main Result

The main result of this paper is summarized by the following theorem:

Theorem 1 The market mechanism described in Section 3.2 along with the algorithm developed in Part
I of this paper converges to an optimal solution of Problem Max 1.

We prove the main result in the rest of the paper.

3.4 Analysis of the Market and Proof of the Main Result

The proof of Theorem 1 proceeds in several steps. First we present preliminary technical results that
are related with the behavior of the iterative process describing the outer loop of the algorithm. Then,
we use these results to conclude the proof of Theorem 1

We proceed with the details of the analysis. Scarf’s Algorithm (that describes the outer loop) works
in the price simplex. Therefore, we start by defining the following |L|+ 1 dimensional simplex.

S , {q ∈ R|L|+1
+ :

|L|∑
m=0

qm = 1} (3.8)

where |L| is the cardinality of L. For each q ∈ S with q0 > 0 we define the price vector λ(q) :
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λ(q) = {λl(q)}l∈L ,
{

q1

q0
,
q2

q0
, . . . ,

q|L|
q0

}
(3.9)

The goal is to find an optimal price for each of the resources in the network, that is, a price vector λ
which leads to a solution for Max 1. Note that the mapping defined in equation (3.9) is a continuous
bijection, so it is enough to find an appropriate q ∈ S such that λ(q) is a solution of Max 1.

To achieve this goal we need to introduce the following concepts:

(i) The subsets PD , {q ∈ S : q = (n0
D , n1

D , . . . ,
n|L|
D ), ni ∈ N}, where D ∈ N represents “how close” our

solution is to the solution of Max 1. (In Sections 5 we discuss what we exactly mean by “how close”,
and its implication to the problem.)

(ii) The notions of a side of the simplex and of a primitive set that are defined as follows:

Definition 1 A side of S, denoted by sm, is defined by sm , {q ∈ S : qm = 0}, for m ∈ {0, 1, . . . , |L|}.
Definition 2 Let S , {s0, . . . , s|L|} be the set of sides of S. Define SD , PD ∪ S.
Definition 3 QD = (si1 , . . . , sin , qj0 , . . . , qj|L|−n), in SD is called a primitive set if qj0 , . . . , qj|L|−n ∈
PD, si1 , . . . , sin ∈ S, and no q ∈ PD is interior to the simplex generated by the vectors of QD, i.e.{
x ∈ S : xi1 , . . . , xin ≥ 0, xm ≥ min{qj0

m , . . . , q
j|L|−n
m }, ∀m 6= {i1, . . . , in}

}
.

(iii) The following subsets of S:

C0 ,
{

q ∈ S : q0 = 0 or zl(λ(q)) ≤ 0, ∀ l ∈ L
}

, (3.10)

Cl ,
{

q ∈ S : q0 > 0 and {ql = 0 or zl(λ(q)) ≥ 0}, l ∈ L
}

, (3.11)

where,
zl(λ) =

∑

m∈M

max
r∈Rl,m

xr(p(r, λ))− cl , (3.12)

with l ∈ L, and xr(p(r, λ)) being determined as in Section 3.1.
(iv) The concept of a labeling function that is defined as follows:

Definition 4 A labeling function is a function with domain S and range {0, 1, . . . , |L|}.
We define the labeling function ϑ as follows:

ϑ(q) =





i if q ∈ si

0 if q ∈ C0

j where j = min{l : q ∈ Cl}
(3.13)

A key result in our analysis is the following:

Lemma 1 Starting with SD, if we give si ∈ S label i for every i ∈{0, . . . , |L|} and every q ∈ PD a label
from {0, . . . , |L|}, then exists a primitive set in SD such that its vectors have distinct labels.

Proof For a proof of this lemma see [29, Appendix C].

Lemma 1 can be used to prove the following result that is crucial in the proof of the Theorem 1.

Lemma 2 Let {Di}i∈N be a sequence such that ∀i, Di ∈ N and Di →∞ as i →∞. Let for every i, WDi

denote the primitive set with distinct labels of SD described by Lemma 1. Then there exists a subsequence
{D′

j , j ∈ N} such that for any qD′j ∈ WD′
j , qD′

j
converges to q, where {xr(p(r, λ(q)))}r∈R solves Problem

Max 1.

Proof First we note that given any D ∈ N, the function ϑ satisfies the conditions for the labeling of the
vectors SD described by Lemma 1. This implies that given any D ∈ N, there is a primitive set WD with
all the vectors that generate it having a distinct labels.

Define
C , C0

⋂ ( ⋂

l∈L

Cl

)
.
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Proposition 1 The allocation xr(p(r, λ)) and the aggregate excess demand z(λ) are continuous functions
of λ.

Proof See Appendix B

Proposition 2 For every q ∈ C, {xr(p(r, λ(q)))}r∈R solves Max 1.

Proof See Appendix C.

