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Abstract In this two-part paper we present a general framework for addressing the optimal rare con-
trol problem in multirate multicast where the objective is the maximization of a social welfare function
expressed by the sum of the users’ utility functions. Specifically, we propose a market-based mechanism
that satisfies the informational constraints imposed by the decentralization of information in multirate
multicast service provisioning, and achieves an optimal solution to the corresponding centralized opti-
mization problem. In Part I we discover properties of an optimal solution to the centralized problem.
Based on these properties, we develop a distributed algorithm that determines how link prices are split
among users whose connections along a multicast tree share the same link.

1 Introduction

Multicasting provides an efficient method of transmitting data in real time applications from one
source to many users. The source sends one copy of a message to its users and this copy is replicated
only at the branching points of a multicast tree. Real time examples of such multicast applications
are audio/video broadcasting, teleconferencing, distributed databases, financial information, electronic
newspapers, weather maps and experimental data.

Conventional multicast studies the problem in which the rate received by all the users of the same
multicast group is constant. The inherent problem with such a formulation is that a constant rate will
overwhelm the slow receivers while starving the fast ones. Multi-rate transmissions can be used to address
this problem by allowing a receiver to obtain data at a rate that satisfies its requirements. One way of
achieving this is through hierarchical encoding of the transmission, in which a signal is encoded into
multiple layers that can be incrementally combined to improve quality. These hierarchical encoding type
of transmission schemes have been investigated both for audio and video transmissions over the Internet
[4], [41] and over ATM networks [20]. Internet protocols for adding and dropping layers for hierarchical
encoding type of transmissions are presented in [23] and [27].

Within the context of single rate and multi-rate multicast problems, studies have addressed is-
sues of bandwidth/rate allocation [5, 10, 13, 15, 29–32, 34, 35, 37, 42], routing [6, 7, 28, 36, 43] and relia-
bility [8, 11, 16]. Most of the literature on rate allocation is done via the notion of fairness [5, 10, 29–
32, 34, 35, 37, 42], specifically, max-min fairness [3] and proportional fairness [18]. In particular, [35] de-
velops a unified framework for diverse fairness objectives via the notion of fair allocation of utilities. A
more general approach to rate allocation is via utility maximization. Utility maximizing is more general
because rate allocation with the fairness property is utility maximizing when the utility has a special
form [5, 26, 35, 37]. Although utility maximization has been extensively studied within the context of uni-
cast rate allocation to achieve congestion control [1, 14, 17, 19, 21, 22, 24, 39, 40], relatively fewer studies
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approached the multi-rate multicast allocation problem via a general utility maximization formulation,
with the notable exceptions [5, 13, 15]. Specifically, [13] introduces a solution based on dual methods and
[15] derives a primal algorithm based on non-differential optimization methods, both assuming that the
users’ utility functions are twice continuously differentiable and their second derivative bounded. Algo-
rithms introduced in [5, 13, 15] have a “flat architecture” in that the optimal rate allocation messages
are exchanged among nodes on the multicast tree.

In this two-part paper we present a market-based approach/mechanism to multi-rate multicast service
provisioning. This approach relies upon: (i) the assumption that users are unaware of the method of
service delivery (e.g., they do not know whether service provisioning is unicast or multicast and thus it
is reasonable to assume that they are price-takers); and (ii) the properties of the optimal solution to the
corresponding centralized resource allocation problem. The proposed market-based mechanism satisfies
the informational constraints imposed by the nature of the multicast problem, results in a hierarchical
architecture for resource allocation (as opposed to the flat architecture used in [5, 13, 15]), and employs
a Tâtonnement process that is different from those of [5, 13, 15].

The market mechanism consists of two types of agents: (1) the network (auctioneer and service
provider); and (2) the users. The network (auctioneer) announces prices per unit of rate at each link of
the network. The service provider determines the service price per unit of rate for each user and announces
these prices to the users. The users respond with a demand. Based on the excess demand, the auctioneer
revises the link prices per unit of rate and the process repeats. This market mechanism looks at first
glance like market mechanisms for unicast service provisioning (e.g., [39, 40]). The additional difficulty
that arises in multirate multicast service provisioning (as compared to unicast) is in the determination
of service prices given a set of fixed link prices. Since only one copy of the information is sent along links
used by more than one user, the key issue in determining service prices, is to specify how a link’s price
is split among the users that share the link. The mechanism proposed in Part I of this two-part paper
resolves this issue.

The Tâtonnement process we present in this two-part paper can be viewed as a hierarchical process
consisting of two layers: a lower layer and an upper layer. In the lower layer of the process we solve
the service provider’s problem. This is, we present an algorithm which for a fixed set of link prices,
determines the price per unit of service for each user. The algorithm also specifies the price-sharing of
links that are used by more than one user. In the upper layer of the hierarchy we present a link price
adjustment process (for the auctioneer) that is based on excess demand at each link. The results of
the upper and lower layers combined together lead to an allocation which is an optimal solution of the
centralized multirate multicast problem.

The major contribution of Part I of this paper is the solution to the service provider’s problem,
mentioned above, and the determination of optimal link price-sharing among the users of a link. The
methodology for determining optimal link price-sharing is different form the work cited earlier; it is also
different from that of [9, 12] which is based on cooperative game theory.

Under the assumption that the users are unaware of the method of delivery of services, the formulation
of the multirate multicast problem presented in this paper and in [5, 13, 15] is a reasonable one. If the
users are aware that service delivery is done by multicast, then the price-taking assumption is hard to
justify and a more appropriate formulation of the multirate multicast problem may be one where the
links shared by more than one user are treated as public goods [25, Chapter 11]. Such a formulation
could prevent the users from hiding their true characteristics (e.g. their true utility functions) so as to
benefit, and could avoid the free-rider problem [25, Chapter 11] which in the context of the multirate
multicast problem manifests itself as follows: the price of a link that is used by more than one user is
shared only by those users that demand the maximal rate.

The remainder of this paper is organized as follows. In Section 2 we formally present the centralized
multi-rate multicast problem. In Section 3 we develop properties of the optimal solution of this problem.
In particular these properties determine the optimal price sharing along each multicast tree. Using the
properties developed in Section 3, we present in Section 4 an iterative algorithm which computes the
optimal price per unit or service given a fixed price per unit of rate on each link. We conclude the paper
in Section 5.
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2 The Multicast Problem

In this section we present the mathematical formulation of a network multirate multicast problem.

2.1 The model, terminology and notation

Consider a network consisting of a set of L unidirectional links, each link l ∈ L having finite capacity
cl. The network is used by a set M of multicast groups. Each multicast group m ∈ M is specified by
{sm, Rm, Lm}, where sm is the unique source node, Rm is the set of receiver nodes, and Lm is the set
of links used by the group. Since each multicast group is a tree, we are going to use the terms multicast
group and multicast tree interchangeably.

Fig. 1 A picture of a multicast tree.

We now present some terminology used for the multicast groups that is similar to terminology de-
veloped in [13, 15]. We start by looking at the nodes that are part of an arbitrary multicast group m.
There are four types of nodes in this group: the source node sm, receiver nodes r ∈ Rm, junction nodes
and non-junction nodes. The junction nodes are the nodes that are connected to more than two links of
Lm, i.e. they are connected to a link which will lead to the source and to two or more other links which
will lead to some subset of Rm. We denote the set of all the junction nodes of multicast group m by R̂m,
and we let R̃m , R̂m ∪ Rm. The non-junction nodes are all the nodes, excluding the source node, that
are connected to exactly two links of Lm.

From this moment on we are going to assume that for every receiver node in m there is a unique link
l ∈ Lm connected to it, i.e. the receiver nodes are terminal nodes with an unique incoming link. For our
formulation there is no loss in generality by making this assumption, since if r ∈ Rm is a receiver node
but not a terminal node, we can always replace the receiver node by a new terminal node r′, which is
connected to r by an infinite capacity link.

We denote by R , ∪m∈MRm the set of all receiver nodes over all the multicast groups, and by Rl,m

the set of all the receivers of multicast group m ∈ M using link l ∈ L.
We define a branch to be the set of links that are between a source/junction node and its immediate

downstream junction/receiver node. Note that the set of branches of m ∈ M forms a partition of Lm.
Also note that each branch j can be associated with its “downstream” junction/receiver node, which
will be denoted by r(j). Denote the set of branches associated with receiver nodes by Jm, and the set of
branches associated with all junction nodes by Ĵm. Let J̃m , Jm ∪ Ĵm be the set of all branches over
multicast group m ∈ M .

