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Optimal Bandwidth Allocation in a Delay Channel
Navid Ehsan, Member, IEEE, and Mingyan Liu, Member, IEEE

Abstract—In this paper, we consider the problem of allocating
bandwidth to two queues with arbitrary arrival processes, so as to
minimize the total expected packet holding cost over a finite or in-
finite horizon. Bandwidth is in the form of time slots in a time-divi-
sion multiple-access schedule. Allocation decisions are made based
on one-step delayed queue backlog information. In addition, the
allocation is done in batches, in that a queue can be assigned any
number of slots not exceeding the total number in a batch. We show
for a two queue system that if the holding cost as a function of the
packet backlog in the system is nondecreasing, supermodular, and
superconvex, then: 1) the value function at each slot will also satisfy
these properties; 2) the optimal policy for assigning a single slot
is of the threshold type; and 3) optimally allocating slots at a
time can be achieved by repeatedly using a policy that assigns each
slot optimally given the previous allocations. Thus, the problem of
finding the optimal allocation strategy for a batch of slots reduces
to that of optimally allocating a single slot, which is conceptually
much easier to obtain. These results are applied to the case of linear
and equal holding costs, and we also present a special case where
the above results extend to more than two queues.

Index Terms—Convexity, delayed state observation, optimal re-
source/bandwidth allocation, satellite communication, stochastic
optimal control, superconvexity, supermodularity.

I. INTRODUCTION

I N THIS PAPER, we study the problem of optimally al-
locating bandwidth (in the form of time slots in a slotted

system) to parallel queues when the channel introduces signif-
icant feedback delay. Special features of this problem include
that 1) servers/slots are assigned in batches, i.e., multiple
servers/slots may be allocated to the same queue at a time
so that multiple packets may be served from the queue and
2) the allocation decision is based on partially obsolete state
observations (queue backlogs) due to the significant delay in
the system.

This optimal bandwidth allocation problem is primarily
motivated by wireless communication systems that either have
large propagation delay (e.g., in satellite data communication),
or where resource allocation is done relatively infrequently
compared to packet transmission time, due to cost or design
constraint such as energy (e.g., under the IEEE 802.15.4 stan-
dard for low-power indoor wireless networks).
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In the case of a satellite network, users/terminals transmit-
ting to the satellite are assumed to follow a dynamic time-divi-
sion multiple-access (TDMA) schedule, each assigned a certain
number of slots within a frame that consists of a fixed number of
slots. Users inform the satellite their current backlog, carried in
packet headers, and the assignment is made based on this infor-
mation and broadcast to the users over a noninterfering channel.
An allocation specifies which slot in the upcoming frame is re-
served for/to be used by which user. Due to the long propaga-
tion delay of the satellite channel (approximately 250 ms from
ground/user to satellite and back), the allocation decision for a
particular frame is made based on the backlog information col-
lected during the previous frame, which is partially obsolete by
the time the allocation is used. This results in possible overallo-
cation or underallocation. Therefore, in this case, the allocation
policy needs to take into account unknown random arrivals that
occur in between observations/state information updates. In the
case of low-power devices sharing a common channel, similar
resource allocation problems may arise when time is divided
into active and inactive periods (with transceivers turned off to
conserve energy), and the bandwidth allocation decision for a
given active period is made based on backlog information pro-
vided during the previous active period. While the dynamics of
the above systems are similar, in this paper we will focus on the
satellite scenario to formulate our problem.

Our primary interest is in deriving allocation strategies that
allow the system to perform in the most efficient way. Specifi-
cally, we assume that backlogged packets incur a cost, and con-
sider an optimal bandwidth allocation problem with the objec-
tive of minimizing the expected total packet holding cost over a
finite or infinite time horizon.

While, in general, reducing the holding cost has the effect of
reducing packet delay, different forms of the cost function lead
to different performance criteria. Different cost functions also
lead to different optimal strategies, to be further explored in this
paper.

Resource allocation problems of similar types have been ex-
tensively studied in the literature under various scenarios. Here
we review studies most relevant to the one investigated in this
paper. In [1] and [2], the problem of parallel queues with dif-
ferent holding costs and a single server was considered, and the
simple rule was shown to be optimal. [3]–[5] considered the
server allocation problem to multiple queues with varying con-
nectivity but of the same service class (identical cost functions).
[6] further considered a similar problem but with differentiated
service classes where different queues have different holding
costs. [7], [8] studied the stability of power allocation policies.
In all of the above work, the state of the system, i.e., connectivity
and the number of packets in each queue, is precisely known
before the allocation is made. This is a major difference be-
tween the above cited work and the problem considered here.
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[9] studied the problem of routing to two parallel queues with
delayed state observation and showed that when the information
is one-step delayed the policy to join the queue with smaller ex-
pected length minimizes the total discounted sum of the number
of packets in both queues. [10] studied the problem of optimally
routing to two queues with imperfect and noisy information.
[11] studied the problem of optimal subcarrier allocation in an
orthogonal frequency-division multiplexing (OFDM) channel,
and used a model very similar to ours. However, in the case of
[11], the bandwidth is shared in the frequency-domain and the
state of the system is assumed to be perfectly observed, i.e., no
delayed information as we consider in this paper.

