
A Distributed Monitoring Mechanism for Wireless Sensor
Networks

Chih-fan Hsin
University of Michigan

1301 Beal Avenue, 4301EECS
Ann Arbor, Michigan 48109

chsin@eecs.umich.edu

Mingyan Liu
University of Michigan

1301 Beal Avenue, 4238 EECS
Ann Arbor, Michigan 48109

mingyan@eecs.umich.edu

ABSTRACT
In this paper we focus on a large class of wireless sensor net-
works that are designed and used for monitoring and surveil-
lance. The single most important mechanism underlying
such systems is the monitoring of the network itself, that is,
the control center needs to be constantly made aware of the
existence/health of all the sensors in the network for security
reasons. In this study we present plausible alternative com-
munication strategies that can achieve this goal, and then
develop and study in more detail a distributed monitoring
mechanism that aims at localized decision making and min-
imizing the propagation of false alarms. Key constraints
of such systems include low energy consumption and low
complexity. Key performance measures of this mechanism
include high detection accuracy (low false alarm probabil-
ities) and high responsiveness (low response latency). We
investigate the trade-offs via simulation.

Categories and Subject Descriptors
C.2 [Computer System Organization]: Computer Com-
munication Networks; C.3 [Computer System Organiza-

tion]: Special-Purpose and Application-Based Systems; I.6
[Computing Methodologies]: Simulation and Modeling

General Terms
Design, Performance, Security

Keywords
wireless sensor networks, system design, security, monitor
and surveillance

1. INTRODUCTION
The rapid advances in wireless communication technol-

ogy and micro-electromagnetic systems (MEMS) technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSe’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-585-8/02/0005 ...$5.00.

have enabled smart, small sensor devices to integrate mi-
crosensing and actuation with on-board processing and wire-
less communications capabilities. Due to the low-cost and
small-size nature, a large number of sensors can be deployed
to organize themselves into a multi-hop wireless network for
various purposes. Potential applications include scientific
data gathering, environmental monitoring (air, water, soil,
chemistry), surveillance, smart home, smart office, personal
medical systems and robotics.

In this study, we consider the class of surveillance and
monitoring systems used for various security purposes, e.g.,
battlefield monitoring, fire alarm system in a building, etc.
The most important mechanism common to all such systems
is the detection of anomalies and the propagation of alarms.
In almost all of these applications, the health (or status of
well-functioning) of the sensors and the sensor network have
to be closely monitored and made known to some remote
controller or control center. In other words, even when no
anomalies take place, the control center has to constantly
ensure that the sensors are where they are supposed to be,
are functioning normally, and so on. In [10] a scheme was
proposed to monitor the (approximate) residual energy in
the network. However, to the best of our knowledge, a gen-
eral approach to the network health monitoring and alarm
propagation in a wireless sensor network has not been stud-
ied.

The detection of anomalies and faults can be divided into
two categories: the explicit detection and the implicit detec-
tion. An explicit detection occurs when an event or fault is
directly detected by a sensor, and the sensor is able to send
out an alarm which by default is destined for the control cen-
ter. An example is the detected ground vibration caused by
the intrusion of an enemy tank. In this case the decision to
trigger an alarm or not is usually defined by a threshold. An
implicit detection applies to when the event or intrusion dis-
ables a sensor from communication, and thus the occurrence
of this event will have to be inferred from the lack of commu-
nication from this sensor. Following an explicit detection,
an alarm is sent out and the propagation of this alarm is
to a large extent a routing problem, which has been stud-
ied extensively in the literature. For example, [2] proposed
a braided multi-path routing scheme for energy-efficient re-
covery from isolated and patterned failures; [4] considered
a cluster-based data dissemination method; [5] proposed an
approach for constructing a greedy aggregation tree to im-
prove path sharing and routing. Within this context the
accuracy of an alarm depends on the pre-set threshold, the

sensitivity of the sensory system, etc. The responsiveness
of the system depends on the effectiveness of the underlying
routing mechanism used to propagate the alarm.

To accomplish implicit detection, a simple solution is for
the control center to perform active monitoring, which con-
sists of having sensors continuously send existence/update
(or keep-alive) messages to inform the control center of their
existence. Thus the control center always has an image
about the health of the network. If the control center has
not received the update information from a sensor for a pre-
specified period of time (timeout), it can infer that the sen-
sor is dead. The problem with this approach is the amount
of traffic it generates and the resulting energy consumption.
This problem can be alleviated by increasing the timeout
period but this will also increase the response time of the
system in the presence of an intrusion. Active monitoring
can be realized more efficiently in various ways. Below we
discuss a few potential solutions.

The most straightforward implementation is to let each
sensor transmit the update messages at a same fixed rate.
However, due to the multi-hop transmission nature and pos-
sible packet losses, this results in sensors far away from the
control center (thus with more hops to travel) achieving a
much lower goodput. This means that although updates
are generated at a constant rate, the control center receives
updates much less frequently from sensors further away. In
order to achieve a balanced reception rate from all sensors
the traffic load has to be kept very low, which means that
the system must have a relatively low update rate. This
approach then is obviously not suitable for systems that re-
quire high update rate (high alertness). Alternatively we
could let each sensor adjust its update sending rate based
on various information. For example, increase the sending
rate if a sensor is further away from the controller (which
would require the sensor to have knowledge on hop-count).
[8] suggested adjustment based on channel environment, i.e.,
let sensors with higher goodput increase their sending rate
and sensors with lower goodput decrease their sending rate.
However, parameter tuning is likely to be very difficult and
it is not clear if this approach is scalable.