Proposition 3 C 6= ∅.
Proof Denote the element with label i of the primitive set WD, by qD,i. Since S is compact, for every
i ∈ {0, 1, . . . , |L|}, the sequence {qD,i}D has a cluster point. As D → ∞ the distance between the
vertices of WD goes to 0, so ‖qD,i − qD,j‖ −−−−→

D→∞
0 for any i, j ∈ {0, 1, . . . , |L|}. This means that for any

i ∈ {0, 1, . . . , |L|} the sequences {qD,i}D have identical cluster points. Pick any such cluster point and
denote it by q. Since zl(λ) is continuous in λ (Proposition 1), and λ(q) is continuous in q, this implies
that λ(q) ∈ C.

Proposition 2 together with the proof of Proposition 3 conclude the proof of Lemma 2.

Proof Theorem 1 The assertion of the theorem is a direct consequence of Lemma 2.

4 Numerical results

In this section we present numerical results from using the algorithms of the inner and outer loops.
In particular, in Section 4.1 we present results for the price splitting algorithm described in Part I of
this paper, for fixed sets of link prices. In Section 4.2 we provide an example combining both the inner
and outer loops using Scarf’s and Eaves’ (K1) algorithms. Eaves’ (K1) algorithm is a variation of Scarf’s
algorithm. The convergence of the inner loop using the price splitting algorithm and the outer loop using
Scarf’s algorithm were established in Part I and Section 3.4 respectively. We do not have any analytical
results on the rate of the convergence of these algorithms. With the results presented in this section we
illustrate features of the proposed algorithms within the context of a small set of examples.

We consider a network formed by one multicast tree as shown in Figure 3 where the link capacities
are c = {c1, c2, . . . , c11} = {100, 100, 110, 110, 20, 80, 100, 100, 100, 100, 110} and where the users’ utility
functions are of the form

ui(xi) = ai log(xi + 1) (4.1)
with a = {a1, a2, a3, a4, a5, a6} = {10, 20, 31, 25, 15, 45}.

4.1 Inner loop using the Price Splitting Algorithm

For the inner loop we considered two arbitrarily chosen sets of link prices λ , (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8,
λ9, λ10, λ11), given in Table 1.

Link Prices

Case 1 (1 0.1 0.3 0.7 0.2 1 2 1 0.6 1 0.3)

Case 2 (1 1 1 1 1 1 1 1 1 1 1)

Table 1 Data table for the inner loop.

In Figures 4 and 5 we present the numerical results for the above two cases, by plotting the service
prices for each user at each iteration of the algorithm. We note that in both cases the price splitting
algorithm converges quickly (in number of iterations) to the optimal service prices corresponding to the
(fixed) link prices.

The numerical results for the inner loop algorithm have been conducted on a Pentium III machine.
For most of the examples considered for the tree in Figure 3, the optimal service prices were determined
in less than one second. Using the same tree as in Figure 3 for examples where the prices on most of the
links were shared among downstream users, the algorithm took up to four seconds to generate service
prices equal (up to 5 significant digits) to the optimal service prices.
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Fig. 3 A multicast tree.
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Fig. 4 Price Splitting Algorithm for Case 1.
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Fig. 5 Price Splitting Algorithm for Case 2.

4.2 Outer loop algorithms

In this subsection we show numerical results resulting from the combination of the inner and outer
loops. As in Section 4.1, the algorithm described in Part I of this two-part paper is used for the inner
loop, while for the outer loop we use both Scarf’s algorithm and Eaves’ (K1) algorithm.

Figures 6 and 7 show the results from Scarf’s algorithm with D = 50 and D = 200, respectively.
In both figures we present the prices on the links at each iteration of the algorithm. In particular, only
the prices on links 1, 5 and 6 have been displayed since the other prices remained zero. As expected,
for D = 200 Scarf’s algorithm takes more iterations to converge than for D = 50, but gives a better
resolution.

Table 2 compares the optimal service prices to those resulting from the market mechanism used in
this paper (Figures 6 and 7). We note that as the value of D increases the link prices determined by
Scarf’s algorithm generate service prices which approach the optimum. We know from the theoretical
analysis that the optimal service prices resulting from the market mechanism are arbitrarily close to the
optimal service prices as D →∞.

From the computational point of view, Scarf’s algorithm has two major characteristics: 1) It requires
that the algorithm be initiated at a vertex of the unit simplex; and 2) If an answer is obtained with
a fixed grid whose accuracy is inadequate for the problem at hand, the algorithm must be restarted
with a finer grid, and the results of the previous calculations are discarded completely. The algorithms
introduced by Merrill [15], van der Laan and Talman [33, 34], and Eaves [4] permit the computation
to be initiated at an arbitrary point in the simplex and allow a continual refinement of the grid. They
yield a vast improvement in computational speed over the earlier algorithms of Scarf that require a fixed
simplex decomposition, and are used in virtually all practical applications of fixed point methods.
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Fig. 6 Scarf’s algorithm for D = 50.
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Fig. 7 Scarf’s algorithm for D = 200.