In [12] and [13], we have studied problems similar to the one
presented in this paper, but with simpler, linear cost assump-
tions. In [12], we derived the optimal policy when users have
the same unit holding cost and identical arrival processes, while
in [13], we investigated optimal policies for differentiated linear
holding costs in the case of a single-slot allocation and Bernoulli
arrivals. By contrast, in this paper we consider general cost func-
tions and arrival processes, and the problem of assigning a batch
of slots at a time. We will adopt and explore similar ideas to
that used in [14] and [15], where certain properties of the value
function were shown to propagate in time for specific queueing
models. In particular, we identify three conditions that charac-
terize a class of cost functions, namely, monotonicity (nonde-
creasing), supermodularity, and superconvexity (to be defined
precisely later), and show the following main results by limiting
our attention to two queues/users.

1) When allocating one slot at a time (single server scenario),
if the cost function is nondecreasing, supermodular, and
superconvex, then the value function (or cost to go) at each
time slot will also satisfy these properties. Furthermore, the
optimal policy for assigning a single slot is of the threshold
type.

2) If the cost function is nondecreasing, supermodular, and
superconvex, then the problem of optimally allocating
slots at a time reduces to sequentially allocating a single-
slot optimally. In other words, a policy that assigns each
slot optimally given the previous allocations in the batch,
is optimal in assigning the entire batch of slots.

The second is an important result, as it indicates that if the
cost function satisfies those properties, then we may limit our
attention to finding the optimal allocation strategy for a single
slot instead of for the whole batch. The former is conceptually
much easier to obtain. We will also apply the above results to
the special case of linear and equal holding cost and show an
example where the above results also extend to more than two
queues. General extension to more than two queues remains a
challenging and open problem.

The rest of this paper is organized as follows. In Section II,
we describe the general network model and formulate the cor-
responding optimization problem. In Sections III and IV, we
investigate the optimal policy of allocating a single slot and
multiple slots to two queues, respectively. In Section V, we ex-
tend our results to the infinite horizon case and examine the dis-
counted cost and average cost criteria. In Section VI, we use
these results to find the optimal policy for the special case of
linear and equal holding costs. Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Network Model and Notation

Consider queues that transmit packets to a single receiver,
competing for shares of a common channel that consists of time
slots. Packets arrive at queues according to arbitrary random
processes, and are assumed to be of equal length. One packet
transmission time occupies one time slot (i.e., transmissions
are assumed to be successful). consecutive slots constitute
a frame. The allocation of the channel is done once per frame.

may or may not be greater than , and a queue may be as-
signed any number of slots not exceeding . Alternatively, the
above model can be viewed as one, where queues are being
served by servers, and multiple packets from the same queue
are served if it is allocated multiple servers.

We consider time evolution in discrete time steps indexed by
, with each increment representing a frame length.

Frame refers to the frame defined by the interval .
In subsequent discussions, we will use terms frames, steps, and
stages interchangeably. We will also use the terms bandwidth
and slots interchangeably.

The allocation decision is made (either by the satellite or a
ground control center) based on the backlog information (i.e.,
buffer occupancy denoted by ) provided by queues at the be-
ginning of frame . We will ignore the transmission time of such
information.1 The decision (denoted by ) is then broadcast
to all queues over a noninterfering channel, and received by the
queues at the end of frame , due to propagation delay, in time
to be used for the next frame . The same procedure then re-
peats till , the time horizon, resulting in a one-step delay
in state observation, as shown in Fig. 1. Note that in this sce-
nario during the first frame queues do not have allocated slots
and only start transmitting in the second frame (starting ).

Below, we summarize key notations used in subsequent sec-
tions. In general, bold face letters and normal letters represent
vectors and scalars, respectively.

Let be the backlog of queue/user at the beginning of
frame (more precisely, this is the backlog of queue at time
instant ). Denote by the vector .

: Allocation (in number of slots) for
each queue to be used for packet transmission during the th
frame (in the interval ).

: Random arrivals during to
each queue.

: The joint probability mass function for having ar-
rivals between .

For any scalar define if and 0
otherwise. For a vector , we define the same way
componentwise. For two vectors and , by , we mean
that the inequality holds component by component.