A second approach is to use inference and data aggrega-
tion. Suppose the control center knows all the routes, then
receiving an update message from a sensor would allow it to
infer the existence of all intermediate sensors on the route
between that sensor and the control center. Therefore, a
single packet conveys all the necessary update information.
The problem with this approach is the inferrence of the oc-
currence of an attack or fault. A missing packet can be due
to any sensor death on the route, therefore extra mecha-
nisms are needed to locate the problem. Alternatively, in
order to reduce the amount of traffic some form of aggrega-
tion can be used. Aggregation has been commonly proposed
for sensor network applications to reduce traffic volume and
improve energy efficiency. Examples include data naming for
in-network aggregation considered in [3], the greedy aggre-
gation tree construction in [5] to improve path sharing, and
the abstracted scans of sensor energy in [10] via in-network
aggregation of network state. In our scenario, along a single
route, sensors can concatenate their IDs or addresses into
the update packet they relay, so that when the control cen-
ter gets this packet, it can update information regarding all
sensors involved in relaying this packet. However, the packet
size increases due to aggregation, especially if addresses are

not logically related which is often the case. As the size of
the network increases, this aggregation may cease to be ef-
fective. In addition, the same inferrence problem remains in
the presence of packet losses.

If the sensor network is organized into clusters, then based
on the cluster size, different approaches can be used. For
example if clusters are small (e.g., less than 10 nodes), the
cluster head can actively probe each sensor in the cluster [7],
or TDMA schedules can be formed within the cluster so that
each sensor can periodically update the cluster head. In this
case the responsibility is on the cluster heads to report any
intrusion in the cluster to a higher-level cluster head or to
the central controller. If the clusters are large, then any of
the aforementioned schemes can potentially be considered by
regarding the cluster head as the local “central controller”.
In any of these cases, there has to be extra mechanisms to
handle the death of a cluster head.

Following the above discussion, a distinctive feature of ac-
tive monitoring is that decisions are made in a centralized
manner at the control center, and for that matter it becomes
a single point of concentration of data traffic (same applies
to a cluster head). Subsequently, the amount of bandwidth
and energy consumed affects its scalability. In addition, due
to the multi-hop nature and high variance in packet delay, it
will be difficult to determine a desired timeout value, which
is critical in determining the false alarm probability and re-
sponsiveness of the system as we will discuss in more detail
in the next section. All the above potential solutions could
function well under certain conditions. However, we will
deviate from them in this paper and pursue a different, dis-
tributed approach.

Our approach is related to the concept of passive moni-
toring, where the control center expects nothing from the
sensors unless something is wrong. Obviously this concept
alone does not work if a sensor is disabled from communi-
cating due to intrusion, tampering or simply battery outage.
However, it does have the appealing feature of low overhead,
i.e., when everything is normal there will be no traffic at all!
Our approach to a distributed monitoring mechanism is thus
to combine the low energy consumption of a passive moni-
toring method and high responsiveness and reliability of an
active monitoring method.

Throughout this paper we assume that the MAC used is
not collision free. In particular, we will examine our scheme
with random access and carrier sensing types of MAC. Thus
all packets are subject to collision because of the shared wire-
less channel. Collision-free protocols, e.g., TDMA, as well
as reliable point-to-point transmission protocols, e.g. the
DCF RTS-CTS function of IEEE 802.11, may or may not
be available depending on sensor device platforms [8] and
are not considered in this paper. We assume that sensors
have fixed transmission power and transmission range. We
also assume that sensors are awake all the time. The dis-
cussion on integrating our scheme with potential sleep-wake
schedule of sensors are given in Section 5.

The rest of the paper is organized as follows. In Section 2,
we describe an overview of our system and the performance
metrics we consider. Section 3 describes in detail the mon-
itoring mechanism and some robustness issues. In Section
4, simulation results are presented to validate our approach.
Section 5 discusses implications and possible extensions to
our system. Section 6 concludes with future works.

2. A DISTRIBUTED APPROACH

2.1 Basic Principles
The previous discussions and observations have lead us to

the following principles. Firstly, some level of active moni-
toring is necessary simply because it is the only way of de-
tecting communication-disabling events/attacks. However,
because of the high volume of traffic it involves, active mon-
itoring has to be done in a localized, distributed fashion,
rather than all controlled by the control center. Secondly,
the more decision a sensor can make, the less decision the
control center has to make, and therefore less information
needs to be delivered to the control center. In other words,
the control center should not be bothered unless there re-
ally is something wrong. Arguably, there are scenarios where
the control center is at a better position to make a decision
with global knowledge, but whenever possible local decisions
should be utilized to reduce traffic. Similar concepts have
been used in for example [6], where a sensor advertises to its
neighbors the type of data it has so a neighbor can decide
if a data transmission is needed or redundant. Thirdly, it
is possible for a sensor to reach a decision with only local
information and with minimum embedded intelligence and
thus should be exploited.

The first principle leads us to the concept of neighbor mon-
itoring, where each sensor sends its update messages only to
its neighbors, and every sensor actively monitors its neigh-
bors. Such monitoring is controlled by a timer associated
with a neighbor, so if a sensor has not heard from a neigh-
bor within a pre-specified period of time, it will assume that
the neighbor is dead. Note that this neighbor monitoring
works as long as every sensor is reachable from the control
center, i.e., there is no partition in the network that has no
communication path to the control center. Since neighbors
monitor each other, the monitoring effect gets propagated
throughout the network, and the control center only needs
to monitor a potentially very small subset of nodes.