User 1 User 2 User 3 User 4 User 5 User 6

Scarf’s Price 0.1122 1.0714 0.3954 0.3189 0.1684 0.5051
D = 50 Demand 88.093 17.667 77.398 77.398 88.093 88.093

Scarf’s Price 0.0172 0.9831 0.3847 0.3102 0.1526 0.4577
D = 200 Demand 97.3283 19.3438 79.5871 79.5871 97.3283 97.3283

Optimal Price 0.0990 0.9523 0.3827 0.3086 0.1485 0.4455
Demand 100 20 80 80 100 100

Table 2 The service prices and user demands generated from the results of Figures 6 and 7.
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Fig. 8 The simulation result using Eaves (K1) algorithm.

For comparison purposes, in Figure 8 we present the simulation result for the same problem as above
with the outer loop being implemented by Eaves’ (K1) algorithm [4] rather than Scarf’s algorithm. We
note that after 80 iterations the algorithm achieves link prices which are close to those achieved by Scarf’s
algorithm.

The numerical results of the outer loop have been conducted on a Pentium III machine. For the
examples presented, Scarf’s algorithm (D=50), Scarf’s Algorithm (D=200), and Eaves K1 algorithm
(first 82 iterations) took approximately one minute, three minutes and 1.5 minutes respectively.

5 Critique, Discussion and Reflection

We have presented an approach for optimal admission and resource allocation control in multi-rate
multicast. This approach has the following features.
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(1) It provides a framework for solving decentralized constrained resource allocation problems that are
more general than the problem invested in this paper.

(2) Resource allocations are based on the solution of a constraint static optimization problem, namely
Max 1. The solution of Max 1 is realized by a market mechanism that is hierarchical and satisfies
the informational constraints of the network resource allocation problem.

(3) There is no cost associated with the supply of network resources.

We now discuss and critique each one of the above features:
(1) We believe that this work provides a framework for developing market methods for solving decen-
tralized constrained resource allocation problems that are more general than the problem investigated
here. As an example consider the following situation. Services are again provided along fixed multicast
trees, but there are additional Quality of Service (QoS) requirements expressed by the end-to-end delay,
and end-to-end percentage of packet loss etc. The objective function and the informational constraints
remain the same as in Problem Max 1 and Section 3.1. The Market mechanism proposed in this paper
is ideally suited to handle end-to-end QoS requirements. This was already demonstrated in the unicast
problem [30] as well as in the unicast routing problem [29]. The service provider that determines the
optimal price sharing along each link of a multicast tree (for fixed link prices) can also ensure that the
services provided satisfy their QoS requirements.
(2) Problem Max 1 is a static constrained optimization problem. Its solution can be interpreted as
the set of “equilibrium allocations”. Thus, even though the market mechanism described in this paper
is an iterative process, its outcome is a static equilibrium solution and it can not handle dynamic user
arrivals and departures. The iterative nature of the market mechanism is necessitated by the fact that the
overall network system (network management and users) is an informationally decentralized system. To
achieve an optimal solution of the corresponding static centralized problem the network management and
the users must exchange information/messages with one another. Such a message exchange process must
possess the “privacy preserving” property; that is, the network manager’s and each user’s messages at each
stage of the iterative process must be based only on their private information and the information they
have received from previous communications ([6, 7, 16]). Furthermore, the message generating functions
must satisfy certain “regularity conditions” ([6, 7, 16]) that guarantee that the outcome of the resource
allocation process is “robust” with respect to errors (due for example to approximations) that may
occur in the message exchange process. This information exchange allows the network management to
“learn” about the users’ preferences (utilities) and eventually maximize the network’s utility to its users.
“Learning” requires an iterative process of information exchange and such an iterative process is described
by our market mechanism. In the case where the users’ utility functions are general concave functions
the network manage does not “learn” perfectly the users’ utility functions, yet the market mechanism
converges to an optimal solution of the centralized problem Max 1. When the users’ utility functions
came from a class which is parameterized by a finite number of parameters the network manager “learns”
perfectly (in the first iteration of the outer loop) the users’ utility functions.
(3) We have assumed that there is no cost in supplying network resources (such as bandwidth and
buffers) to the market. We can incorporate the cost of supplying network resources into our model by
subtracting if from the objective function of the optimization problem Max 1. We believe that the
problem arising in this situation will have the same qualitative properties as Max 1, and the resource
allocation methodology proposed in this paper can be used for its solution.