: The part of the queue backlog at time
that is precisely known to the controller at time . Given the

backlog at , , and the past allocation for the period
, , this quantity is the amount of packets that are

1This does not affect our analysis since one can always increase the frame
length with dedicated fixed number of slots at the beginning for the transmission
of such information.
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Fig. 1. Bandwidth allocation dynamics.

for sure in the queue, not including the random arrivals that oc-
curred during . It is either zero (when the previous al-
location is sufficient or more) or positive (when the previous
allocation is not sufficient). We will also refer to this quantity as
the deterministic part of the queue.

: The th N-dimensional unit vector.
For a function defined on , let , defined on , be

. This definition will prove to be helpful since
we do not need to be concerned with boundary conditions for
when using .

Our objective is to find an allocation policy that minimizes
the following cost function:

(1)

where and is the (potentially time-dependent)
cost function.

We summarize important assumptions adopted by this paper.
1) We will consider a system with only two users, i.e., .

The extension of our results to more than two users remains
an open problem and is out of the scope of this paper. Such
results exist with stronger assumptions on the cost func-
tion, and we will present an example in Section VI.

2) We assume that each user has an infinite buffer size,
Without this assumption we need to introduce penalty
for packet dropping/blocking, which makes the problem
drastically different.

3) We assume that the arrivals are independent of the queue
size and the allocation policy.

4) We assume that if the number of allocated slots for a user
is greater than its buffer occupancy at the beginning of a
frame, the newly arrived packets during that frame cannot
be transmitted using the extra slots.2

5) Finally, we assume that the controller recalls at least the
latest allocation it has made. Note, however, that due to the
Markovian nature of the problem, memory more than the

2This is because the exact arrival times of the packets in a frame are random,
thus whether an extra slot could be used for a new arrival or not depends on the
position of the allocated slot (e.g., the first slot or the last slot of the M slots in
the frame) and the arrival time of the packet.

latest allocation will not make any difference to the optimal
allocation strategy.3

B. Problem Formulation and Preliminaries

We will use , the deterministic portion
of the queue, as the system state at time , as it completely deter-
mines the system transition. Subsequently, when we say a queue
is empty (nonempty), we are referring to this quantity. Note that
the actual queue size at time is .

Define , where
for some function .

Define the cost-to-go at time as follows:

can be obtained via the following dynamic program
[16], [17]:

(2)

For the rest of this paper, we further assume that the joint
pmf of the arrival processes does not change with time, and that
the cost function is also time invariant. Thus, we have

, , . These two assumptions are for the
simplicity of notation and as will be discussed at the end of
Section III can be easily relaxed. Note that by these two assump-
tions, we have for all .

We will also use the notation defined as

(3)

Definition 1: For some function , define the
operator to be .

3The expected cost occurred after time t conditioned on the latest allocation,
w and buffer occupancy b is independent of arrivals that occurred before
frame t, and independent of the allocations made before t.
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If represents the value function at state , then rep-
resents the minimum between assigning one slot to user 1 and
user 2, whereas is the minimum among all possible ways
of dividing slots between two users. The following lemma
immediately follows as a result of the definitions above.

Lemma 1: , , is equal to
restricted to .

The next two sections study the two cases and ,
respectively. We are particularly interested in conditions under
which may be obtained by repeatedly using .

III. OPTIMAL POLICY FOR A SINGLE-SLOT ALLOCATION

We first study the case when each frame consists of only a
single-slot , In this case, we have for

(4)

Definition 2: A function belongs to the set if
satisfies the following conditions.

C.1) (Monotonicity or Nondecreasing Condition)

C.2) (Supermodularity Condition)

C.3a) (Superconvexity Condition)

C.3b) (Superconvexity Condition)

Here, the terminologies follow that used in [14]. Note that
these are rather benign conditions, and they specify a very large
class of cost functions of practical interest. For example, all
functions of the form (for any )
satisfy these conditions. An example of a function that does not
satisfy the above conditions is which fails
conditions C.3a and C.3b. Also, note that conditions C.2 and
C.3a result in the convexity of in . Similarly, C.2 and C.3b
imply the convexity of in .

Definition 3: is the set of all functions satis-
fying C.1–C.3.

It immediately follows that . The main
result of this section is the following theorem.

Theorem 1: For the single-slot allocation problem, if the cost
function , then:

1) for any time , we have ;
2) the optimal policy in assigning one slot is of the

threshold type.
In the remainder of this section, we first show that if

, then restricted to is in .
This is then used to prove Theorem 1. We proceed with a few
lemmas.

Lemma 2: If , then defined as
is in for all .

Proof: We need to show that satisfies
conditions C.1–C.3.

i) Monotonicity: obviously satisfies monotonicity
since for ,2

else

where the inequality is a result of the monotonicity of .
ii) Supermodularity: To prove this, we need to show

(5)

Letting , we consider the following
four cases.
1) If , , then (5) becomes

, which is true since satisfies C.2, by replacing
with in C.2.