The second and the third principles lead us to the con-
cept of local decision making. The goal is to allow a sensor
make some level of decision before communicating with the
control center. We will also allow a sensor to increase its
fidelity or confidence in the alarm it sends out by consulting
with its neighbors. By adopting a simple query-rejection or
query-confirmation procedure and minimal neighbor coordi-
nation we expect to significantly increase the accuracy of an
alarm, and thus, reduce the total amount of traffic destined
for the control center. To summarize, in our mechanism
the active monitoring is used but only between neighbors;
therefore, the traffic volume is localized and limited. Over-
all network-wide, the mechanism can be seen as a passive
monitoring system in that the control center is not made
aware unless something is believed to be wrong with high
confidence in some localized neighborhood. Within that lo-
calized neighborhood, a decision is made via coordination
among neighbors.

2.2 Performance Metrics
In this study we consider two performance metrics: the

probability of false alarm and the response delay.
Due to the nature of the shared wireless channel, packets

transmitted may collide with each other. We assume perfect
capture and regard (partially) collided packets as packets
lost. The existence/update packets transmitted by neigh-

boring sensors may collide. As a result a sensor may fail to
receive any one of the packets involved in the collision. If a
sensor does not receive the updates from a neighbor before
its timer expires and subsequently decides that the neigh-
bor is dead while it is still alive, it will transmit an alarm
back to the control center. We call this type of alarm false
alarm. False alarms are very costly. The transmissions of
false alarms are multi-hop and consume sensor energy. They
may increase the traffic in the network and the possibility
of further collision. Furthermore, a false alarm event may
cause the control center to take unnecessary actions, which
can be very expensive in a surveillance system.

Another important performance metric is responsiveness.
The measure of responsiveness we use is the response delay,
which is defined as the delay between a sensor’s death and
the first transmission of the alarm by a neighbor. Strictly
speaking, response delay should be defined as the delay be-
tween a sensor’s death and the arrival of this information
at the control center. The total delay can therefore be sep-
arated into the delay in triggering an alarm and the delay
in propagating the alarm. However, as mentioned earlier
the process of propagating an alarm to the control center
is mostly a routing problem and does not depend on our
proposed approach. Therefore, in this study we only focus
on the delay in triggering an alarm and define this as the
response delay.

It is very important to make the response delay as small
as possible in a surveillance system subject to a desired false
alarm probability. An obvious tradeoff exists between the
probability of false alarm and the response delay. In order
to decrease the response delay, the timeout value needs to be
decreased which leads to a higher probability of false alarm.
Our work in this paper is to utilize the distributed monitor-
ing system to achieve a better tradeoff between the proba-
bility of false alarm and the response delay. We also aim to
reduce the overall traffic and increase energy efficiency.

3. A TWO-PHASE TIMEOUT SYSTEM
In this section we first present the key idea of our ap-

proach, then describe in more details the different compo-
nents of our approach.

3.1 Key to our approach
With the goal being reducing the probability of false alarm

and the response delay, combining the principles we out-
lined, we propose a timeout control mechanism with two
timers: the neighbor monitoring timer C1(i) and the alarm
query timer C2(i). The idea of C1(i) is the same as an or-
dinary neighbor monitoring scheme. During C1(i), a sensor
s collects update packets from sensor i. If sensor s does
not receive any packet from i before C1(i) expires, it enters
the phase of the alarm query timer C2(i). The purpose of
the second timer C2(i) is to reduce the probability of false
alarm and to localize the effect of a false alarm event. In
C2(i), sensor s consults the death of i with its neighbors. If
a neighbor claims that i is still alive, s will regard its own
C1(i) expiration as a false alarm and discard this event. If
s does not hear anything before C2(i) expires, it will de-
cide that i is dead and fire an alarm for i. We will call the
two-phase approach the improved system and the ordinary
neighbor monitoring system with only on timer the basic
system. Fig. 1 shows the difference between the basic sys-
tem and the improved system. C1 + C2 is the initial value

C(i) =C1+C2

C1(i)=C1 C2(i)=C2

Basic:

Improved:

Figure 1: Basic System V.S. Improved System

of C(i). C1 and C2 are the initial value of C1(i) and C2(i),
respectively.

There are several ways to consult neighbors. One ap-
proach is to consult all common neighbors that are both
reachable from i and s; therefore, all common neighbors can
respond. We call this two-phase timer approach the origi-
nal improved system. Another approach is to consult only
the neighbor which is assumed dead, i in this case. We will
call this neighbor the target and this approach the variation.
Neighbors can potentially not only claim liveliness of a tar-
get but also confirm its death if their timers also expired.
In this study we will focus on the case where neighbors only
respond when they still have an active timer. In contrast
to our system, an ordinary neighbor monitoring system has
only one timer C(i). If a sensor does not receive packets
from i before C(i) expires, it will trigger an alarm.

Let us take a look at the intuition behind using two timers
instead of one. Let Pr[FA]basic and Pr[FA]improved denote
the probabilities of a false alarm event with respect to a
neighboring sensor in the basic system and in the improved
system, respectively. Let f(t) denote the probability that
there is no packet received from the target in time t. We
then have the following relationship.�

Pr[FA]basic ≈ f(C1 + C2)

Pr[FA]improved ≈ f(C1 + C2)p
(1)

where p is the probability that the alarm checking in C2(i)
fails. This can be caused by a number of reasons as shown
later in this section. Note that f(t) in general decreases with
t. Since p is a value between 0 and 1, from Eqn (1), we know
Pr[FA]improved is less than Pr[FA]basic. The response de-
lays in both system are approximately the same, assuming
that a neighbor only responds when it has an active timer
C1(i). However, extra steps can be added in the phase of
C2(i) to reduce the response delay in the improved system,
e.g., by using aforementioned confirmation, which we will
not study further in this paper.