Next we comment on issues associated with our approach to the solution of the multi rate multicast
rate allocation problem formulated in this paper. Specifically, we address the following:

(a) The relation between a solution of Max 1 and the choice of a particular D, defined in Section 3.4.
(b) Improvement in performance of the computation of the link price share.
(c) The assumption that the user utility functions are differentiable.
(d) The uniqueness of the optimal link price shares for a fixed set of link prices.
(e) The fact that the determination of service prices along each multicast tree is independent of the

demand on other multicast trees (see Part I, Section 3, Property 3.6).

We discuss each issue separately.
(a) We proved the existence of a solution to the optimization problem Max 1 and presented in

Section 3.2.1 an algorithm (Algorithm ~) that converges to such a solution.
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Algorithm ~ works by taking a sequence of sets, denoted by {PD}D∈N, of evenly distributed points
in the simplex S. For each one of these sets the algorithm generates a primitive set WD, satisfying the
properties of Lemma 1. The theory tells us that as D goes to infinity, a subsequence WD of primitive
sets will contain a solution of Max 1. Since the size (diameter) of WD goes to 0 as D goes to infinity,
we are able to approximate a solution of Max 1 by Algorithm ~.

The question that remains is: “For a given D, do we know if a solution of Max 1 is contained in
WD, and if not, how far away is WD from a solution of Max 1?” We can not answer this question in
general. The answer depends on the behavior of the excess demand function zl(λ), for all l ∈ L. Hence,
without any further assumptions on the behavior of zl(λ), l ∈ L, all we can guarantee is that in the
limit, as D → ∞, Algorithm ~ will lead to a solution of Max 1. That is, as D → ∞ the size of WD

decreases, and under certain regularity conditions (that relate the local maxima and local minima of
zl(λ), l ∈ L) WD will contain a solution of Max 1. On the other hand, based on the observations made
while conducting the simulation of the algorithms we have concluded that in the case in which the utility
functions are “smooth” (e.g. log(x),

√
x) Scarf’s algorithm “closely” approximates an optimal set of link

prices for relatively small values of D.
(b) We assumed that the computation performed by the price sharing algorithm in Part I of this

two-part paper at each iteration of the auctioneer price adjustment scheme is done independently of
prior iterations of the price sharing algorithm. It may be possible for the service provider to use the data
from previous iterations of the price sharing algorithm to expedite the computational process. For that
matter, learning theory may be useful to the service provider in determining the users’ utility functions.

(c) We assumed that the user utility functions are differentiable. This assumption is essential in the
proof of convergence of the price splitting algorithm used in the inner loop (Part I Lemma B.3) and
the proof of the continuity of the excess demand function with respect to λ (Lemma 6). Both of these
results are crucial in proving that the market based mechanism converges to an optimal solution of
Problem Max 1. There is a possibility that using different proof technique methods the differentiability
assumption may be removed.

We would also like to note that the differentiability assumption is not required in the development of
the properties presented in Part I Section 3.

(d) We proved in Part I of this paper that for any link price λ we can determine an optimal service
price p(r, λ). In Appendix B we prove that for any r ∈ R the allocation xr(p(r, λ)) and the excess demand
z(λ) are continuous functions of λ. Due to the differentiability of the utility functions this implies that
for any λ there is a unique xr(pr(r, λ)) and a unique pr(r, λ).

This is a surprising result to us since it shows that although the dimensionality of the shadow prices γ
is much larger than the dimensionality of the link prices λ, for any set of link prices λ any set of optimal
shadow prices γ generated from λ will generate the same service price p(r, λ).

We also note that at the optimal solution of Problem Max 1, since the utility functions are strictly
concave and the set of feasible solutions is convex, xr(pr(r, λ)) is unique. Since the utility functions are
also assumed to be differentiable we also have that the set of service prices pr(r, λ) is unique. However,
the set of λ generating the optimal set of service prices may not be unique.

(e) In Part I (Section 3 Property 3.6) we showed that the determination of service prices along a
given multicast tree is independent of the demand on other multicast trees. This result has an interesting
implication. Note that unicast is a special case of multicast with only one user connected to the tree.
Therefore the same solution approach introduced in this paper may be applied equally to all flows
(multicast and unicast) simultaneously on the same network by treating unicast flows as multicast.
Under this utility maximizing formulation, the capacity constraints will be the total capacity on each
link, therefore we do not need to dedicate link capacity solely for multicast services.

6 Conclusion

In Part II of this two-part paper we presented a market based mechanism and an adjustment process
that satisfy the informational constraints imposed by the nature of multirate multicast. When they are
combined with the results of Part I they result in an optimal solution of the corresponding centralized
multirate multicast problem.
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The two parts combined present a systematic approach to the optimal rate allocation in multirate
multicast networks, that is described by a two-level convergent iterative procedure that leads to an
optimal solution of a general decentralized rate allocation problem.