2) If , , then (5) becomes
,

which is trivially true.
3) If , , the proof is the same as in case 2).
4) If , , then (5) becomes

, which again is
trivially true.

iii) Superconvexity: To prove C.3a, we need to show

(6)

Again, let and consider the same four cases.
1) If , , then (6) becomes

, which is true since satisfies C.3 (re-
placing with in C.3).

2) If , , then (6) becomes

, which is true by the monotonicity of .
3) If , , then (6) becomes

, which is true by the convexity of (combining
C.2 and C.3a).

4) If , , then (6) becomes
, which is

true by the monotonicity of .
C.3b can be proven in the same way and is not repeated. There-
fore, we conclude .

Lemma 3: If are a sequence of functions that be-
long to , then also belongs to , where

’s are non-negative constants.
Proof: We need to show that satisfies C.1–C.3.

i) Monotonicity: By the monotonicity of , we have
, proving ’s

monotonicity.
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ii) Supermodularity: This holds because

where the inequality is due to the supermodularity of .
iii) Superconvexity: This holds because

where the inequality is due to the superconvexity of .
C.3b can be shown in the same way and is thus omitted for

brevity.
Lemma 4: If are a sequence of functions that be-

long to , then also belongs to , where
’s are non-negative constants.
The proof is the same as in Lemma 3, and is thus not presented

for brevity.
Lemma 5: If , then .

Proof: Let .
i) Monotonicity: holds, since the mono-

tonicity of results in an increment in both elements.
ii) Supermodularity: We need to show that

. We will consider different
cases depending on the minimizers of and

, denoted by and , respectively. For example,
, , , ,2 means ,

and .
1) : In this case, the supermodularity

condition we need to show becomes

(7)

To show this, consider

which yields
. Letting , this becomes

where the second inequality is true by the supermod-
ularity of , thus proving (7).

2) , : In this case, the supermodularity
condition we need to show is

(8)

To show this, consider

where the last inequality is due to the convexity of ,
thus proving (8).
The two remaining cases where and

, can be shown similarly, and are not
repeated here.

iii) Superconvexity: First, we show that satisfies C.3a, i.e.,

(9)

We again consider different cases depending on the mini-
mizers for the two terms on the right, respectively, denoted
by and , as in the case of supermodularity.
1) : In this case, (9) becomes

. To
show this, we have

Therefore, by letting , we have

where the second inequality is due to the supercon-
vexity of , thus proving (9).

2) , : In this case, (9) becomes
. In order

to show this consider

proving (9).
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3) , : By superconvexity of (and thus
), we have

where the first inequality results from C.3b and the
other two inequalities are a consequence of C.3a.
Combining (adding) these inequalities, we get

(10)

However, note that whenever (i.e.,
), the right-hand side of the

above equation is non-positive, thus the left-hand side
is also non-positive. This implies that . In
other words, , implies ,

, meaning
. Therefore, the case of , is a

special case of , , which is dealt with
next.

4) , : In this case, (9) becomes
. To

show this consider

Letting , we have

(11)

thus proving (9). That also satisfies C.3b can be
shown in a similar way and is not repeated. Therefore,
we conclude that if , then ,
proving the lemma.

The following lemma is also stated in [18].
Lemma 6: If , then the restriction of to non-

negative values is in .
We are now ready to prove Theorem 1, assuming two users

and single-slot frames.
Proof of Theorem 1:

1) We prove the result by induction. First, note that if
, then by Lemma 3, therefore

is in . This completes the induction basis. Next, we
show that if , then .
By Lemmas 2 and 4, we have that if , then

. Therefore, by Lemma 5, .

Using Lemma 6, we have that restricted to
non-negative values is in . Since ,

restricted to non-negative values is in by
Lemma 3, and by Lemma 1 this value is equal to .
Thus, , completing the induction step.

2) By part 1) of this theorem, for all . Therefore,
. Thus, by property C.3a, we have

.
By replacing with , we have

. Rearranging, we
get

The last inequality suggests that if the left-hand side is non-neg-
ative, then the right-hand side is also non-negative. Therefore,
if the optimal decision is to allocate to the first queue when the
state is for some , then it is optimal to allocate the slot to the
first queue when the state is . Similarly using C.3b, we
can show that if the optimal decision is to allocate to the second
queue when the state is , then it is optimal to allocate the slot
to the second queue when the state is . We can then define
a threshold as follows:

(12)

and when the above set is empty. If we have
, then the optimal policy is to assign the slot at time

to queue 2, otherwise, to queue 1 (if the set is empty then
the threshold is infinity), proving the optimality of a threshold
policy.