Note that Eqn (1) is only an approximation. The im-
proved system does not always perform better than the ba-
sic system. By adding alarm checking steps in the improved
system, extra traffic is generated. The extra traffic may col-
lide with update packets, and thus, increase the false alarm
events. However, as long as C1(i) expiration does not hap-
pen too often, we expect the improved system to perform
better than the basic system in a wide range of settings. We
will compare the performance differences between the basic
system and the improved system under different scenarios.
Note that C1(i) is reset upon receipt of any packet from i,
not just the update packet. For the same reason, a sen-
sor i can replace a scheduled update packet with a different
packet (e.g., data) given availability.

3.2 State Transition Diagram and Its Compo-
nents

In this section we present the state transition diagram

Rec. packets(i)
or Par(i)

C2 expires

Neighbor
Monitoring

Alarm
Checking

Alarm
Propagation

C1 expires

Reset C1(i)

Act. C2(i)

Xmit Alarm,
Deact. C1(i)

Random
Delay

Suspend

Rec. Paq(i)
Xmit Par(i)

Rec. packets(i)
or Par(i)

Reset C1(i),
Deact. C2(i)

Rec. Paq(i)

Deact. C1(i),C2(i),

Rec. packets(i)

Act. C1(i)

Delay expires

Rec. Paq(i)

Deact. C1(i),C2(i)

Rec. packets(i)
or Par(i)

Reset C1(i),
Deact. C2(i)

C2 expires
Xmit Alarm,
Deact. C1(i)

Rec. packets(i)

Act. C1(i)

Xmit Paq(i)

Rec.: receive
Xmit: transmit
Act.: activate

Deact: deactivate
Packets(i): packets from i
Paq(i): Paq with target i
Par(i): Par with target i
Pex(i): Pex with target i

Figure 2: State Diagram for Neighbor i with Tran-

sition Metrics condition

action

Rec. Paq(s)

Xmit Par(s)

Upon the scheduled
time of Pex

Xmit Pex, Schedule
the next Pex

Self

Figure 3: State Diagram for Sensor s Itself with

Transition Metrics condition

action

of our approach. We will assume that the network is pre-
configured, i.e., each sensor has an ID and that the control
center knows the existence and ID of each sensor. However,
we do not require time synchronization. Note that timers are
updated by the reception of packets. Differences in reception
times due to propagation delays can result in slight different
expiration times in neighbors.

A sensor keeps a timer for each of its neighbors, and keeps
an instance of the state transition diagram for each of its
neighbors. Fig. 2 shows the state transitions sensor s keeps
regarding neighbor i. Fig. 3 shows the state transition of s
regarding itself. They are described in more detail in the
following.

3.2.1 Neighbor Monitoring
Each sensor broadcasts its existence packet Pex with TTL

= 1 with inter-arrival time chosen from an exponential dis-
tribution with rate 1/T , i.e., with average inter-arrival time
T. Different T values represent the alertness of the system as
we will discuss further in later sections. The reason for using
exponential distribution is to obtain a large variance of the
inter-arrival times to randomize transmissions of existence
packets. In Section 5 we will also discuss using constant
inter-arrival times. Each sensor has a neighbor monitoring
timer C1(i) for each of its neighbor i with an initial value
C1. After sensor s receives Pex or any packet from its neigh-

bor i, it resets timer C1(i) to the initial value. When C1(i)
goes down to 0, a sensor enters the random delay state for
its neighbor i.

When sensor s receives an alarm query packet Paq with
target i in neighbor monitoring, it broadcasts an alarm
reject packet Par with target i with TTL=1. Par contains
the IDs of s and i, and its remaining timer C1(i) as a reset
value for the sender of this query packet. When sensor s
receives an alarm reject packet Par with target i in this
state, it resets C1(i) to the C1(i) reset value in Par if its
own C1(i) is of a smaller value.

3.2.2 Random Delay
Upon entering the random delay state for its neighbor

i, s schedules the broadcast of an alarm query packet Paq

with TTL=1 and activates an alarm query timer C2(i) for
neighbor i with initial value C2. After the random delay
incurred by MAC protocol is complete, sensor s enters the
alarm checking state by sending Paq which contains IDs of s
and i. In this study we focus on random access and carrier
sensing types of MAC protocols. For both protocols, this
random delay is added to avoid synchronized transmissions
from neighbors [8]. Note that if a sensor is dead, timers in a
subset of neighbors expire at approximately the same time
(subject to differences in propagation delays which can be
very small in this case) with a high probability. The random
delay therefore aims to de-synchronize the transmissions of
Paq. Typically this random delay is smaller than C2, but
it can reach C2 in which case the sensor enters the alarm

propagation state directly from random delay.
In order to reduce network traffic and the number of alarms

generated, when sensor s receives Paq with target i in the
random delay state, it cancels the scheduled transmission
Paq with target i and enters the suspend state. This means
that sensor s assumes that the sensor which transmitted Paq

with target i will take the responsibility of checking and fir-
ing an alarm. Sensor s will simply do nothing. Such alarm
aggregation can affect the robustness of our scheme, espe-
cially when a network is not very well connected or is sparse.
The implication of this is discussed further in Section 5.

If sensor s receives any packet from i or Par with target i
in the random delay state, it knows that i is still alive and
goes back to neighbor monitoring. Sensor s also resets its
C1(i) to C1 if it receives packets from i or to the C1(i) reset
value in Par if it receives Par with target i.

3.2.3 Alarm Checking
When sensor s enters the alarm checking state for neigh-

bor i, it waits for the response Par from all its neighbors.
If it receives any packet from i or Par with target i before
C2(i) expires, it goes back to neighbor monitoring. Sen-
sor s also resets its C1(i) to C1 if it receives packets from
i or to the C1(i) reset value in Par if it receives Par with
target i. When timer C2 expires, sensor s enters the alarm

propagation state.