The main contributions of this two-part paper include (1) the development of properties of the optimal
price per unit of service given an optimal price per unit of rate on each link (presented in Part I); (2)
the construction of a distributed algorithm that determines the optimal service prices given a fixed set
of prices per unit of rate on each link (presented in Part I); and (3) the development of a market-based
mechanism which achieves an aggregate utility maximizing (i.e., welfare maximizing) solution for the
informationally decentralized network problem (presented in Part II). The notion of “splitting tree”
introduced in this paper was key to our overall development. In addition we presented numerical results
on the convergence of both the price splitting algorithm (the inner loop) and the market-based iterative
procedure (the outer loop).

As we have pointed out, the multicast rate allocation formulation adopted in this two-part paper is
a reasonable one when the users are assumed to have no knowledge about the type of services they are
receiving and how resources are shared under these services. If the users do possess such information,
then a different formulation of the problem (e.g., regarding the links shared by multiple users as public
goods) may be more appropriate. This remains an open problem, and is part of our future work.

Appendices

A Parameterized Utility Functions

In this section we present two classes of parameterized utility functions which appear in economic
literature [13]. We assume that the exchange of information between the network and users is through
prices, i.e. network advertises a price per unit of service to each user, and each user, based on its price,
has a demand which maximizes its utility.

Bernoulli Utility Functions
Let U(x) be of the form:

U(x) = βx% + γ β > 0, % ∈ [0, 1), γ ∈ R. (A.1)

Note that since the user is utility maximizing, for a price p advertised by the network, the user will
have a demand x(p) for which:

U ′(x(p)) ≤ p (A.2)

with equality being satisfied when x(p) is an interior point of the set of the possible demands.
For this example equation (A.2) takes the following form:

p ≥ β%x(p)%−1 (A.3)

Taking p1 6= p2, and p1, p2 positive, we obtain

p1

p2
=

(
x(p1)
x(p2)

)%−1

(A.4)

from which we can determine %. Substituting % back into equation (A.3) we can find the value of β. Note
that the value of γ is irrelevant for the purpose of maximizing users’ total utility, and it can be taken
to be any arbitrary constant. So if the utility functions are of the form (A.1) the network can determine
them in two iterations.

Exponential Utility Functions
Let U(x) be of the form:

U(x) = 1− e−ax a > 0. (A.5)

Substituting (A.5) in U ′(x(p)) ≤ p we obtain:
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p ≥ ae−ax(p) (A.6)

Note that for values of p greater than a the demand x(p) is zero. Also note that for any non-zero
p which is smaller then a the demand will be strictly positive. Given two non-zero pairs of (p, x(p))
satisfying equation (A.6) one can determine the utility function U(x).

In this case the number of iterations needed by the network in order to determine the users’ utility
functions is not fixed. This is due to the fact that the network has to first guess a small enough value of
p which is less than a. After such a value of p is determined, only one more iteration is needed in order
to determine parameter a. Note that if we know that the value of a is bounded below by some constant
c, then by choosing p to equal c

2 and c
4 for example, we can determine the utility function.

In this appendix we presented methods for determining utility functions that belong to families
parameterized by two parameters. A similar approach can be applied to utility functions that belong to
families that are parameterized by a different number of parameters.

B Proof of Proposition 1

The proof of this proposition uses much of the terminology, notation, and many results developed in
Part I of this two-part paper. We refer the reader to Part I of the paper for any notation or results not
defined/stated in this section.

We will first show that xr(p(r, λ)) is continuous function of λ. Using Property 3.6 from Part I, it is
enough to only look at one fixed multicast tree, say m ∈ M . To prove continuity of the user demand
xr(p(r, λ)) with respect to link prices λ we have to show that given a fixed set of link prices {λl : l ∈ Lm},
and any link l ∈ Lm, a continuous change in the price λl will result in a continuous change in the demand
of the users of multicast tree m. After establishing the continuity of xr(p(r, λ)) with respect to λ, the
continuity of excess demand z(λ) with respect to λ follows immediately.

We proceed as follows: In Lemma 3 we describe a property of the rate demanded by the users of a
splitting tree. In Lemmas 4 and 5 we obtain relations between changes in link prices, service prices and
splitting trees. The results of Lemmas 3-5 are used to obtain Lemma 6 which establishes that the user
service prices are monotonic functions of λ. Finally Lemma 6 together with Property 3.2 from Part I are
combined to complete the proof of the theorem.

Lemma 3 For any r ∈ Rm and any λ ≥ 0̄, xr(p(r, λ)) ≥ xq(p(q, λ)), where q ∈ Rr(γ(λ)).

This Lemma states that the rate demanded by the users of the splitting tree of user r is less then or
equal to the rate of r.

Proof This follows directly from the definition of a splitting tree (Definition 3.2 from Part I).