While Theorem 1 shows that the optimal scheduler is of the
threshold type, it is worth pointing out that it is, in general,
difficult to obtain the quantitative value of the threshold. The
threshold is given by (12), where the current cost-to-go function
needs to be calculated. This can be computationally expensive.

Note that throughout our discussion, none of the results ob-
tained depends on the arrival process and the cost function being
time invariant. The proof of Theorem 1 is based on induction,
i.e., as long as the induction basis holds, the induction step is
established by using the properties of the value function from
the induction hypothesis and using the fact that . In
other words, all results developed here are equally applicable
to a time-varying cost function and time-varying arrival
process . In particular, Lemma 1 will hold with re-
placed with , and Theorem 1 will hold by requiring that

, , rather than requiring that . Therefore, as
we mentioned earlier, the time-invariant assumptions are merely
for the simplicity of notation and can be easily relaxed. The
same argument also holds for results obtained in the next two
sections.

IV. MULTIPLE SLOT BATCH ALLOCATION

In this section, we consider the problem of allocating
slots for each time frame. The following example shows that,
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in general, a sequential allocation of slots does not necessarily
lead to the optimal policy for allocating slots.

Example 1: Suppose and let ,
i.e., there are no arrivals. Let , , and

. Finally, let . Since , the queues only get
to transmit during the second frame. The queue occupancy thus
remains the same for and no matter what strategy
is used. Therefore, to minimize the total cost, we need only to
focus on and minimize the cost at time .
It can be easily verified that the optimal allocation at is

, , resulting in a cost of zero at .
Now, consider the sequential allocation, which proceeds as

follows. We suppose there is only one slot in the frame to allo-
cate and it needs to be allocated in such a way to minimize the
cost at . If the slot is allocated to queue 1, the cost at
will be 8 and if the slot is allocated to queue 2, the cost at
will be 9. Thus, the optimal allocation of the first slot is to queue
1. The updated state at given the first allocation (to queue
1) is . For the allocation of the second slot,
again we suppose there is only one slot in the frame to allocate
to minimize the cost at . It can be seen that the second slot
should also be allocated to the first queue. The two sequential
steps result in both slots allocated to queue 1 and none to queue
2, with a cost of 3 at . Obviously, this policy is not optimal.

In the rest of this section, we show that under the conditions
introduced in the previous section, an optimal policy for allo-
cating slots can be obtained by sequentially allocating the
slots according to the optimal policy for a single-slot allocation.

Definition 4: Define recursively the operator as
.

Theorem 2: If , then we have .
Proof: We use induction on . The induction basis for

is trivially true. Suppose that the theorem holds for
, i.e., , we want to show that it

holds for .
Denote by . Suppose

we have slots to assign: By definition, we have

(13)

Below, we show that the allocation , , is at least
“as good as” all allocations of the form ,
for all , in minimizing the right-hand side of (13),
i.e., we want to show the following for :

(14)

Since , , denotes all pos-
sible allocations between the two users other than the allocation
denoted by , if we can show (14), then we will have es-
tablished that minimizes the right-hand side of (13). It
is thus sufficient to show that if minimizes
the right-hand side of (13), then will also minimize the
right-hand side of (13). Assume now that
minimizes the right-hand side of (13) and let . We

proceed by first showing that the following holds for all values
:

(15)

We show this by using induction on . First, consider ,
i.e., we need to show

(16)

Equation (16) can be obtained by replacing with
in property C.3 (use C.3a if and use C.3b if

). Thus, the induction basis is established.
Now, assume (15) is true for , , we want to

show that is also true for . In property C.3 (use C.3a
if and use C.3b if ), substituting for

gives

(17)

Combining the induction hypothesis and (17) gives the result
for the case of and the induction is complete.

Next, note that we have
, , due to the optimality of

when there are slots to allocate. Therefore, the left-hand side
of (15) is always non-negative, thus so is the right-hand side,
i.e.,

This means that minimizes the right-hand side of (13).
The above result shows that the minimizer on the right-hand

side of (13) can be found by taking the minimum between
and . Following this result, for the th slot,

we have , where
is the minimizer for slots, i.e., .

Thus, we have using the induction
hypothesis. By the recursive definition of the operator, we have

, completing the proof.
Consider two users and slots in each time frame, and as-

sume that the optimal policy is known for the single-slot allo-
cation. We next use Theorem 2 to show that the same policy for
a single-slot allocation can be repeatedly/sequentially used
times, and it results in the optimal policy for allocating the batch
of slots.