3.2.4 Suspend
The purpose of the suspend state is to reduce the traffic

induced by Paq and Par. If sensor s enters suspend for its
neighbor i, it believes that i is dead. However, different
from the alarm propagation state, sensor s does not fire
an alarm for i. If sensor s receives any packet from i, it goes
back to neighbor monitoring and resets C1(i) to C1.

3.2.5 Alarm Propagation
After sensor s enters the alarm propagation state, it

deletes the target sensor i from its neighbor list and trans-
mits an alarm packet Palarm to the control center via multi-
hop routes. The way such routes are generated is assumed
to be in place and is not discussed here. If sensor s receives
any packet from i, it goes back to the neighbor monitoring

state and resets C1(i) to C1. If sensor s receives packets from
i after the alarm is fired within a reasonable time, we expect
extra mechanisms to be needed to correct the false alarm for
i. On the other hand, a well-designed system should have
very low false alarm probability; thus, this situation should
only happen rarely.

3.2.6 Self
In the self state, if sensor s receives Paq with itself as

the target, it broadcasts an alarm reject packet Par with
TTL=1.

In this state, sensor s also schedules the transmissions
of the existence/update packets. In order to reduce redun-
dant traffic, each sensor checks its transmission queue before
scheduling the next existence packet. After a packet trans-
mission completes, a sensor checks its transmission queue.
If there is no packet waiting in the queue, it schedules the
next transmission of the existence packet based on the expo-
nential distribution. If there are packets in the transmission
queue, it will defer scheduling until these packets are trans-
mitted. The reason is that each packet transmitted by a
sensor can be regarded as an existence packet of that sen-
sor.

3.3 Robustness
In this subsection, we consider the robustness of the dis-

tributed monitoring system proposed and show there will
not be a dead lock.

Proposition 1. Assume all transmissions experience prop-
agation delays that are proportional to propagation distances
by the same proportion. A query following expiration of
C1(i) due to the death of sensor i will not be rejected by
a neighbor.

Proposition 2. In the event of an isolated death, the
system illustrated in the state transition diagram Fig. 2 will
generate at least one alarm.

Proposition 3. The response delays in both the basic
and the improved systems are upper bounded by C1 + C2.

Propositions 1 and 3 are relatively straightforward. Below
we briefly explain proposition 2. An isolated death event is
a death event, e.g., of sensor i, which does not happen in
conjunction with the deaths of i’s neighbors. From Fig. 2,
in the event of a death, a neighboring sensor’s possible state
transition paths can only lead to two states, suspend or
alarm propagation. When a sensor receives Paq with target
i in the random delay state or the alarm checking state,
it enters the suspend state and does not transmit Paq or an
alarm with target i. However, the fact that it received the
Paq packet means that there exists one sensor that’s in the
alarm checking state, since that’s the only state in which
a sensor sends out a Paq packet. Since a sensor cannot send
and receive a Paq packet at the same time, at least one sensor

will remain in the alarm checking state, and will eventually
fire an alarm.

Note Proposition 2 does not hold if correlated death events
happen, or when massive sensor destruction happens. This
will be discussed in more detail in Section 5.

4. SIMULATION RESULTS
We use Matlab to simulate the distributed monitoring sys-

tem and obtain performance results. During a simulation,
the position of each sensor is fixed, i.e. sensors are not mo-
bile. We create 20 sensors which are randomly deployed
in a square area. The side of this square area is 600 me-
ters. From the simulation, the average number of neighbors
of each sensor is between 5 and 6; therefore, this is a net-
work with moderate density. We can vary the side of this
square area to control the average degree of each sensor.
However, for all the results shown here 600 meters is used.
Each sensor runs the same monitoring protocol to detect
sensor death events. A sensor death generator controls the
time when a sensor death happens and to which sensor this
happens. Only one sensor is made dead at a time (thus
we only simulated isolated death events). Before the next
death event happens, the currently dead sensor is recovered.
In this study, we separately measure the two performance
metrics. In measuring probability of false alarm, no death
events are generated. In measuring the response delay, death
event are generated as described above. Although in reality
false alarms and deaths coexist in a network, separate mea-
surements help us to isolate traffic due to different causes,
and do not affect the validity of the results presented here.

For the response delay, we measure the delay between
the time of a sensor’s death and the time when the first
alarm is fired. In our simulation alarms are not propagated
back to the control center, but we record this time. For the
probability of false alarm, denote the number of false alarms
generated by sensor s for its neighbor i by αsi; denote the
total number of packets received by s from i by βsi. Pr[FA]
is then estimated by

Pr[FA] = � s � i
αsi

� s � i
βsi

.

This is because s resets its timer upon every packet received
from i. So each packet arrival marks a possible false alarm
event.

We simulate three different monitoring schemes: the ba-
sic system (with one timer), the improved system (with
two timers), and the variation (only the target itself can
respond). To compare the performance differences due to
different MAC protocols, we run the simulation under ran-
dom access and carrier sensing. A random period of time is
added to both schemes before transmissions of Paq and Par.
As mentioned before, a sensor waits for a random period
of time to de-synchronize transmissions before transmitting
Paq and Par. This period of time in both random access and
carrier sensing is chosen exponentially with rate equals the
product of packet transmission time and the average number
of neighbors a sensor has. The channel bandwidth we use
is 20K bits per second. The packets sizes are approximately
60 bytes. The radio transmission range is 200 meters.