The parent of a receiver/junction node r ∈ R̃m refers to the closest junction/source node in the
“upstream” path toward the source. Similarly the parent of a branch j ∈ J̃m, if it exists, is the closest
branch in the “upstream” path toward the source. We denote the parent of node r ∈ R̃m by Πm(r) and
the parent of branch j ∈ J̃m by πm(j). The children of a junction/source node r ∈ R̂m ∪ {sm} are the
set of receiver/junction nodes which have r as their parent and it will be denoted by Chm(r).

2.2 The Optimization Problem

We assume that we have a unique user connected to each receiver node r ∈ R. For each user we
have a utility function Ur(xr), where xr is the rate at which r receives data. This utility function can
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be interpreted both from the point of perceived quality of service received and the amount paid in order
to receive the service. Since there is a unique user connected to each receiver node, we will use the same
notation when we talk about the receiver nodes or the users connected to these nodes.

We make the following assumptions:

Assumption 1 The utility functions Ur(xr) are strictly concave, differentiable and increasing.

Assumption 2 The rate xr is assumed to be a continuous variable.

Assumption 3 Rate allocations are done along fixed multicast trees with fixed number of users.

Assumption 1 reflects the fact that users have diminishing returns on the goods consumed. Assumption
2 is an approximation to the actual problem. This approximation is made in most multirate multicast
problems in the literature, e.g. [5, 13, 15], with notable exceptions [32, 33]. Based on these assumptions
we formulate the following static network multicast problem for the model of Section 2.1

max
xr,r∈R

∑

r∈R

Ur(xr) Max 1

such that: ∑

m∈M

max
r∈Rl,m

xr ≤ cl, ∀ l ∈ L (2.1)

xr ≥ 0, ∀ r ∈ R (2.2)

Constraint (2.1) is also known as the capacity constraint. For this constraint to be satisfied, on each
link, the totality of the rates used by each multicast tree cannot exceed the link capacity. The capacity
constraint insures that for all the multicast trees, the rate on each branch of a tree is less than or equal
to the rate on its parent branch.

Noting that the constraints (2.1) and (2.2) make the set of feasible solutions (x’s) compact, and
since U ′

rs are assumed to be continuous, Weierstrass’s Theorem [38, p.823] guarantees the existence of a
solution to Max 1.

3 Properties of Optimal Solutions of Problem Max 1

In this section we derive properties of an optimal solution of Problem Max 1. These properties provide
guidelines for the development of a Market-based decentralized algorithm that satisfies the informational
constraints imposed by the nature of the multicast problem (described in Part II of the paper) and
achieves the solution to Problem Max 1. The significance of each of the results developed in this section
will be discussed at the end of the section.

We proceed by considering the following problem:

max
xr,r∈R

∑

r∈R

Ur(xr) Max 2

such that: ∑

m∈M

xrl,m
≤ cl, ∀ l ∈ L, ∀ rl,m ∈ Rl,m. (3.1)

xrl,m
≥ 0, ∀ l ∈ L, ∀ rl,m ∈ Rl,m. (3.2)

where rl,m denotes a receiver on the mth multicast tree that employs link l.
Since the set of equations (3.1) is equivalent to the set of equations (2.1), Problem Max 1 is equivalent

to Problem Max 2. So any optimal solution of Problem Max 2 is also an optimal solution for Problem
Max 1.

Let |M | denote the number of multicast trees in the network. We define the set

Φ(l) , {(rl,1, . . . , rl,|M |
)

: rl,i ∈ Rl,i, 1 ≤ i ≤ |M |},
to be the set of |M |-tuples, each tuple consisting of one receiver from each multicast tree, and every
receiver of each tuple is downstream from link l ∈ L on its respective multicast tree. We note that the
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number of elements in Φ(l) corresponds to the number of constraints for link l in the set of equations
(3.1). We denote by rl an element of Φ(l), and by rl,m a receiver on the mth multicast tree of rl. Note that
if for some multicast tree m ∈ M and some link l ∈ L, Rl,m = ∅, i.e. link l is not part of the multicast
tree m, then we let the rl,m entry of the rl tuple be empty, i.e. no receiver from multicast tree m is
assigned to any of the rl tuples. We define the set Φ(l, r) , {(rl,1, . . . , rl,|M |

)
: r ∈ {

rl,1, . . . , rl,|M |
}
, rl,i ∈

Rl,i, 1 ≤ i ≤ |M |} to be a subset of Φ(l) where all the tuples contain receiver r.
Using the above notation we can rewrite equation (3.1) as follows:

∑

m∈M

xrl,m
≤ cl, ∀ l ∈ L, ∀ rl ∈ Φ(l)

Then, the Lagrangian function for Problem Max 2 can be expressed as follows:

Λ(x, γ) ,
∑

r∈R

Ur(xr)−
∑

l∈L

∑

rl∈Φ(l)

γrl

( ∑

m∈M

xrl,m
− cl

)
. (3.3)

where γ , {γrl
: γrl

∈ R+, rl ∈ Φ(l), l ∈ L}.
Assume that γ and x∗ satisfy:

γrl
(

∑

m∈M

x∗rl,m
− cl) = 0, (3.4)

(∂Ur(xr)
∂xr

−
∑

l∈Lr

∑

rl∈Φ(l,r)

γrl

)∣∣∣
xr=x∗r

= 0. (3.5)

where Lr is defined to be the set of links connecting r ∈ Rm to the source sm.
Note that by construction Λ(x, γ) ≥ ∑

r∈R Ur(xr) for all feasible x, and Λ(x∗, γ) =
∑

r∈R Ur(x∗r).
Hence, if x∗ turns out to be a local maximizer of Λ(x, γ) then it is also a local maximizer of Problem
Max 2.

Since Ur(xr) are strictly concave for all r ∈ R, Λ(x, γ) is strictly concave for all γ. Equation (3.5)
along with Theorem [2, Theorem 3.4.3] give us that x∗ is a global maximizer of Λ(x, γ), which implies
that x∗ is a global maximizer of Problem Max 2.

From equation (3.5) it follows that the rate demanded by user r at an optimal solution of Problem
Max 1 can be written as a function of the shadow prices γ. In particular:

x∗r , xr(
∑

l∈Lr

∑

rl∈Φ(l,r)

γrl
). (3.6)

We define

p(r, γ) ,
∑

l∈Lr

∑

rl∈Φ(l,r)

γrl
(3.7)

to be user r’s service price, which gives

x∗r = xr(p(r, γ)). (3.8)

The underlying intuition behind the above equations is that p(r, γ) represents the sum of the shadow
prices for the constraints involving user r. Combining equations (3.6) and (3.7) we get equation (3.8),
which shows that at an optimal solution of Problem Max 2 the demand of user r is a function of p(r, γ).

In the rest of the section we will prove a series of theorems which describe properties of any user r’s
service price and demand at an optimal solution of Problem Max 2.

Property 1 For any l ∈ L and any rl ∈ Φ(l), γrl
> 0 implies that xrl,m

= maxr′∈Rl,m
xr′(p(r′, γ)) for any

m ∈ M .

This result is intuitively expected since only the constraints that are active have a positive Lagrange
multiplier. For any link l ∈ L, the active constraints are the ones for which the sum of rates is equal to
capacity.
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Proof We prove the theorem by contradiction. Assume that there exists rl ∈ Φ(l) such that γrl
> 0

and xrl,i
(p(rl,i)) 6= maxr′∈Rl,i

xr′(p(r′, γ)) for some i ∈ M . Then there exists an r ∈ Rl,i such that
xr(p(r, γ)) = maxr′∈Rl,i,γ xr′(p(r′, γ)). Since γrl

> 0, this implies by equation (3.3) that
∑

m∈M

xrl,m
(p(rl,m, γ)) = cl.

Then ∑

m∈{M−{i}}
xrl,m

(p(rl,m, γ)) + xr(p(r, γ)) > cl (3.9)

and since
(
rl,1, . . . , rl,i−1, r, rl,i+1, . . . , rl,|M |

) ∈ Φ(l), (3.9) contradicts (3.1).

To proceed further we need to define the concepts “subtree” and of the “splitting tree”, as well as
related terminology.

Definition 1 Let m ∈ M be a multicast tree and r ∈ R̂m. Let j be the branch satisfying r = r(j). The
set of links of branch j together with the set of links and nodes downstream of branch j on multicast tree
m will be called a subtree of m and it will be denoted by Tj,m. Branch j will be called the root branch of
this subtree, while r will be called the root node of this subtree. A subtree is proper if there exists a link
which is part of the multicast tree but which is not part of the subtree.