Lemma 4 Given λ and λ′, if there exists r ∈ Rm such that p(r, λ) > p(r, λ′), then there exists r′ ∈ Rm

such that p(r′, λ) > p(r′, λ′) and Tr′(γ(λ)) ⊆ Tr′(γ(λ′)).

Lemma 4 states that if for two different sets of link prices the service price of one user decreases,
then there exist a user in the same multicast tree (possibly the same user) for whom the service price
decreases and its splitting tree increases.

Proof Let r′ = argmaxq∈Rr(γ(λ)) xq(p(q, λ′)). By Lemma 3 we have that Tr′(γ(λ)) ⊆ Tr(γ(λ)). Since
xr′(p(r′, λ′)) ≥ xq(p(q, λ′)), for any q ∈ Rr(γ(λ)), by the definition (Definition 3.2 Part I) of a splitting
tree Tr(γ(λ)) ⊆ Tr′(γ(λ′)). From Lemma 3, the fact that the utilities are strictly concave, and the fact
that r ∈ Rr(γ(λ)) respectively, we get the following sequence of inequalities: xr′(p(r′, λ)) ≤ xr(p(r, λ)) <
xr(p(r, λ′)) ≤ xr′(p(r′, λ′)). But these inequalities imply that p(r′, λ) > p(r′, λ′) which concludes the
proof.

Lemma 5 Given λ and λ′, if there exists r ∈ Rm such that p(r, λ) < p(r, λ′), then there exists r′ ∈ Rm

such that p(r′, λ) < p(r′, λ′) and Tr′(γ(λ′)) ⊆ Tr′(γ(λ)).
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Lemma 5 proves the converse of Lemma 4. In particular it states that if for two different sets of link
prices the service price of one user increases, then there exist a user in the same multicast tree (possibly
the same user) for which the service price increases and its splitting tree decreases.

Proof Consider the set of S , {q : q ∈ Rm, p(q, λ) < p(q, λ′)}. Note that S 6= ∅ since r ∈ S. Let
s ∈ S such that `(Ts(γ(λ))) ≥ `(Tq(γ(λ))) for any q ∈ S. Note that if s is such that Ts(γ(λ)) is
the whole multicast tree, then Ts(γ(λ′)) ⊆ Ts(γ(λ)) and the lemma is true, otherwise we prove that
Ts(γ(λ′)) ⊆ Ts(γ(λ)) by contradiction. Assume by contradiction that Ts(γ(λ)) ⊂ Ts(γ(λ′)). Let t be the
parent branch of the root of Ts(γ(λ)) (t exists since we have assumed that Ts(γ(λ)) is not the whole
multicast tree). Pick q to be a receiver such that t ∈ Tq(γ(λ)) (q exists since there is at least one user
downstream link t with a rate demand equal to the rate on link t). Note that t ∈ Ts(γ(λ′)) which implies
that q ∈ Ts(γ(λ′)) (as t is the parent branch of the root of Ts(γ(λ)) and t ∈ Tq(γ(λ))), so q ∈ Rs(γ(λ′)).
Also note that `(Tq(γ(λ))) > `(Ts(γ(λ))), which implies that q /∈ S. We have the chain of inequalities:
xq(p(q, λ′)) ≤ xs(p(s, λ′)) < xs(p(s, λ)) < xq(p(q, λ)), where the first inequality follows from Lemma 3,
the second from the strict concavity of the utility functions and the fact that s ∈ S, and the third from
the fact that t ∈ Tq(γ(λ)) but t /∈ Ts(γ(λ)). The inequalities give us that p(q, λ) < p(q, λ′), so q ∈ S,
which is a contradiction. Consequently Ts(γ(λ′)) ⊆ Ts(γ(λ)).

The following lemma shows that if any of the link prices is increased (respectively decreased) then
the optimal service price for any receiver can not decrease (respectively can not increase); that is for
each receiver, the optimal service price is a monotonically increasing function of λ.

Lemma 6 Let δ > 0 and λ′l = λl + δ, and λ′′l = max(λl − δ, 0), for some l ∈ Lm and λ′e = λ′′e = λe for
all e ∈ Lm, e 6= l. Then for all r ∈ Rm, p(r, λ′) ≥ p(r, λ) ≥ p(r, λ′′).

Proof In order to prove that p(r, λ′) ≥ p(r, λ) it is enough to prove that xr(p(r, λ′)) ≤ xr(p(r, λ)). Assume
by contradiction that there exists r′ ∈ Rm such that xr′(p(r′, λ′)) > xr′(p(r′, λ)). Using Lemma 4 we
can find an r (possibly same as r′) such that xr(p(r, λ)) > xr(p(r, λ)) and Tr(γ(λ)) ⊆ Tr(γ(λ′)).