4.1 Heavy Traffic Load Scenario with T=1
Fig. 4 shows the simulation results with varying C1. T

is the average inter-arrival time of update packets in sec-

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.05

0.1

0.15

0.2

P
r[

F
A

]

T=1sec,C2=1sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
1

2

3

4

5

6

7

C1 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 4: The Simulation Results with T = 1, C2 = 1

onds. T = 1 and C2 = 1 are fixed. The value of C2 is
chosen to be approximately larger than the round-trip time
of transmissions of Paq and Par. With T = 1 second we
have a very high update rate. This scenario thus represents
a busy and highly alert system. As can be seen in Fig. 4, the
improved systems (both the original one and the variation)
have much lower probabilities of false alarm than the basic
system under the same MAC protocol. The response de-
lays under different systems under the same MAC protocol
have very little difference among different systems (maxi-
mum 0.5 seconds). There is no consistent tendency as to
which system results in the highest or lowest response de-
lay. Under a predetermined probability of false alarm level,
the improved systems have much lower response delay than
the basic system. The difference is very limited in compar-
ing the performances of the original improved system and
the variation. In deciding which scheme to use in practice
we need to keep in mind that the variation results in lower
traffic volume and thus possibly lower energy consumption.

From Fig. 4 we can also see that carrier sensing has lower
false alarm than random access under the same system and
parameters. We will see that carrier sensing always has lower
false alarm than random access in subsequent simulation
results. The reason is that carrier sensing can help reduce
the number of packet collisions and thus the number of false
alarm events. However, carrier sensing results in sensing
delay. Thus carrier sensing has larger response delay than
random access under the same system and parameters.

Fig. 5 shows the simulation results with various C2. T = 1
and C1 = 2 are fixed. The value of C1 is chosen to be larger
than T . As can be seen in Fig. 5, when C2 increases, false
alarm decreases and the response delay increases. All other
observations are the same as when we vary C1 and keep C2

fixed. However, for the response delay, the systems with
lower false alarm have larger response delays. The reason is
that when C2 is large, system with lower false alarm usually
has more chances to receive Par and reset C1(i), thus caus-
ing the response delay to increase. The differences between
response delays of different systems are not significant.

4.2 Moderate Traffic Load Scenario with T=10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2
P

r[
F

A
]

T=1sec,C1=2sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

C2 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 5: The Simulation Results with T = 1, C1 = 2

10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
r[

F
A

]

T=10sec,C2=1sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

10 20 30 40 50 60 70
0

10

20

30

40

50

60

C1 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 6: The Simulation Results with T = 10, C2 = 1

Fig. 6 shows the simulation results with various C1. T =
10 seconds and C2 = 1 are fixed. This represents a system
with lower volume of updating traffic. Compared to Fig. 4,
we observe some interesting differences. Firstly, in Fig. 6,
the response delays at T=10 are larger than the delays at
T=1. This is easy to understand since C1 at T=10 is larger
than C1 at T=1. Secondly, since the traffic with T=10 is
lighter than the traffic with T=1, we expect that false alarm
at T=10 is smaller than that at T=1. However, the prob-
ability of false alarm in the basic system seems not to de-
crease when we increase T from 1 to 10. This is because as
T increases, false alarms are more likely to be caused by the
increased variance in the update packet inter-arrival times
than caused by collisions as when T is small. Since the Pex

intervals are exponentially distributed, in order to achieve
low false alarm probability comparable to results shown in
Fig. 4, C1 needs to be set appropriately.

10 20 30 40 50 60
11.6

11.65

11.7

11.75

11.8

11.85

T=10sec,C2=1sec

C1 (sec)

To
tal

 Po
we

r C
on

su
mp

.(m
W)

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

Figure 7: Total Power Consumption with T =
10, C2 = 1

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
r[

F
A

]

T=10sec,C1=21sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

0 5 10 15 20 25 30 35
10

20

30

40

50

C2 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 8: The Simulation Results with T = 10, C1 =
21

Although the improved systems achieve small false alarm
probability, the control packets result in extra power con-
sumption. Fig. 7 shows the total power consumption of 20
sensors under the same scenario as Fig. 6. The total power
consumption is calculated by counting the total number of
bits transmitted and received by each sensor and using the
communication core parameters provided in [1]. We do not
consider sensing energy and sensors are assumed to be active
all the time. As can be seen in Fig. 7, the improved systems
have slightly larger total power consumption than the basic
system under the same MAC protocol. Overall the largest
increase does not exceed 1.6%. Thus the improved systems
achieve much better performance at the expense of minimal
energy consumption. Note that here we only consider the
energy consumed in monitoring. In reality higher false alarm
probability will also increase the alarm traffic volume in the
network, thus resulting in higher energy consumption. Also
note that the power consumption between different MAC
protocols are not comparable because the channel sensing
power is not included.

Fig. 8 shows the simulation results with various C2. T =
10 and C1 = 21 are fixed. As can be seen in Fig. 8, when C2

increases, false alarm decreases and the response delay in-
creases. The improved systems have much lower false alarm

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4
P

r[
F

A
]

T=60sec,C2=1sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

C1 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 9: The Simulation Results with T = 60, C2 = 1

than the basic system. For the response delay, similar to
Fig. 5, the systems with lower false alarm have larger re-
sponse delays. Furthermore, we can see that in order to
reduce false alarm significantly we need to increase C2 sig-
nificantly for a fixed C1. However, in practice we should
choose to increase C1 rather than increase C2. This is be-
cause by increasing C1, we can reduce the C1(i) expiration
events and reduce the network traffic, while increasing C2

has no such effect. Increasing C1 has approximately the
same effect on the response delay as increasing C2.

4.3 Light Traffic Load Scenario with T=60
Fig. 9 shows the simulation results with various C1 and

T = 60 seconds. Fig. 10 shows the simulation results with
various C2. All results are consistent with previous obser-
vations and therefore the discussion is not repeated here.