Note that a subtree is a set of links and nodes. Branches of the multicast tree m, which have the
links be elements of Tj,m, are subsets of Tj,m.

Definition 2 Let γ be the Lagrange multipliers of Problem Max 2 at an optimal solution. For any
m ∈ M and r ∈ Rm, we define receiver r’s splitting tree to be the set of links and nodes denoted by
Tr(γ). Tr(γ) is the largest multicast subtree of which r is a member and on which the rate demanded by
r is greater than or equal to the rate on any of the branches of this multicast subtree.

We make the observation that for any multicast tree m ∈ M and any receiver r ∈ Rm, the splitting
tree of r is a function of the rate demanded by the users of the multicast tree m, and by (3.6) the rate
demanded by the users is a function of γ.

The following terminology is related to the concept of a splitting tree, and is needed for future proofs.

Definition 3 We define the level of a receiver node to be 0. We define the level of a junction node j to
be one plus the level of the highest level junction node downstream of j.

Definition 4 We define the level of the user i splitting tree (denoted by `(Ti(γ))), to be the level of the
root node of Ti(γ) .

The concept of a splitting tree is needed later in the computation of the optimal receiver prices. In
Properties 2, 3 and 4 we show that only the links of a receiver’s splitting tree contribute to the receiver’s
service price.

Let the set of links of Tr(γ) be denoted by Lr(γ) , L ∩ Tr(γ), and the set of receivers of Tr(γ) be
denoted by Rr(γ) , R ∩ Tr(γ), and let Rr(γ) , {h ∈ Rr(γ) : xh(p(h, γ)) = xr(p(r, γ))}. We denote by
Lr(γ) the set of links on the splitting tree Tr(γ) on which the rate allocated is equal to xr(p(r, γ)). We
illustrate the above concepts with the following example:
Example 1. Consider Figure 2.

For nodes 8 and 9 we have: the splitting trees T8(γ) = T9(γ) = {6,8,9, l6, l8, l9}, which have level
2 and root node 3. Also L8(γ) = L8(γ) = L9(γ) = L9(γ) = {l6, l8, l9}, and R8(γ) = R8(γ) = R9(γ) =
R9(γ) = {8,9}.

For node 7 we have: the splitting tree T7(γ) = {7, l7} which have level 2 and root node 3. Also
L7(γ) = L7(γ) = {l7}, and R7(γ) = R7(γ) = {7}.

For node 5 we have: the splitting tree T5(γ) = {3,5,6,7,8,9, l3, l5, l6, l7, l8, l9} which have level 3 and
root node 1. Also L5(γ) = {l3, l5, l6, l7, l8, l9}, L5(γ) = {l3, l5}, R5(γ) = {5,7,8,9}, and R5(γ) = {5}.

For node 4 we have: the splitting tree T4(γ) = {4, l4} which have level 3 and root node 1. Also
L4(γ) = L4(γ) = {l4}, and R4(γ) = R4(γ) = {4}.

For node 2 we have: the splitting tree T2(γ) = {1,2,3,4,5,6,7,8,9, l1, l2, l3, l4, l5, l6, l7, l8, l9}. Also
L2(γ) = {l1, l2, l3, l4, l5, l6, l7, l8, l9}, L2(γ) = {l1, l2}, R2(γ) = {1,2,3,4,5,6,7,8,9}, and R2(γ) = {2}.
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Fig. 2 A picture of a multicast tree.

¤

We define

λl ,
∑

rl∈Φ(l)

γrl
∀ l ∈ L. (3.10)

The intuition behind this definition is that at the optimal solution of Problem Max 2, λl represents
the price per unit of rate at link l ∈ L and it equals the sum of shadow prices of all the users using link
l.

Property 2 For m ∈ M and any r ∈ Rm,
∑

l∈Lr(γ)

λl =
∑

h∈Rr(γ)

p(h, γ). (3.11)

In words, this theorem says that the sum of service prices over all the users of a splitting tree is equal
to the sum of prices per unit of rate over all the links of the splitting tree.

Proof We have the following set of equalities:

∑

l∈Lr(γ)

λl =
∑

l∈Lr(γ)

∑

rl∈Φ(l)

γrl
(3.12)

=
∑

h∈Rr(γ)

∑

l∈Lh

∑

rl∈Φ(l,h)

γrl
(3.13)

=
∑

h∈Rr(γ)

p(h, γ). (3.14)

We first note that equation (3.12) follows from (3.10) while equation (3.14) follows from (3.7). To
establish equation (3.13) we note that the left hand side is equal to the sum of the shadow prices on the
links of the splitting tree of r while the right hand side is equal to the sum of the shadow prices on the
links of the splitting tree or r plus shadow prices upstream of the splitting tree of r which by Property
1 have value equal to zero.

Property 3 For any m ∈ M and any r ∈ Rm,
∑

l∈Lr(γ)

λl =
∑

h∈Rr(γ)

p(h, γ). (3.15)

This property establishes the fact that on any splitting tree, the service prices of the receivers de-
manding the maximal service are determined from the link prices of the links with the maximal rate
demand.
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Proof Using Property 2 we get the following equalities:

∑

l∈Lr(γ)

λl +
∑

l′∈{Lr(γ)−Lr(γ)}
λl′ =

∑

l∈Lr(γ)

λl

=
∑

h∈Rr(γ)

p(h, γ)

=
∑

h∈Rr(γ)

p(h, γ) +
∑

h′∈{Rr(γ)−Rr(γ)}
p(h′, γ) (3.16)

First we note that:

∑

h∈{Rr(γ)−Rr(γ)}
p(h, γ) =

∑

h∈{Rr(γ)−Rr(γ)}

∑

l∈Lh

∑

rl∈Φ(l,h)

γrl

≤
∑

l∈{Lr(γ)−Lr(γ)}

∑

rl∈Φ(l)

γrl

=
∑

l∈{Lr(γ)−Lr(γ)}
λl. (3.17)

Since all the Lagrange multipliers for any h ∈ {Rr(γ) −Rr(γ)} are 0 on all the links l /∈ {Lr(γ) −
Lr(γ)}, the inequality in equation (3.17) comes from the fact that the left hand side is a sum of Lagrange
multipliers over the links that do not demand the maximum rate, while the right hand side is the sum
of all the Lagrange multipliers over the links that do not demand maximum rate.

We also note that:

∑

h∈Rr(γ)

p(h, γ) =
∑

h∈Rr(γ)

∑

l∈Lh

∑

rl∈Φ(l,h)

γrl

≤
∑

l∈Lr(γ)

∑

rl∈Φ(l)

γrl

=
∑

l∈Lr(γ)

λl (3.18)

Since for any h ∈ Rr(γ) all the Lagrange multipliers are over links in Lr(γ), the inequality in equation
(3.18) comes from the fact that the left hand side is a sum of Lagrange multipliers over the links that
demand the maximum rate, while the right hand side is the sum of all the Lagrange multipliers over the
links that demand maximum rate.

Combining equations (3.16), (3.17) and (3.18) we get
∑

l∈Lr(γ) λl =
∑

h∈Rr(γ) p(h, γ).

The following property shows that the sum of the service prices of the receivers on a particular
subtree Tj,m, m ∈ M and j ∈ J̃m, is equal to the sum of all the link prices on Tj,m plus the price incurred
upstream from Tj,m by the receivers with maximal demand.

Property 4 For any m ∈ M and j ∈ J̃m there exists r ∈ Rm ∩ Tj,m such that j ⊂ Tr(λ), then
∑

h∈Rm∩Tj,m

p(h, γ) =
∑

l∈Tj,m∩L

λl +
∑

h∈Rr(λ)∩Tj,m

∑

l′∈{Tr(γ)∩Lr}−{Tj,m∩L}

∑

k∈Φ(l′,h)

γk (3.19)

Proof We have:
∑

h∈Rm∩Tj,m

p(h, γ) =
∑

h∈Rm∩Tj,m

∑

l∈Lh

∑

rl∈Φ(l,h)

γrh
(3.20)
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∑

h∈Rm∩Tj,m

∑

l∈Lh

∑

rl∈Φ(l,h)

γrh
=

∑

h∈Rm∩Tj,m

∑

l∈Tj,m∩L

∑

rl∈Φ(l,h)

γrl

+
∑

h∈Rr(λ)∩Tj,m

∑

l′∈{Tr(γ)∩Lr}−{Tj,m∩L}

∑

k∈Φ(l′,h)

γk (3.21)

=
∑

l∈Tj,m∩L

λl +
∑

h∈Rr(λ)∩Tj,m

∑

l′∈{Tr(γ)∩Lr}−{Tj,m∩L}

∑

k∈Φ(l′,h)

γk (3.22)

where (3.20) follows from (3.7), (3.21) follows from the fact that all the constraints for the links in Tj,m

contain a user from Rm∩Tj,m and the fact that only the users in Rr(λ) have non-zero Lagrange multiplier
for the constraints on the links upstream from branch j, while (3.22) follows from (3.10).