Theorem 3: Consider slots to allocate. If , then
for all . Furthermore, the policy that sequen-

tially assigns each slot optimally given the state and the previous
allocations, is optimal.
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Proof: We use backward induction on . Since ,
we have , which establishes the induction basis.
Next suppose that . We want to show that .
Since , , using Theorem 2, we have for

(18)

By Lemma 5, we have , therefore its restric-
tion to is in by Lemma 6. Also, we have since

. Therefore, the right-hand side of the above equa-
tion is in by Lemma 3, thus , completing the
induction.

Next, we show that this allocation problem reduces to opti-
mally allocating a single slot. It should be evident from (18)
that finding the allocation vector by solving

is equivalent to solving , which implies al-
locating one slot at a time. More specifically, consider allo-
cating slots within frame . Having already allocated slots

within the frame with allocation ,
the optimal allocation of the next slot, by definition of ,
is , which simply
shows that it is optimal to allocate the th slot given the
system state and prior allocation in the same frame .

The above result shows that the slot allocation problem
reduces to the single-slot allocation problem.

V. INFINITE HORIZON DISCOUNTED COST AND AVERAGE COST

In this section, we study the properties of the optimal policy
when . Note that the cost defined in (1) is infinite as

, except for certain special cases. In this section, we
consider two alternatives for defining the cost over an infinite
horizon, the discounted cost and the average cost.

A. Discounted Cost

Consider the discount factor , and define the
step minimum cost function

(19)

Note here denotes the number of frames to go (or the horizon),
rather than the actual time as in previous sections. It can be
shown that satisfies the following recursion:

(20)

Definition 5: Define as follows:

(21)

The following lemma then follows directly.

Lemma 7: For all values , is equal to
restricted to .

Lemma 8: Consider two users and slots to allocate. If
, then for all .

The proof of this lemma is similar to that of the same result
for in the previous section, except that instead of backward
induction, we need to use forward induction for , noting that

, and thus . The complete proof is not
presented for brevity.

Define the infinite horizon cost as follows:

(22)

Note that is not necessarily bounded. However, if we have
for all , then satisfies the following (for

more details and proof see [17, Ch. 5.4]):

(23)

Theorem 4: Consider two users and slots to allocate. If
and is non-negative, then and the optimal

policy for a single-slot allocation is of the threshold type. Fur-
thermore, the policy that assigns each slot optimally given the
state and the previous allocation in the same frame, is optimal.

Proof: Note that for all and that the set is
closed under pointwise limit of functions, i.e., if is a
sequence of functions and , , and if ,
then . Therefore, by using Lemma 8 and (23), we have

. The rest of the theorem follows from the same
arguments used in the proofs of Theorems 1 and 3.

B. Average Cost

One may also choose to minimize the average cost over
time, rather than discounted cost. Consider the following cost
function:

(24)

Recall the infinite horizon discounted cost defined before

Here, we have used to denote this cost rather than
as used before. This is because in this subsection we

will focus on this cost as a function of the value , while always
taking the horizon to be infinite.

Recall we have shown that the following holds in (23):

(25)
Consider the following assumption.
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Assumption (AVG-1): For any state there exists a
policy such that starting from state , it takes the queue-size
back to state with finite expected number of steps and finite
expected cost. Let the expected (nondiscounted) cost for this
transition be denoted by .

Define as follows:

Let be a sequence of real numbers such that
as . Then, it is shown in Lemma A-3 that under
Assumption AVG-1 one can find a subsequence such that

exists. We call this limit function . We
then have the following theorem.

Theorem 5: Suppose for all and that As-
sumption AVG-1 holds. Then we have the following.

a) There exists a finite constant that satisfies the fol-
lowing inequality:

(26)

b) Let be a policy that minimizes the right-hand side of
(26). Then, is the optimal average cost policy.

c) is the optimum average cost.
The proof of this theorem follows closely the argument used

in [19, Ch. 7]. However, for self-sufficiency, we have included
the proof in the appendix.

Theorem 6: Consider two users and slots to allocate. If
and is non-negative, then and the optimal

average cost policy for a single-slot allocation is of the threshold
type. Furthermore, the policy that assigns each slot optimally
given the state and the previous allocation in the same frame, is
optimal.

Proof: Note that . Since
we have by Theorem 4, we conclude that

. The rest of the proof is very similar to the proofs of Theorems
1 and 3, and is not repeated for brevity.

VI. LINEAR, EQUAL HOLDING COST

In this section, we consider the special case when the cost
function is linear and equal for both queues. Let be the cost
of having a packet in queue, then the cost of queue at time

would be . We also assume that the arrivals to different
queues are independent, i.e., , where
is the probability of having arrivals in queue during a time
frame. We will focus on the finite horizon problem and use the
results derived in the previous sections to characterize the op-
timal allocation in this case. From Section IV, it suffices to con-
centrate on allocating a single slot.