The sum of the service prices of the receivers of the splitting tree Tr(γ(λ)) at link price λ′ is:

τ +
∑

e∈Lm∩Tr(γ(λ))

λe + ϕ =
∑

q∈Rr(γ(λ))

p(q, λ′) (B.1)

where τ is the price incurred by the receivers Rr(γ(λ)) from the links preceding the root of Tr(γ(λ)),
and ϕ is δ if l ∈ Lm ∩ Tr(γ(λ)) or 0 otherwise.

This sum can also be rewritten as:
∑

q∈Rr(γ(λ))

p(q, λ′) =
∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ′) +
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ′) (B.2)

where the first summation of the right hand side is the sum of the service prices of receivers of the
splitting tree Tr(γ(λ)), which at λ′ have the same demand as r, and the second sum corresponds to the
sum of the optimal service prices of the users which are not splitting with r.

For any q ∈ Rr(γ(λ)) ∩ Rr(γ(λ′)), xq(p(q, λ′)) = xr(p(r, λ′)) > xr(p(r, λ)) ≥ xq(p(r, λ)), implies
p(q, λ′) < p(q, λ). This gives us that:

∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ′) <
∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ) (B.3)

Also note that
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ′) =
∑

e∈Lr(γ(λ))\Lr(γ(λ′))

λe + ϕ (B.4)

≤
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ) + ϕ. (B.5)

We derive (B.4) and (B.5) as follows: From Part I, Property 3.2, we have that the sum of link prices
in a splitting tree is equal to the sum of service prices over all the users of that particular splitting tree.
From Part I, Property 3.3, we have that on a fixed splitting tree, the sum of the link prices over the links
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with maximal rate is equal to the sum of the service prices over all the users demanding the maximal rate
on that particular splitting tree. Combining these two results we have that for a fixed splitting tree, the
sum of the service prices over the users demanding strictly less then the maximal rate on that splitting
tree is equal to the sum of the link prices over the links on which the rate demanded is not maximal,
which implies the equality in (B.4). Property 3.4 from Part I states that for any given subtree, the sum
of service prices of the users on that subtree is equal to the sum of link prices of that subtree plus the
price on the links incurred upstream of the subtree. This result implies the inequality in (B.5).

Combining equations (B.3)-(B.5) we get:

∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ′) +
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ′)

<
∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ) +
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ) + ϕ (B.6)

while,
∑

q∈Rr(γ(λ))∩Rr(γ(λ′))

p(q, λ) +
∑

q∈Rr(γ(λ))\Rr(γ(λ′))

p(q, λ) + ϕ =
∑

q∈Rr(γ(λ))

p(q, λ) + ϕ

=
∑

e∈L∩Tr(γ(λ))

λe + ϕ. (B.7)

Combining equations (B.1),(B.2),(B.6), and (B.7) we get τ+
∑

e∈Lm∩Tr(γ(λ)) λe+ϕ <
∑

e∈Lm∩Tr(γ(λ)) λe+
ϕ. This contradiction is due to the fact that we have assumed that xr(p(r, λ′)) > xr(p(r, λ)). Conse-
quently, p(r, λ′) ≥ p(r, λ).

For the second inequality the problem is similar. Assume that there exists r ∈ R such that xr(p(r, λ)) >
xr(p(r, λ′′)). Pick the r such that Lemma 5 is satisfied. Then:

∑

e∈Lm∩Tr(γ(λ′′))

λe − ϕ =
∑

q∈Rr(γ(λ′′))

p(q, λ′′) (B.8)

=
∑

q∈Rr(γ(λ′′))

p(q, λ′′) +
∑

q∈Rr(γ(λ′′))\Rr(γ(λ′′))

p(q, λ′′) (B.9)

>
∑

q∈Rr(γ(λ′′))

p(q, λ) +
∑

q∈Rr(γ(λ′′))\Rr(γ(λ′′))

p(q, λ)− ϕ (B.10)

=
∑

q∈Rr(γ(λ′′))

p(q, λ)− ϕ (B.11)

=
∑

e∈Lm∩Tr(γ(λ′′))

λe + τ − ϕ (B.12)

Equations (B.8), (B.9), and (B.11) we get by rearranging the terms. Equation (B.10) is true by the
same argument as in the proof of the first part, since

∑
q∈Rr(γ(λ′′)) p(q, λ′′) >

∑
q∈Rr(γ(λ′′)) p(q, λ), and∑

q∈Rr(γ(λ′′))\Rr(γ(λ′′)) p(q, λ′′) >
∑

q∈Rr(γ(λ′′))\Rr(γ(λ′′)) p(q, λ) − ϕ. Finally equation (B.12) follows by
Property 3.4 from Part I, where τ is the price incurred on the links upstream of Tr(γ(λ′′)).

The above chain of equations gives us the contradiction, which is due to the assumption that
xr(p(r, λ′′)) < xr(p(r, λ)). Consequently, p(r, λ) ≥ p(r, λ′′).