The following two properties give us properties of the optimal service prices.

Property 5

1. Given any multicast tree m ∈ M and for any link l ∈ Lm, λl can be split into shares ϕl,r ,∑
rl∈Φ(l,r) γrl

among all r ∈ Rl,m, where the rate demanded by r is equal to the rate on link l.
2. For any r ∈ Rm, the optimal service price is equal to

∑
l∈Lr

ϕl,r.

Property 5 says that at an optimal solution of Problem Max 1, the price per unit of rate of each
user r ∈ R is equal to the sum of shares of the link prices {λl}l∈L over the links used by this user. The
share of the link price on each link l ∈ L for user r is equal to the sum of Lagrange multipliers at link l
which involve user r.

Proof Part 1 follows from equation (3.10) and Property 1. Part 2 follows from (3.7).

Property 6 Given fixed λ, the computation according to Property 5 of the optimal service prices on any
multicast tree m ∈ M is independent of the demands requested by the users of other multicast trees.

Proof By assumption, a service to a user r is provided along a single multicast tree, say m. From Equation
(3.8) the optimal service rate for the user is a function of the price p(r, γ) defined by (3.7). By Property
5, p(r, γ) is determined solely by the price shares user r pays along the links of m.

In conclusion, the main contribution of this section is the presentation of an extensive set of properties
which relate the prices per unit of rate on each link and the price per unit of service at an optimal solution
of Problem Max 1. The notion of splitting tree proved to be crucial in deriving this properties. The
results of this section were derived under the assumption that the information is centralized. Within
the context of the multicast problem these results are vital in the development of resource allocation
algorithms that satisfy the informational constraints imposes by the nature of the multicast problem, and
converge to the solution of Problem Max 1. Specifically, Properties 5 and 6 motivate the development
of an algorithm (cf. Section 4) that computes the optimal service price for each user along any multicast
tree given a fixed set of prices per unit of rate at each link. Furthermore, Properties 1-4 are useful in
proving properties of link price updates; these properties play a key role in the proof of convergence of
the market mechanism proposed in Part II of this work.

We would also like to remark that all the properties developed in this section can be derived without
assuming that user utility functions are differentiable. This can be achieved by replacing the derivative
of Ur in equation (3.5) with the subgradient of Ur.

4 A Price Splitting Algorithm

In Section 3 we showed that at an optimal solution of Problem Max 1 the shadow prices generate a
set of optimal link prices and service prices, which are related by the result of Property 5. In this section
we present an algorithm, which we call “price splitting algorithm”, that computes along each multicast
tree the price per unit of service for each user given the set of prices per unit of rate at each link.
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For the rest of the section we fix λ := {λl : l ∈ L} to be the set of prices per unit of rate on the links1.
According to Property 5, for each given multicast group it is optimal2 to split the cost incurred on each
branch among the users using the maximum rate on that branch. Since the link prices seen by different
multicast trees are going to be the same, and because of Property 6, the algorithm on each multicast
group can run independently of the other multicast groups. Thus, we will describe how the algorithm
works on a single multicast group m ∈ M .

We proceed as follows: In Section 4.1 we illustrate the idea of how to split the price on a branch which
is common to two users. In Section 4.2 we give a detailed example of how the algorithm works in a tree
of level grater than one, and explain how the cost incurred on one branch can be split among multiple
children. In Section 4.3 we present a high level description of the algorithm for a general network. The
formal description of the algorithm and the proof of its convergence are presented in Appendices A and
B, respectively.

In the following examples, the message passing between the users and the network is done over the
multicast tree by using intermediate nodes as relays. Note that this does not have to be the case. As
long as users have a way of communicating with the network, the same algorithm can be used by the
network in order to compute the service prices.

4.1 Example of two users with one link in common

Fig. 3 Two users sharing link 3.

Consider a tree consisting of 3 links as in Figure 3. The prices per unit of rate on links 1,2,3 are
λ1, λ2, λ3 respectively. The optimal sharing of the price λ3 is determined by the following algorithm:

1. Set α(1) = 1/2, n = 1 and assume w.l.o.g. that x1(λ1) ≥ x2(λ2).
2. If x1(λ1 + λ3) ≥ x2(λ2) stop; the prices per unit of rate for user 1 and 2 are λ1 + λ3, λ2, respectively.

If x1(λ1 + λ3) ≤ x2(λ2) then proceed with the following recursion.
3. Compute x1(λ1 + α(n) × λ3) and compare it to x2(λ2 + (1− α(n))× λ3).
4. (a) If x1(λ1 +α(n)λ3) = x2(λ2 +(1−α(n))λ3) stop; α(n)λ3 and (1−α(n))λ3 provide the optimal price

sharing of the price λ3 for users 1 and 2, respectively.
(b) If x1(λ1 + α(n)λ3) > x2(λ2 + (1− α(n))λ3) set α(n+1) = α(n) + 1

2n+1 .
(c) If x1(λ1 + α(n)λ3) < x2(λ2 + (1− α(n))λ3) set α(n+1) = α(n) − 1

2n+1 .
5. Increment n and return to step 3.
1 Note that we do not assume that λ is generated from a set of shadow prices which corresponds to an optimal

solution of Problem Max 2.
2 Given a set of fixed link prices λ, by an optimal splitting of λ we want to find a set of price shares γ’s and

service prices p(r, γ) which generate user demands xr(p(r, γ)) , argmaxx Ur(x)− p(r, γ)×x having the following
properties: (i) For any m ∈ M ,

P
l∈Lm

maxr∈Rl,m xr × λl =
P

r∈Rm
xr(p(r, γ)) × p(r, γ); and (ii) the sum of

user’s utility functions given xr(p(r, γ)) is maximized. We note that although the analysis in Section 3 was done
at an optimal solution of Problem Max 2, the proofs of Properties 2 - 6 hold for optimal splitting of arbitrary
link prices.

10



We prove that this algorithm determines the optimal sharing of the price λ3. Note that there are two
cases:

Case 1: If x1(λ1) ≥ x2(λ2) and x1(λ1 + λ3) ≥ x2(λ2) then the optimal price sharing is the following:
user 1 pays for both the links it uses, i.e. links 1 and 3; user 2 is charged only the price of link 2.

Case 2: If x1(λ1) ≥ x2(λ2) but x1(λ1 + λ3) ≤ x2(λ2) then users 1 and 2 have to split the price of link
3. We show that the algorithm determines as n →∞, the share of λ3 that receiver 1 will have to pay.

The result for Case 1 follows directly from Property 5.
For Case 2 we first note that both x1 and x2 are assumed to be continuous, strictly monotonically

decreasing functions (i.e. the demand for rate decreases monotonically in price). This implies that g(α) ,
x1(λ1 + αλ3) − x2(λ2 + (1 − α)λ3) is a continuous, strictly monotonically decreasing function of α. By
the Intermediate Value Theorem, since g(0) > 0 and g(1) < 0, there exists a 0 < α < 1 for which user’s
1 demand equal user’s 2 demand. Also by the strict monotonicity property of g, α is unique. We prove
that by the construction of the algorithm the sequence {α(n)}n∈N converges to α as n →∞.

The proof of this result follows by contradiction. Assume that α(n) −−−−→
n→∞

β 6= α. Note that at each

iteration the algorithm determines the value of the kth digit of β written in binary expansion. Let k be
the first digit (in the binary expansion) for which α and β differ. If the kth digit of β is 1, then the kth

digit of α is 0, implying that g(α(k)) < 0. In this case, at kth iteration of the algorithm, α(k) is assigned
value 0 for the kth digit, which implies that the kth digit of β is 0, a contradiction. On the other hand,
assume that the kth digit of β is 0, then the kth digit of α is 1, implying that g(α(k)) > 0. In this case,
at the kth iteration of the algorithm, α(k) is assigned value 1 for the kth digit, which implies that the kth

digit of β is 1, a contradiction. So α and β are equal since their binary expansion is the same. ut
Remark 1 The sequence of {α(n)} generated by the above process is a convergent dyadic sequence with
some limit α̇. α̇ has the property that x1(λ1 + α̇λ3) = x2(λ2 +(1− α̇)λ3), and the distance between α(n)

and α̇ is at most 1
2n .