Lemma 9: Suppose for two queues we have
. Then, for all , we have

This lemma essentially says that because the two queues are
symmetric, the future cost to go remains the same as long as the
total number of packets in the system is the same, regardless of
which queue they are in. This in turn suggests that when both
queues are nonempty (the deterministic part), it is equally op-
timal to allocate the slot to either queue.

Proof: We use induction on to prove the lemma. The
statement is obviously true for . Now, suppose the state-
ment is true for , i.e., ,

. We want to show that .
Suppose the state is at for some . By the dy-

namic equation of the problem given in (2), the slot is allocated
to the first queue if

(27)

Using the nondecreasing property of and the induction
hypothesis, we have that for any value of ,

Thus, (27) holds, and we conclude that it is optimal to allocate
the slot to the first queue. Similar arguments can be used to show
that it is optimal to allocate the slot to the second queue at state

. Now, we can write

Since due to the equal cost assumption,
we have , completing the induction.

It is also easy to see in this case that if one of the queues is
empty and the other is nonempty, then it is optimal to allocate
the slot to the nonempty queue. Next, we examine the optimal
allocation when both queues are empty.

Definition 6: Let , denote two probability measures on
(We denote by the set of all probability measures on ).

We say is stochastically greater than (in symbols )
if for all elements in , if , where

.
The next theorem shows that whenever both queues have zero

deterministic part, it is optimal to allocate the slot to the user
whose arrival process is stochastically dominant.

Theorem 7: Suppose the initial state is . Let
denote the probability that there will be arrivals in queue ,

,2 during a time frame. If , then it is optimal to
allocate the slot to user .
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Proof: Suppose . We show that it is optimal to
allocate the packet to queue 1. Note that it is optimal to allocate
the slot at time to the first queue if

(28)

By separating the sums conditioning on , and using Lemma
9, we get

(29)

where the second equality is due to Lemma 9 and uses the
relation , which can be shown using
Lemma 9 and a simple induction. By the monotonicity and con-
vexity of , the expression in (29) is greater than zero if for
any , we have

which is satisfied whenever .
The above result says that when both queues are empty (the

deterministic part), we should allocate a slot to the queue with
a stochastically dominating arrival process. However, it is not
always possible to compare arrival processes using stochastic
dominance. It is, therefore, tempting to see if one could find
policies that does not require such comparison, particularly for
the case of costs being linear and equal. For instance, would it be
optimal if we allocate the slot to the user with a smaller chance
of being empty when the deterministic part of both queues are
zero? The following example shows that this is not necessarily
the case.

Example 2: Suppose we have two queues that are empty (the
deterministic part), and we want to allocate one slot to one of
them. Suppose the first queue has one arrival with probability
0.6 and no arrivals with probability 0.4; the second queue has

arrivals with probability 0.1 and no arrivals with prob-
ability 0.9. If we allocate to the queue with a smaller chance of
being empty, we should allocate the time slot to queue 1 since it
has a smaller probability of having no arrivals in the next time
slot. Let be the policy that allocates the next slot to queue
i. Let be the expected cost after one step given that the
number of packets in the queues is . For , we have

For , we have

Note that and that
can be arbitrarily larger than

by making sufficiently large ( is a convex
function of ). Therefore, it is possible to have ,
i.e., the optimal policy may be to allocate the next time slot to
queue 2 (which has a higher chance of having no arrivals). This
example clearly shows that it is not always optimal to allocate
to the queue with a smaller probability of being empty.

Similarly, it can be shown that a policy that allocates the time
slot to the queue with higher expected number of arrivals is also
not necessarily optimal.

The above discussion illustrates some of the difficulty
in trying to obtain conditions weaker than the one given in
Theorem 7.

Using the result from Section IV, it can be seen that for the
case of multiple slot allocation (when the deterministic part of
both queues is zero), the following algorithm finds the optimal
policy if the sufficient condition of Theorem 7 is satisfied in each
step.

If allocate the -th slot to queue .

; For ,2, let ; .

If go to ; otherwise stop.

Putting the above results together, we see that an optimal
policy for this linear equal cost scenario allocates every slot to
a nonempty queue if it exists, and otherwise, allocates it to a
queue with stochastically dominant arrival process (updated as
shown above). This policy further reduces to, in the case of iden-
tical arrival processes, one that allocates slots in a max–min fair
fashion among queues when they are all empty [12]. Interest-
ingly, it was also shown in [12] that in this special case (equal
cost, identical arrival) the optimality of this policy holds for any
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number of queues . Thus, this special case is an ex-
ample where the main results derived in this paper extend to
more than two queues.