Based on Lemma 6 and Property 3.2 from Part I we complete the proof of Lemma 1. Let ε > 0 and
fix l ∈ Lm and λ ≥ 0. Using Assumption 1, for each receiver r we can choose a δr > 0 such that for any
y ∈ (

p(r, λ)− δr, p(r, λ) + δr

)
, ‖xr(y)− xr(p(r, λ))‖ < ε. Take δ = minr∈Rm δr.

We prove now that the function xr(p(r, λ)) is continuous from the right. Let λ′l ∈
(
λl, λl + δ

)
. Using

Property 3.2 from Part I we have:
∑

r∈Rm

p(r, λ) =
∑

e∈Lr(γ(λ))

λe =
∑

e∈Lr(γ(λ′))

λe + (λl − λ′l) =
∑

r∈Rm

p(r, λ′) + (λl − λ′l). (B.13)
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From Lemma 6 we have that
p(r, λ) ≤ p(r, λ′) ∀r ∈ Rm. (B.14)

Combining equations (B.13) and (B.14) we get that for all r ∈ Rm we have |p(r, λ) − p(r, λ′)| < δ,
which implies that ‖xr(p(r, λ′)) − xr(p(r, λ))‖ < ε. This concludes the proof of the right continuity of
xr(p(r, λ)) in λ.

For the proof of left continuity we proceed in a similar fashion. Let λ′′l ∈
(
λl − δ, λl

)
. Using Property

3.2 from Part I we have:
∑

r∈Rm

p(r, λ) =
∑

e∈Lr(γ(λ))

λe =
∑

e∈Lr(γ(λ′′))

λe + (λl − λ′′l ) =
∑

r∈Rm

p(r, λ′′) + (λl − λ′′l ). (B.15)

From Lemma 6 we have that
p(r, λ) ≥ p(r, λ′′) ∀r ∈ Rm. (B.16)

Combining equations (B.15) and (B.16) we get that for all r ∈ Rm we have |p(r, λ) − p(r, λ′′)| < δ,
which implies that ‖xr(p(r, λ′′)) − xr(p(r, λ))‖ < ε. This concludes the proof of the left continuity of
xr(p(r, λ)) in λ. Since x(p(r, λ)) is left and right continuous in λ it is a continuous function in λ.

Since max and summation are continuous operators, the continuity of xr(p(r, λ)) implies that z(λ)
will be a continuous function of λ. ut

C Proof of Proposition 2

Let q ∈ C. Then q0 > 0 because q ∈ Cl. Furthermore, since q ∈ C0 and q0 > 0, we have that:
∑

m∈M

max
r∈Rl,m

xr(p(r, λ(q))) ≤ cl, for all l ∈ L. (C.1)

which makes x(λ(q)) , {xr(p(r, λ(q)))}r∈R a feasible solution to problem Max 1. We now define the
Lagrangian function:

Λ(x, λ) ,
∑

r∈R

Ur(xr)−
∑

l∈L

λl

( ∑

m∈M

max
r∈Rl,m

xr − cl

)
(C.2)

Let x be any other feasible solution to Max 1. Then from Part I, Section 3, we have that:

Λ
(
x(λ(q)), λ(q)

) ≥ Λ(x, λ(q)) , (C.3)

From (C.3) we have,

∑

r∈R

Ur(xr(p(r, λ(q))))−
∑

l∈L

λl(q)
( ∑

m∈M

max
r∈Rl,m

xr(p(r, λ(q)))− cl

)

≥
∑

r∈R

Ur(xr)−
∑

l∈L

λl(q)
( ∑

m∈M

max
r∈Rl,m

xr − cl

)
(C.4)

Notice that q ∈ Cl implies that ql = 0 (i.e. λl(q) = 0 ), or that,
∑

m∈M

max
r∈Rl,m

xr(p(r, λ(q))) ≥ yl(λ(q)) = cl. (C.5)

If ql > 0 , then from (C.1) and (C.5) it follows that
∑

m∈M

max
r∈Rl,m

xr(p(r, λ(q))) = cl. (C.6)

Therefore,
∑

l∈L

λl(q)
( ∑

m∈M

max
r∈Rl,m

xr(p(r, λ(q)))− cl

)
= 0. (C.7)
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Since x is a feasible solution to Max 1 we have that,
∑

m∈M

max
r∈Rl,m

xr ≤ cl , for all l ∈ L . (C.8)

Multiplying (C.8) by λl(q) ≥ 0 and summing over all l ∈ L, gives,

∑

l∈L

λl(q)
( ∑

m∈M

max
r∈Rl,m

xr − cl

)
≤ 0 . (C.9)

Inequalities (C.4), (C.7) and (C.9), give,
∑

r∈R

Ur

(
xr(λ(q))

) ≥
∑

r∈R

Ur(xr) , (C.10)

which shows that x(λ(q)) solves Max 1. This concludes the proof of Proposition 2. ut
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