4.2 A two level example

In this section we present via an example of a generalization of the algorithm developed in Section
4.1. In the example presented below each junction node has two children nodes. After the completion of
the example we describe a procedure which reduces the case where some junction nodes have more then
two children nodes to the one where each junction node has precisely two children nodes.

Fig. 4 A more complex example of a multi-rate multicast tree.

Consider a tree consisting of 5 links as in Figure 4. In this case the price splitting algorithm proceeds
as follows:

Algorithm of node i=1,2,4:

11



1. Wait for Reset from parent. Upon reception go to 2.
2. For node 1,2,4, upon receiving a Reset from parent with a price p, return a demand interval [xi(p), xi(p)],

where xi(p) is the demand of node i for price p, i = 1, 2, 4. Go to step 1.

Algorithm of node i=3:

Let D
(n)
3 denote the demand interval of node 3 at iteration n; denote by p

(n)
1 , p

(n)
2 the prices node 3

sends to nodes 1 and 2, respectively, at iteration n.
The algorithm at node 3 proceeds as follows: Upon receiving a Reset from node 5 with price p start

the initial stage.

Initial stage.

1. Send a Reset to nodes 1 and 2 with prices p
(0)
1 = λ1, p

(0)
2 = λ2 respectively.

2. Node 1 returns the demand interval [x1(p
(0)
1 ), x1(p

(0)
1 )].

Node 2 returns the demand interval [x2(p
(0)
2 ), x2(p

(0)
2 )].

3. Compare x1(p
(0)
1 ) with x2(p

(0)
2 ). Assume without loss of generality (w.l.o.g.) that x1(p

(0)
1 ) ≥ x2(p

(0)
2 ).

The algorithm proceeds in the same way (with obvious modifications) if the opposite inequality is
true.

4. Set p
(1)
1 = λ1 + p, p

(1)
2 = p

(0)
2 = λ2.

5. Send a Reset to nodes 1 and 2 with prices p
(1)
1 , p

(1)
2 respectively. Wait for the demand intervals from

nodes 1 and 2.
(a) If x1(p

(1)
1 ) ≥ x2(p

(1)
2 ), send the interval [x1(p

(1)
1 ), x1(p

(1)
1 )] to node 5 and stop.

(b) If x1(p
(1)
1 ) < x2(p

(1)
2 ) set

p
(2)
1 = p

(1)
1 − 1

2p

p
(2)
2 = p

(1)
2 + 1

2p,
and send the interval [x1(p

(1)
1 ), x2(p

(1)
2 )] to node 5.

Stage n.

1. Send a Reset to nodes 1 and 2 with prices p
(n)
1 , p

(n)
2 respectively.

2. Node 1 returns the demand interval [x1(p
(n)
1 ), x1(p

(n)
1 )].

Node 2 returns the demand interval [x2(p
(n)
2 ), x2(p

(n)
2 )].

3. Compare x1(p
(n)
1 ) with x2(p

(n)
2 ).

(a) If x1(p
(n)
1 ) = x2(p

(n)
2 ) send the demand interval [x1(p

(n)
1 ), x1(p

(n)
1 )] to node 5 and stop.

(b) If x1(p
(n)
1 ) > x2(p

(n)
2 ) set

p
(n+1)
1 = p

(n)
1 + 1

2n p

p
(n+1)
2 = p

(n)
2 − 1

2n p,
send the interval [x2(p

(n)
2 ), x1(p

(n)
1 )] to node 5, and go to Step 1 of Stage n+1.

(c) If x1(p
(n)
1 ) < x2(p

(n)
2 ) set

p
(n+1)
1 = p

(n)
1 − 1

2n p

p
(n+1)
2 = p

(n)
2 + 1

2n p,
send the interval [x1(p1)(n), x2(p

(n)
2 )] to node 5, and go to Step 1 of Stage n+1.

Algorithm of node i=5:

Let D
(n)
5 denote the demand interval of node 5 at iteration n; denote by p

(n)
3 , p

(n)
4 the prices node 5

sends to nodes 3 and 4, respectively at iteration n.
The algorithm at node 5 proceeds as follows:

Upon receiving a Reset from source node with price λ5 start the initial stage.

Initial stage.

1. Send a Reset to nodes 3 and 4 with prices p
(0)
3 = λ3, p

(0)
4 = λ4, respectively.
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2. Node 3 starts returning3 demand intervals of form [x3(p
(0)
3 ), x3(p

(0)
3 )]4.

Node 4 returns the demand interval [x4(p
(0)
4 ), x4(p

(0)
4 )].

3. Wait until x4(p
(0)
4 ) /∈ [x3(p

(0)
3 ), x3(p

(0)
3 )] 5.

4. If x3(p
(0)
3 ) ≥ x4(p

(0)
4 ) then:

(a) Set p
(1)
3 = λ3 + λ5, p

(1)
4 = p

(0)
4 = λ4.

(b) Send a Reset to nodes 3 and 4 with prices p
(1)
3 , p

(1)
4 respectively. Wait for the demand intervals

from nodes 3 and 4.
i. If x3(p

(1)
3 ) ≥ x4(p

(1)
4 ), send the interval [x3(p

(1)
3 ), x3(p

(1)
3 )], and every subsequent demand

interval received from node 3, upstream to the source node. Stop the algorithm at this node.
ii. If x3(p

(1)
3 ) < x4(p

(1)
4 ), set

p
(2)
3 = p

(1)
3 − 1

2λ5

p
(2)
4 = p

(1)
4 + 1

2λ5,
and send the interval [x3(p

(1)
3 ), x4(p

(1)
4 )] to the source node. Go to stage 2 of the algorithm.

5. If x4(p
(0)
4 ) ≥ x3(p

(0)
3 ) then:

(a) Set p
(1)
3 = p

(0)
3 = λ3, p

(1)
4 = p

(0)
4 + λ5.

(b) Send a Reset to nodes 3 and 4 with prices p
(1)
3 , p

(1)
4 respectively. Wait for the demand intervals

from node 3 and 4.
i. If x4(p

(1)
4 ) ≥ x3(p

(1)
3 ), send the interval [x4(p

(1)
4 ), x4(p

(1)
4 )] upstream to the source node, and

stop the algorithm at this node.
ii. If x4(p

(1)
4 ) < x3(p

(1)
3 ), set

p
(2)
3 = p

(1)
3 + 1

2λ5

p
(2)
4 = p

(1)
4 − 1

2λ5,
send the interval [x4(p

(1)
4 ), x3(p

(1)
3 )] to the source node. Go to stage 2 of the algorithm.

Stage n.

1. Send a Reset to nodes 3 and 4 with prices p
(n)
3 , p

(n)
4 , respectively.

2. Node 3 starts returning demand intervals of form [x3(p
(n)
3 ), x3(p

(n)
3 )].

Node 4 returns the demand interval [x4(p
(n)
4 ), x4(p

(n)
4 )].

3. Wait until x4(p
(n)
4 ) /∈ [x3(p

(n)
3 ), x3(p

(n)
3 )].

(a) If x4(p
(1)
4 ) = x3(p

(n)
3 ) = x3(p

(1)
3 ), send the interval [x4(p

(1)
4 ), x4(p

(1)
4 )] to the source node and stop

the process at this node.
(b) If x3(p

(n)
3 ) > x4(p

(n)
4 ) set

p
(n+1)
3 = p

(n)
3 + 1

2n λ5

p
(n+1)
4 = p

(n)
4 − 1

2n λ5,
send the interval [x4(p

(n)
4 ), x3(p

(n)
3 )] to the source node, and go to Step 1 of Stage n+1.

(c) If x3(p
(n)
3 ) < x4(p

(n)
4 ) set

p
(n+3)
3 = p

(n)
3 − 1

2n λ5

p
(n+1)
4 = p

(n)
4 + 1

2n λ5,
send the interval [x3(p3)(n), x4(p

(n)
4 )] to the source node, and go to Step 1 of Stage n+1.

Algorithm of the source node:

1. The source node will send a Reset to node 5 with price λ5. This Reset will start the algorithm.

In the example presented in this section every junction node has two children. The case where some
junction nodes have more then two children can be reduced to the one where each junction node has

3 At node 3 there is an optimization process running at the same time with the one at node 5. Node 3 will
continuously be sending demand intervals to node 5. These demand intervals have the property that they are
nested into one another and decreasing in size.