5. DISCUSSION
In the previous sections we presented a two-phase timer

scheme for a sensor network to monitor itself. Under this
scheme, the lack of update from a neighboring sensor is taken
as a sign of sensor death/fault. We also assumed that con-
nectivity within the network remains static unless attacks
or faults occur. If connectivity changes due to disruption in
signal propagation, then it becomes more difficult to distin-
guish a false alarm from a real alarm. If a sensor does not
loose communication with all its neighbors then neighbor
consultation can still help in this case. As discussed before,
if a sensor reappears after a period of silence (beyond the
timeout limit), then extra mechanisms are needed to handle
alarm reporting and alarm correction.

All our simulation results are for isolated death events.
In addition we have assumed that sensors are alive all the
time. In this section we will discuss our scheme and possible
extensions under different attacks and sensor scenarios.

5.1 Partition Caused by Death
Low connectivity of the network may result in security

problems under the proposed scheme, e.g., as illustrated in

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
r[

F
A

]

T=60sec,C1=121sec

Random Access & Basic System
Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Basic System
Carrier Sensing & Improved System
Carrier Sensing & The Variation

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

C2 (sec)

R
e

sp
o

n
se

 D
e

la
y

Figure 10: The Simulation Results with T = 60, C1 =
121

BC A

Figure 11: Partition Caused by Death

Fig. 11. If sensor A has only one neighbor B and B is
dead, no one can monitor A. One possible solution is to
use location information. Assuming that the control center
knows the locations of all sensors, when the control center
receives an alarm regarding B, it checks if this causes any
partition by using the location information. If a partition
occurs, the control center may assume that the sensors in
the partition are all dead. Thus it will attempt to recover
all sensors in the partition.

5.2 Correlated Attacks
We define by correlated attack the situation where multi-

ple sensors in the same neighborhood are destroyed or dis-
abled simultaneously or at almost the same time. Fig. 12
shows a simple scenario with 7 sensors. Each circle repre-
sents a sensor, and a line between circles represents direct
communication between sensors. If sensor A is disabled, sen-
sors B, C, and D will detect this event from lack of update
from A. Assume C and D are in suspend state because they
both received alarm query from B. Thus, only B is respon-
sible for transmitting an alarm for A. Suppose now B is
also disabled due to correlated attacks before being able to
transmit the alarm. A’s death will not be discovered under
the scheme studied in this paper, since both C and D will

B

A

D

C

`

Figure 12: Correlated Attacks.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
30

35

40

45

50

55

60

65

70

75

80

C1 (sec)

Ala
rm

 G
en

era
tio

n P
erc

en
tag

e
T=1sec,C2=1sec

Random Access & Improved System
Random Access & The Variation
Carrier Sensing & Improved System
Carrier Sensing & The Variation

Figure 13: Alarm Generation Percentage with T=1,

C2 = 1

have removed A from their neighbor list by then. This prob-
lem can be tackled by considering the concept of suspicious
area, which is defined as the neighborhood of B in this case.
For example, the control center will eventually know B’s
death from alarms transmitted by B’s neighbors, assuming
no more correlated attacks occur. The entire suspicious area
can then be checked, which includes B and B’s neighbors.
As a result A’s death can be discovered. A complete solution
is subject to further study.

This example highlights the potential robustness problem
posed by aggregating alarms (i.e., by putting nodes in the
suspend state) in the presence of correlated attacks. The
goal of alarm aggregation is to reduce network traffic. There
is thus a trade-off between high robustness and low overhead
traffic. Intuitively increased network connectivity or node
degree can help alleviate this problem since the chances of
transmitting multiple alarms are increased as a result of in-
creased number of neighbors. We thus measured the per-
centage of neighbors generating an alarm in the event of an
isolated death under the same scenario as in Fig. 4. The
simulation results are shown in Fig. 13. The alarm genera-
tion percentage is the ratio between the number of alarms
transmitted for a sensor’s death and the total number of
neighbors of that dead sensor. As can be seen, all the im-
proved systems have alarm generation percentage greater
than 40%.

These results are for an average node degree of 6. We
also run the simulation for average node degree of 3 and
9. There is no significant difference between these results.
Note this result is derived based on an isolated attack model,
under which we ensure at least one alarm will be fired (see
Proposition 2 in Section 3) even when using alarm aggrega-
tion. However, if correlated attacks are a high possibility,
we do not recommend the aggregation of alarms, thus re-
moving the suspend state. Further study is needed to see
how well/bad alarm aggregation performs in the event of
correlated attacks with different levels of connectivity.

5.3 Massive Destruction
Fig. 14 illustrates an example of massive destruction, where

nodes within the big circle are destroyed, including Sensor
A and its neighbors. If this happens simultaneously, the
control center will not be informed of A’s death since all
the sensors that were monitoring A are now dead. However,
the nodes right next to the boundary of the destruction area,
i.e., nodes outside of the big circle in this case, are still alive.
They will eventually discover the death events of their cor-

A

Figure 14: Massive Destruction. Nodes with dashed

circles are dead sensors. Nodes with solid circles are

healthy sensors.

responding neighbors and inform the control center. From
these alarms the control center can derive a dead zone (the
big circle in Fig. 14), which includes all dead sensors. A’s
death will be, therefore, discovered.

5.4 Sensor Sleeping Mode
Sensors are highly energy constrained devices, and a very

effective approach to conserve sensor energy is to put sen-
sors in the sleeping mode periodically. Many approaches
proposed use a centralized schedule protocol, e.g. TDMA,
to perform sleep scheduling. Although our improved mech-
anism is not designed for such collision-free protocols, it can
potentially be modified to function in conjunction with the
sensor sleeping mode. A straightforward approach is to put
sensors in the sleeping mode randomly. However, by do-
ing so a sensor may lose packets from neighbors while it is
asleep, which then increases the false alarm probability. In-
creased timer value can be used to reduce false alarm at the
expense of larger response delay.