VII. CONCLUSION

In this paper, we studied the problem of optimal bandwidth
allocation to two users with delayed information on queue
backlog and derived fundamental properties of the optimal
policy. We proved that when the cost function satisfies certain
conditions the optimal single-slot assignment is of the threshold
type, and that optimal multiple slot assignment can be obtained
by repeatedly using optimal single-slot assignment. We also
provided sufficient conditions under which the same properties
hold over an infinite horizon, for both the discounted cost and
the average cost. We then applied the results to the case of linear
and equal holding cost and proved that when both queues have
zero deterministic parts, it is optimal to serve the queue with
stochastically dominating arrival process. We also presented an
example where these results extend to more than two queues.

Unfortunately, other than the example we presented, we have
not been able to obtain general results on extending this work
to more than two queues. This generalization appears highly
nontrivial and higher dimensional versions of the conditions
given in Section III may be required. Note that the conditions
we used in this paper (monotonicity, supermodularity, and su-
perconvexity) are in essence the equivalent of the continuous
convexity conditions in two dimensions for the discrete-time
case. In order to extend our results to more than two queues,
we would require similar conditions for higher dimensions. Al-
though there has been some work done in this regard (see, for
example, [20]), we have not been able to identify a set of con-
vexity conditions that can be shown to propagate over time.

APPENDIX

In this appendix, we present the proof of Theorem 5. A few
lemmas are needed to prove the Theorem.

Lemma A-1: is nondecreasing in . Moreover, under
Assumption AVG-1, we have

(A-1)

Proof: Fix . We use induction on to show that as
defined in (20) is nondecreasing for all . First, note that this is
true for , since is nondecreasing. Assuming it holds
for , we want to show that it holds for . Note that we have

The result for follows from the nondecreasing property of
and , using the induction hypothesis

(A-2)

Taking the limit on both sides of (A-2) and using (23), we get
, thus is nondecreasing in .

To show that (A-1) holds, consider the policy that follows
policy until the first time state is reached, and then follows
the optimal policy. Therefore, we have

thus proving the lemma.
Lemma A-2: Suppose for all . Then, under

Assumption AVG-1 the quantity is bounded for
.

Proof: Note that when , Assumption AVG-1 im-
plies that for all . This can
be argued as follows. Under policy , state is a recurrent
state, and thus any state at time lies in between two consecu-
tive occurrences of state . Since the expected sum of all costs
in between those two occurrences is less than or equal to
and all costs are non-negative, the cost at each time step has to
be less than or equal to . Thus, we have

where the first inequality is due to the fact that is not
necessarily the optimal policy. The exchange of the limit and
expectation is a result of the assumption that (and
consequently, the fact that the sum inside the expectation is
nondecreasing) and the last inequality holds by Assumption
AVG-1.

Lemma A-3: Let be a sequence of real numbers such that
as . If Assumption AVG-1 holds, then there

exists a subsequence such that

where for all .
Proof: Note that by

Lemma A-1. The sequence can be considered as a point in
the product topology , which is a compact space
by Tychnoff theorem [21]. Therefore, there exists a subsequence

for which converges. Let be the limit point of
. Since for all , we have

.
Proof of Theorem 5: Take (25), subtract from both

sides, and add and subtract from the left-hand side. We
get

(A-3)
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Let be a sequence of real numbers such that
as and let be a subsequence, as defined in Lemma
A-3. We have . Since the quantity
is bounded by Lemma A-2, there exists a subsequence such
that exists and is finite. Let this value
be .

Replace with in (A-3) and take the limit infimum on
both sides. Using Fatou’s Lemma [19], we obtain

(A-4)
Now, assume that policy minimizes the right-hand side of

(26). First, we show that . Let be
the (random) states that are visited at times , then
using (A-4), we have (note that is nothing
but )

Taking the expected value on both sides, adding the equations
and dividing by , we get

(A-5)

where the second inequality is due to the fact that
. Taking the limit on both sides of (A-5) as and using

the fact that , we have .
Now, consider any other policy . We have (see [22])

Therefore, is the optimal average cost policy. On the other
hand, if we let , then we can see that is the optimal
average cost, thus proving Theorem 5.

Note 1: The major step in extending the results from the
discounted infinite horizon case to the average cost problem is
Theorem 5. This step has been justified in the literature in many
scenarios. For example, for the case of finite-state space ([23]) or
bounded cost functions [16]. For countably infinite-state space
and unbounded cost functions, [18] has approached the average
cost problem for linear cost functions through a limit of finite
horizon problems. Other methods can be found in [24] and [25]
that have approached the problem via the limit of discounted
cost problems. The method used here is essentially the same as
the one used in [19]. The assumptions used in [19] are different
than Assumption AVG-1 here. However, we use the lemmas to

show that if Assumption AVG-1 holds, then the three assump-
tions in [19] will hold, and then use the same argument used
there to prove Theorem 5.
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