4 Note that in this case this interval may not be just a singleton, i.e. x3(p
(0)
3 ) < x3(p

(0)
3 )

5 If the demand of node 4 is in all the demand intervals of node 3, then the optimal demand of node 4 equal
to the optimal demand of node 3. In this case we have reached the optimal price split.
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exactly two children. The reduction is based on the following observation: For a given set of link prices per
unit of rate, links that have infinite capacity and zero price per unit of rate can be added to or removed
from the multicast tree without altering the problem of price sharing along the tree. For example, if in
the system of Figure 4 the price per unit of rate on link 3 (i.e. λ3) is zero and link 3’s capacity is infinite,
then link 3 can be removed, links 1, 2 and 4 can be connected to link 5, and the price per unit of service
for each user in the new multicast tree is the same as in the original tree. The reason for this equivalence
is the following. By Property 5, the optimal service price for each receiver node is equal to the sum of the
shares of the shadow prices of the constraints that are active in Problem Max 2. Therefore, by removing
all links that have zero price per unit of rate, the service price will remain the same for all users (and
this in turn implies that the rate demanded by each user will remain the same).

The above observation has the following general implication. Suppose there is a junction node i
that has k > 2 children j1, j2, . . . , jk. Introduce intermediate nodes i1 and i2 such that i, i1 are linked
together by a link that has infinite capacity and zero price per unit of rate, and the same is true for the
link connection i and i2. We call such links intermediate links. Link half of the children of i to node i1
and the other half to node i2. By repeating the above process and introducing intermediate nodes one
can end up with a multicast tree where each junction node has exactly two children. As a result of this
construction, only the links connected to the original children j1, j2, . . . , jk have a non-zero price per unit
of rate. In the rest of the section we shall assume that each junction node has exactly two children.

4.3 Price-Splitting Algorithm Description

To determine the optimal service price6 for each user, given a fixed link price, the algorithm requires
that each node communicate with its parent and children. The downstream communication (i.e. the
communication from the source to the users) will consist of a Reset packet/signal to which a price is
appended, while the upstream communication (i.e. the communication from the users to the source) will
consist of a demand interval. In the rest of Section 4.3 we explain qualitatively how the algorithm works.
A formal description of the price-splitting algorithm appears in Appendix A.

Initiation step: The algorithm begins with the source node sending a Reset signal downstream the
multicast tree. The price attached to each Reset sent on any branch of the multicast tree is the price per
unit of rate on that branch. Upon receiving a Reset signal each junction node saves the price per unit of
rate of the branch corresponding to it, and sends a Reset to its children.

Iterative step: When a receiver node receives a Reset signal with a price p from its parent, it
computes its demand, given price p, and sends this demand upstream to its parent node.

Since each junction node has two children, and each one of them may be demanding a different rate,
the junction node sends its demand request to its parent node in the form of a demand interval. The
demand interval of a junction node at a particular stage in the process is generated as follows: The lower
bound of the demand interval is equal to the minimum of the lower bounds of its childrens’ demand
intervals, while the upper bound of the demand interval is equal to the maximum of the upper bounds
of its childrens’ demand intervals. Note that upon the arrival of a new demand interval from one of
its children, a junction node’s demand interval may change, in which case the new demand interval is
transmitted upstream to the parent. For consistency we consider the demand requested by a receiver
node as a demand interval formed by a singleton.

The goal of each junction node i ∈ R̂m is to decide how to split the upstream cost incurred by the
receivers of tree Ti,m based on the demand intervals received from its children nodes. This is done by
splitting the price per unit of rate attached to the Reset signal received by node i, among the children
of i. The way that this price is split proceeds as follows.

Step 1: Junction node i receives from its parent node a Reset signal with a price p; this price has to be
split among the children of Ti,m.

Step 2: Node i sends a Reset to each child node containing the price of the child’s branch.
Step 3: Upon receiving demand intervals from each child, node i waits until one of two events occur:

3.1 The demand interval of one child, say j, is larger then the demand interval of the other child.
3.2 The demand intervals of the two children of i are overlapping, and are arbitrarily small.

6 By the optimal set service prices given a set of link prices we mean the set of service prices generated from
the set of link prices which generate demands which maximize the sum of the user utility functions.

14



Step 4:
4.1 If 3.1 is true, node i sends a Reset signal to node j. The price of this Reset signal is equal to

the price p plus the price of the branch associated with node j.
4.2 If 3.2 is true, node i chooses one of the two nodes at random, say node k, and sends to k a new

Reset signal. The price of this Reset is equal to the price p plus the price of the branch associated
with node k.

Step 5:
5.1 If 4.1 is true, node i determines how price p shall be split among its children nodes as follows:

Node i receives a new demand interval from node j. As proved in Section B, this demand interval
decreases with time in a nested fashion. Node i waits until j′s demand interval becomes disjoint
from the other child’s demand interval. If the demand interval of j is larger then that of the other
child of i, j will incur the whole price p, otherwise the two children of i will share the price p.7

5.2 If 4.2 is true, node i determines how price p shall be split among its children nodes as follows:
Node i receives a new demand interval from node k. As proved in Section B, this demand interval
decreases with time in a nested fashion. Node i waits until k′s demand interval becomes disjoint
from the other child’s demand interval. If the demand interval of k is larger then that of the other
child of i, k will incur the whole price p, otherwise the two children of i will share the price p.7

Step 6: Based on 5, junction node i knows if price p is incurred fully by one of its children or it is
to be split in some ratio (that has to be determined) between its two children. If the price is to be
split among its children, junction node i determines the optimal price share by a procedure which is
formally presented in Appendix A.

In Appendix A we present a formal description of the above price splitting algorithm. We prove the
following properties of the algorithm in Appendix B and C respectively:

Theorem 1 The price splitting algorithm determines asymptotically the optimal service prices given a
fixed price per unit of rate on each link.

Theorem 2 Let λ := {λl, l ∈ L} be a set of link prices and xi(p(λ)), i = 1, 2, . . . , N be the user demands
corresponding to p(λ) determined by Theorem 1. Define the excess demand at link l for given λ by:

zl(λ) ,
∑

m∈M

max
r∈Rl,m

xr(p(r, λ))− cl. (4.1)

For any l ∈ L for which zl(λ) 6= 0, the price splitting algorithm determines the sign of the excess
demand function zl(λ) in a finite number of iterations.

The results of Theorems 1 and 2 are key in the development of the market based mechanism, presented
in Part II of this paper, which solves Problem Max 1.

As before, the above price splitting algorithm can be implemented for both a flat and hierarchical
architecture. Although we have described the algorithm from the perspective of passing information
among the various nodes of the multicast trees, in our formulation the network manager can centrally
compute the user service prices by iteratively exchanging information with the users. This is due to the
fact that the network manager is assumed to have full information about the network topology, the links
forming the multicast trees, and the prices per unit of rate on all the links. This type of implementation
of the price splitting algorithm is used in Part II of the paper, where we also present numerical results.

5 Conclusion

In Part I of this two-part paper we presented a distributed algorithm which computes, for a set of
fixed link prices per unit of rate, the set of user prices per unit of service that maximizes the sum of the
users’ utilities. Thus, implicitly the algorithm determines how a link’s price is spent among the users that

7 It may happen that these two demand intervals do not become disjoint in finite time. This is the case when
both set of demand intervals converge to the same singleton. To alleviate this problem one can decide to split
the price p among the children of i when the demand intervals node’s i two children become arbitrarily small.
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use the link. This algorithm plays a key role in Part II of the paper where a decentralized market-based
mechanism, that achieves welfare-maximizing resource allocations, is developed.

The main contributions of Part I of the paper are: (1) the development of properties of an opti-
mal solution of the centralized analogue of the multirate multicast problem, (2) the specification of a
distributed algorithm which, under the price-taking assumption, solves the price-sharing problem that
arises in multirate multicast and determines the optimal service prices per unit of rate for each user,
given a set of fixed prices per unit of rate on each link.

Appendices

A Formal Setup

In Section 4.2 we introduced the notion of ”intermediate nodes”. With this notion we showed that a
general tree is equivalent to a tree where each node has at most two children.

We now describe the formal setup of the algorithm for a tree where each node has two children. The
algorithm deals with three types of nodes: (i) receiver nodes, (ii) junction nodes, (iii) source nodes. We
describe the algorithmic procedure for each type of nodes separately.