In [9] a method is introduced to synchronize sensors’ sleep-
ing schedule. Under this approach, sensors broadcast SYNC
packets to coordinate its sleeping schedule with its neigh-
bors. As a result, sensors in the same neighborhood wake up
at almost the same time and sleep at almost the same time.
Sensors in the same neighborhood contend with neighbors
for channel access during the wake-up time (listen time). In
our scheme studied in this paper, the control packets (Pex,
Paq, and Par) can all be regarded as the SYNC packets used
to coordinate sensor sleep schedule. The stability of coor-
dination as well as the resulting performance need to be
further studied.

5.5 Response Delay
The improved system may have longer response delay

than the basic system. Fig. 15 shows such a scenario. In
the improved system, if sensor A fails to receive the last Pex

from neighbor i and i is dead right after this failure, A sends
Paq to neighbors upon C1(i) expiration in the improved sys-
tem. Its neighbor B successfully receiving the last Pex from
i responds with a Par including a C1(i) reset value. Thus, A
resets its expired C1(i) when it receives Par. An alarm for
i will be fired after this new C1(i) and C2(i) expire. How-
ever, in the basic system sensor A fires an alarm upon the
expiration of the original C(i), which in this scenario occurs
earlier than in the improved system. Note that although the
response delay in the improved system is sometimes longer

Response Delay

C2

C1
C2

Response
Delay

Send Pex(i) Send Pex(i)

Sensor i is
dead

C=C1+C2

Alarm

Alarm

Alarm

R

R

R

R

L

L

(1)Basic:

(2)Improved:

Neighbor A

Neighbor B

Neighbor A

Remaining
C1

C1

query

Figure 15: Event Schedule of A Potential Problem.

“R” means Pex is received. “L” means Pex is lost.

than the basic system, the response delay is bounded by
C1 + C2. Also note that the above scenario can occur in
opposite direction as well, i.e., alarm is fired earlier in the
improved system.

5.6 Update Inter-Arrival Time
In our simulation, the existence/update packet inter-arrival

time is exponential distributed with mean T in order to ob-
tain a large variance to randomize transmissions. As shown
in the simulation results, when T is large, the variance of
the inter-arrival times is also large. As a result a large C1

is needed to achieve small false alarm probability. An al-
ternative is to use a fixed inter-arrival time T along with
proper randomization via a random delay before transmis-
sion. By doing this, we can eliminate the false alarm caused
by the large variance of the update inter-arrival time when
the network traffic load is light (T is large).

6. CONCLUSION
In this paper, we proposed and examined a novel dis-

tributed monitoring mechanism for a wireless sensor network
used for surveillance. This mechanism can monitor sensor
health events and transmit alarms back to the control center.
We show via simulation that the proposed two-phase mech-
anism (both the original and the variation) achieves much
lower probability of false alarm than the basic system with
only one timer. Equivalently for a given level of false alarm
probability, the improved systems can achieve much lower
response delays than the basic system. These are achieved
with minimal increase in energy consumption. We also show
that carrier sensing performs better than random access and
their performances converge when we increase the average
update period T . Increasing timer values results in lower
false alarm and larger response delays.

There are many interesting problems which need to be fur-
ther studied within the context of the proposed mechanism,
including those discussed in Section 5. Different patterns of
attacks and their implication on the effectiveness of the pro-
posed scheme needs to be studied. Necessary modifications
to our current scheme will also be studied in order for it to
efficiently operate in conjunction with sensor sleeping mode.

7. REFERENCES
[1] M. Bhardwaj and A. P. Chandrakasan. Bounding the

lifetime of sensor networks via optimal role
assignments. In IEEE InfoCom, 2002.

[2] D. Ganesan, R. Govinda, S. Shenker, and D. Estrin.
Highly resilient, energy efficient multipath routing in
wireless sensor networks. Mobile Computing and
Communications Review (MC2R), 1(2), 2002.

[3] J. Heidemann, F. Silva, C. Intanagonwiwat,
R. Govindan, D. Estrin, and D. Ganesan. Building
efficient wireless sensor networks with low-level
naming. In Proceedings of the Symposium on Operating
Systems Principles, pages 146–159, October 2001.

[4] W. Heinzelman, A. Chandrakasa, and
H. Balakrishnan. Energy-efficient communication
protocols for wireless microsensor networks. In
Proceedings of Hawaiian International Conference on
Systems Science, January 2000.

[5] C. Intanagonwiwat, D. Estrin, and R. Gonvindan.
Impact of network density on data aggregation in
wireless sensor networks. In International Conference
on Distributed Computing Systems (ICDCS-22),
November 2001.

[6] J. Kulik, W. R. Heinzelman, and H. Balakrishnan.
Negotiation-based protocols for disseminating
information in wireless sensor networks. ACM
Wireless Networks, 8, 2002.

[7] L. Subramanian and R. H.Katz. An architecture for
building self-configurable systems. In IEEE/ACM
Workshop on Mobile Ad Hoc Networking and
Computing (MobiHOC 2000), 2000.

[8] A. Woo and D. E. Culler. A transmission control
schemes for media access in sensor networks. In
ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM), 2001.

[9] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient mac protocol for wireless sensor
networks. In IEEE InfoCom, 2002.

[10] Y. J. Zhao, R. Govindan, and D. Estrin. Residual
energy scan for monitoring sensor networks. In IEEE
Wireless Communications and Networking Conference
(WCNC’02), March 2002.