Algorithm of Receiver Node i:
On receiving a Reset with price p from the parent:

Compute the demand xi(p).
Send the demand interval Di = [xi(p), xi(p)] to parent.

Algorithm of Junction Node i:
Denote by n the iteration number.
Define Di , [bi, Bi] to be the ith node’s current demand interval,

and Di , [bi, Bi] to be the ith node’s previous demand interval.
Define Di(j) , [bj , Bj ], j ∈ Ch(i) := {j1, j2}, to be the jth node’s demand interval that

node i keeps for node j .
Define pj to be the price per unit of rate on the branch connecting nodes i and j ∈ Ch(i).

On receiving a Reset with a price p from parent the algorithm starts
Set demand interval Di = Di = [0,∞], and n = 1.
For all j ∈ Ch(i) set demand intervals Di(j) = [0,∞].
Send Reset to all children with price pj to jth child.
Wait until there exists ji ∈ Ch(i), say j1, such that Di(j1) > Di(j2)89

Send Reset to child j1 with branch price (pj1 + p).
Wait until Di(j1) ∩Di(j2) = ∅.10

While waiting for Di(j1) ∩Di(j2) = ∅.
Upon receiving a demand interval from a child, set

Di = [max{bi, min{bj1 , bj2}},min{Bi, max{Bj1 , Bj2}}.
Send Di to parent and set Di = Di.

If Di(j1) > Di(j2) go to ~.
Otherwise, the price p is split between j1 and j2.
The optimal splitting of p is achieved as follows:

Set αj1 = αj2 = 1
2 and increment n.

Send Reset to j1, j2 with prices (pj1 + αj1 × p),(pj1 + αj2 × p) respectively.
Set Di(j1) = Di(j2) = [0,∞).
Ä Wait for demands from children.

While Di(j1) ∩Di(j2) 6= ∅
Upon receiving a demand interval from a child, set

Di = [max{bi, min{bj1 , bj2}}, min{Bi, max{Bj1 , Bj2}}.
Send Di to parent and set Di = Di.

If Di(j′) > Di(j′′), where j′, j′′ ∈ {j1, j2}, then:
Set Di = [max{bi,min{bj′ , bj′′}},min{Bi, max{Bj′ , Bj′′}}.
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Send Di to parent and set Di = Di.
Set Di(j′) = Di(j′′) = [0,∞).
Add 1/2n to αj′ , subtract 1/2n from αj′′ and increment n
Send Reset to j′, j′′ with price (pj′ + αj′ × pi), (pj′ + αj′′ × pi)
respectively, and loop back to Ä.

~ The price p is incurred by node j1. While waiting for a reset
from the parent node, relay all the demand intervals received
from node j1 to parent.

Algorithm of the Source Node s:
On the start of the algorithm:

Send a Reset to its children, with the price pj to jth child, j ∈ Ch(s).

In the next section we shall prove that the algorithm converges to the optimal service price for each
user.

B Proof of Theorem 1

Prior to proving the convergence of the algorithm to optimal price sharing, we establish a few lemmas.

Lemma 1 In the algorithm, for any upstream price βi at junction node i, the value of the optimal rate
demand on branch i given βi is in all the demand intervals at node i.

Proof The assertion of Lemma 1 follows directly from the construction of the algorithm and from the
fact that utilities are strictly concave and monotonically increasing.

Lemma 2 For any upstream price βi, in the algorithm of junction node i the demand intervals are nested
and the sequence of demand intervals converges to a point. This point is the optimal rate demand given
the upstream price βi.

Proof The fact that the intervals are nested follows from construction. The fact that the sequence of
demand intervals converges to a point can be established by induction.

Basis of induction (level 1 nodes): If i is a node of level 1 then its children are receiver nodes and
their demand intervals are singletons. Since the utility functions of the users are monotonically increasing,
strictly concave, differentiable, and the price share assigned to each user is a converging dyadic sequence,
the demand interval for node i will converge to a singleton.(see Remark 1)

Induction step (level n nodes): Assume that node i has level n and for any node of level n − 1
the demand intervals converge to a point. This implies that at each iteration of the algorithm for node
i the demand intervals of the children become disjoint in finite time11. Therefore the following facts are
true: (F1) successive iterations/updates of the algorithm (for node i) occur in finite time; (F2) for each
child j of i and for any given upstream price share αj the demand interval of j converges to a point and
contains the optimal demand of j given αj ; and (F3) by the construction of the algorithm, for each child
node j of i the sequence of upstream price shares αj resulting from the algorithm’s iterations/updates
is a diadic sequence that converges to an optimal upstream price share. By strict concavity of the utility
functions and facts F1-F3 the demand intervals for node i will converge to a singleton.

8 Di(j
′) ≥ Di(j) means that ∀x ∈ Di(j

′), y ∈ Di(j) =⇒ x ≥ y.
9 This step of the algorithm determines a node j1 to see if the price p will be split or not between the two

children of i. If after some time Di(j1) ∩Di(j2) 6= ∅ for j1, j2 ∈ Ch(i) then one of the children of i is picked to
be j1. If the wrong decision is made, then the algorithm may decide to split the price between j1, j2 instead of
assigning the whole upstream cost p to one of them. In this case the algorithm will converge to a 0 price share
to the child incurring no upstream cost.
10 The intervals remain overlapped only if the optimal split of p has been achieved.
11 If the demand intervals of the children of i do not become disjoint in finite time it means that the children
have the same demand. In this case the optimal price split has been achieved, and since the demand intervals of
the children of i are decreasing to a point, by the construction of the algorithm the demand intervals of node i
decrease to a point.
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Since by Lemma 1 the optimal rate is in all demand intervals, the convergence of the demand intervals
to the optimal rate follows.

Lemma 3 Let i be a junction node upstream of receiver node j. For any ε > 0, if βi, β
′
i are two upstream

price shares at node i such that |βi − β′i| < ε, then |p∗j,βi
− p∗j,β′i | < ε where p∗j,βi

,p∗j,β′i are the optimal
service price of node j given βi, β

′
i respectively.

Proof Assume without loss of generality that βi ≥ β′i and βi − β′i < ε. We prove that for any receiver
j′ downstream of node i, if we increase the upstream price share of node i from β′i to βi then optimal
service price of j′ will also increase. That is, if p∗j′,βi

(p∗j′,β′i) is the optimal service price of receiver j′

given βi (β′i), then we will have p∗j′,βi
≥ p∗j′,β′i .

Assume by contradiction that for some j′ we have that p∗j′,βi
< p∗j′,β′i , which implies that for the

corresponding demands we will have xj′(p∗j′,βi
) > xj′(p∗j′,β′i).

Pick junction node k upstream of node j′ in the following way:

– If for the upstream price share β′i at i the optimal rate demanded by j′ is the rate through branch i,
then set k to be node i.

– Else let k be the node upstream of j′ with the property that the optimal rate on branch k given β′i is
equal to the optimal rate demanded by j′ given β′i, and is strictly less than the optimal rate on the
parent branch of k under β′i.

Denote by Lβi the set of links of branch k union the set of links downstream of node k for which the
optimal rate given βi is equal to the optimal rate on branch k given βi. Denote by Rβi the set of users
downstream of node k for which the optimal demand given βi equals the rate on branch k.

The contradiction is now established by the following inequalities:

∑

l∈Lβi

λl ≤
∑

r∈Rβi

p∗r,βi
(B.1)

Equation B.1 follows by the algorithm construction, since the price per unit of rate on any link l is
split between the users downstream of l demanding the rate of l. Furthermore,

∑

r∈Rβi

p∗r,βi
<

∑

r∈Rβi

p∗r,β′i
(B.2)

Equation B.2 is true since for any user j′′ ∈ Rβi the optimal rate of j′′ given βi is greater than or
equal to the rate of j′ given βi which is strictly greater than the rate of j′ given β′i. However, since the
rate of j′ given β′i is equal to the rate on branch k, then the rate demanded by j′′ given β′i is less than
or equal to the rate of j′ given β′i. Finally,

∑

r∈Rβi

p∗r,β′i
≤

∑

l∈Lβi

λl (B.3)

Equation B.3 follows since no price upstream of link k is split between the users of Rβi , and a share
of the prices of the links in Lβi may be assigned to users that are not in Rβi .

Combining B.1,B.2 and B.3 we achieve a contradiction to the assumption that p∗j′,βi
< p∗j′,β′i . This

gives us that the optimal service prices of users downstream of node i are monotonically increasing in
the price share upstream of node i.

By the construction of the algorithm, the sum of the service prices downstream of node i is equal
to the sum of link prices downstream of node i plus the price share upstream of node i. This implies
that the sum of the service prices downstream of i given βi is within ε of the sum of the service prices
downstream of i given β′i. Since the service prices downstream of node i are monotonic in the price share
upstream of node i, then for any j downstream of node i, optimal service prices of j given βi and β′i are
within ε of each other.

We are now going to prove that for fixed link prices the service prices generated by the price splitting
algorithm maximize the users’ total utility.
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Proof (Proof of Theorem 1)
Fix ε > 0. We show that in a finite number of steps the price seen by any receiver node j is within ε

of the optimal price.
Let junction nodes {i1, i2, . . . , in} be such that: they are all upstream of node j, the parent of node

i1 is the source node, the parent of the j is in and the parent of ik is node ik−1.
We first apply Lemma 2 to node i1. Then, in finite time the upstream price share at node i2 is within

ε
2 of the optimal upstream price share. By Lemma 3 the optimal service price of j given the upstream
price share of node i2 is, in finite time, within ε

2 of the optimal service price. Applying Lemmas 2 - 3
at node i2 we determine in finite time an upstream price share of i3, such that the optimal service price
of j given this upstream price share of i3 is within 3ε

4 of the optimal service price. Proceeding in this
manner along the tree we have that the in finite time the service price of receiver j is within ε of the
optimal service price.

Discussion

The formal description of the algorithm and its analysis were done for the case where each junction
node has exactly two children. We showed in Section 4.3 that any multicast tree can be transformed
into an equivalent tree where each node has two children. Thus, the result of Theorem 1 is valid for any
multicast tree.

C Proof of Theorem 2

We first establish the following result:

Lemma 4 Let λ be a set of link prices and m ∈ M be a multicast tree. The price splitting algorithm
determines the splitting trees of each user in m in a finite number of iterations.

Proof Let {j1, j2, . . . , jk} be the set of root branches of the splitting trees of the users in m, excluding the
branch which is connected directly to the source node. Let {ji, j

′
i} = πm(j), and define εi be the difference

between the optimal rate on j′i and ji. By the definition of a splitting tree, εi > 0 for all i ∈ {1, 2, . . . , k}.
Define ε = mini∈{1,2,...,k} εi. By Theorem 1 the service prices determined by each iteration of the price
splitting algorithm converge to the optimal service prices. Since the utility functions are assumed to be
strictly concave, Theorem 1 implies that after a finite number of iterations all the user demands generated
by the price splitting algorithm will be within ε

2 of the optimal service demands. Since for any branch j
on the multicast tree m the demands on j equal the largest user demand downstream of j, after a finite
number of iterations all the rates on all the branches of the multicast tree will be within ε

2 of the optimal
rates. This implies that for any i ∈ {1, 2, . . . , k}, after a finite number of iterations of the price splitting
algorithm, all the rates demanded on ji will be smaller then the rates demanded on j′i, which implies
that the splitting trees of m are determined after a finite number of iterations.

Using Lemma 4, we proceed to complete the proof of Theorem 2. Assume that for a given set of link
prices λ there exists l ∈ L for which |zl(λ)| = e > 0. For any m ∈ M containing l denote by l′m the root
of the smallest splitting tree of m containing l, and denote by M the number of multicast trees which
contain l. From Theorem 1 and Lemma 4 we have that for each m ∈ M after a finite number of iterations
the length of the demand interval at l′m is less then e

M . Denote such an interval by [bl′m,m, bl′m,m]. We
have the following two cases to consider:

Case 1: zl(λ) = e > 0

First we establish the following:

Fact C1 zl(λ) > 0 ⇐⇒ after a finite number of iterations
∑

m∈{m′:l∈Lm′} bl′m,m > cl.

(:=⇒) We have:
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zl(λ) =
∑

m∈M

max
r∈Rl,m

xr(p(r, λ))− cl (C.1)

>
∑

m∈{m′:l∈Lm′}
bl′m,m − cl (C.2)

>
∑

m∈{m′:l∈Lm′}
( max
r∈Rl,m

xr(p(r, λ))− e

M
)− cl (C.3)

= zl(λ)− e = 0 (C.4)

where equations (C.1) and (C.4) follow from the definition of the excess demand function, equation (C.2)
follows from Lemma 1, and equation (C.3) follows from Lemma 1 and the fact that the length of the
demand intervals considered is at most e

M .
The chain of inequalities (C.1)-(C.4) proves that given l ∈ L if zl(λ) > 0 then after a finite number of

iterations the sum over all the multicast trees of the lower bounds of the demand intervals on the roots
of the splitting trees containing l will be larger than the capacity at l. i.e.

∑

m∈{m′:l∈Lm′}
bl′m,m > cl. (C.5)

(:⇐=) To prove the sufficiency part of Fact C1 it is sufficient to show that: if zl(λ) ≤ 0 then (C.5) is
never true. Suppose that zl(λ) ≤ 0, and let {[bl′1,1, bl′1,1], [bl′2,2, bl′2,2], . . . , [bl′M,M, bl′M,M]} be any set of
demand intervals. Note that by the algorithm construction the optimal rate demand at any link l ∈ L of
the multicast tree m ∈ M is in all the demand intervals of l′m, which implies that:

∑

m∈{m′:l∈Lm′}
bl′m,m ≤

∑

m∈M

max
r∈Rl,m

xr(p(r, λ)) ≤ cl. (C.6)

Thus we have established Fact C1. Using Fact C1 and the fact that the splitting trees of all users of any
multicast tree are determined in a finite number of iterations (Lemma 4), we conclude that the assertion
of the Theorem 2 is true when zl(λ) > 0.
Case 2: zl(λ) = −e < 0

First we establish the following:

Fact C2 zl(λ) < 0 ⇐⇒ after a finite number of iterations
∑

m∈{m′:l∈Lm′} bl′m,m < cl.

(:=⇒) We have:

zl(λ) =
∑

m∈M

max
r∈Rl,m

xr(p(r, λ))− cl (C.7)

<
∑

m∈{m′:l∈Lm′}
bl′m,m − cl (C.8)

<
∑

m∈{m′:l∈Lm′}
( max
r∈Rl,m

xr(p(r, λ)) +
e

M
)− cl (C.9)

= zl(λ) + e = 0 (C.10)

where equations (C.7) and (C.10) follow from the definition of the excess demand function, equation
(C.8) follows from Lemma 1, and equation (C.9) follows from Lemma 1 and the fact that the length of
the demand intervals considered is at most e

M .
The chain of inequalities (C.7)-(C.10) proves that given l ∈ L if zl(λ) < 0 then after a finite number

of iterations the sum over all the multicast trees of the of the upper bounds of the demand intervals on
the roots of the splitting trees containing l will be larger then the capacity at l. i.e.

∑

m∈{m′:l∈Lm′}
bl′m,m < cl. (C.11)
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(:⇐=) It is sufficient to show that: if zl(λ) ≥ 0 then (C.11) is never true. Suppose that zl(λ) ≥ 0, and let
{[bl′1,1, bl′1,1], [bl′2,2, bl′2,2], . . . , [bl′M,M, bl′M,M]} be any set of demand intervals. Note that by the algorithm
construction the optimal rate demand at any link l ∈ L of the multicast tree m ∈ M is in all the demand
intervals of l′m, which implies that:

∑

m∈{m′:l∈Lm′}
bl′m,m ≥

∑

m∈M

max
r∈Rl,m

xr(p(r, λ)) ≥ cl. (C.12)

Thus we have established Fact C2. Using Fact C2 and the fact that the splitting trees of all users of any
multicast tree are determined in a finite number of iterations (Lemma 4), we conclude that the assertion
of the Theorem 2 is true when zl(λ) < 0.

¤

In the above proof we needed to determine the sign of the excess demand function on a link l from
the demand intervals at the root of the smallest splitting tree containing l. The reason for this is that if
l is not a root of a splitting tree the demand intervals at l are not nested, they vary in size over time,
and may not contain the optimal rate of link l. The root of the smallest splitting tree containing l, call
it l′, has the same optimal rate as l which is contained in all of its demand intervals (direct consequence
of Lemma 1 since the upstream price at l′ is equal to the price of the rate on l′, and it is constant). Also
the demand intervals at l′ are nested and they converge to the optimal rate (Lemma 2). Therefore, the
demand intervals at l′ can be used to determine the sign of the excess demand function at l.
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