
Modeling TCP performance with proxies

Navid Ehsan*, Mingyan Liu

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2122, USA

Abstract

This paper investigates TCP dynamics and performance over proxies that shorten the TCP feedback loop by segmenting the end-to-end

connection. Such proxies are often used to improve the TCP performance, e.g. a splitting/spoofing proxy in satellite communication, and

more commonly, a web cache. Through analysis, we attempt to develop a basic understanding of the properties of TCP dynamics when such

proxies are used, and further obtain design principles of systems involving such proxies. We present simple models capturing some features

of the proxy performance in both the lossless and lossy scenarios. Due to the complexity involved, detailed analysis is only available in the

lossless scenario, and our discussion in the lossy scenario is largely limited to steady-state behavior. Nevertheless we are able to obtain useful

insight. We identify conditions under which using a proxy provides significant or marginal performance gain by investigating factors

including initial window size, congestion level of the proxy, and the level of asymmetry between the segments segregated by the proxy. We

also discuss how these conditions affect the deployment and provisioning of such systems.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Performance enhancing proxy; TCP connection splitting; TCP connection spoofing; Cache; TCP performance

1. Introduction

This paper investigates certain type of proxies that cause

changes in the TCP dynamics and the resulting performance

implications. In particular, we focus on proxies that shorten

the TCP feedback loop either by design or as a by-product.

Such proxies are normally used to reduce the connection

response time and achieve higher link utilization.

One typical example of such is a TCP connection

splitting and spoofing proxy that pre-acknowledges the

sender on behalf of the receiver (by spoofing the receiver’s

address), and forwards packets to the receiver on behalf of

the sender (by spoofing the sender’s address). Such a

scheme is usually called split TCP, TCP spoofing [1] or

indirect TCP (I-TCP) [2,3]. It is commonly used in satellite

communication to improve TCP performance over the

satellite link (which has a large bandwidth-delay product)

since it can speed up the window growth and achieve higher

capacity utilization, especially for short connections. It

has also been proposed for terrestrial wireless networks

(e.g. I-TCP) [3–5] as a means of separating the wired and

the wireless part of the connection, and separating

congestion losses from link failure losses. The motivation

behind this approach is TCP’s performance degradation in

a heterogeneous environment. The idea is that if a

communication path consists of physical media that have

very different characteristics, the end-to-end performance is

optimized by isolating one type of physical medium from

another and optimizing each separately. It has to be

mentioned that this approach generally violates the TCP

end-to-end semantics, and will not work if the IP packet

payload is encrypted [6].

Another example of such a proxy, which may seem less

obvious, is a common web cache (e.g. with the web browser

set to ‘proxy’ mode). When there is a ‘hit’ at the cache, a file

is directly sent to the client from the cache. When there is a

‘miss’, the cache opens up a connection to the remote server

and starts downloading the file to the cache (for cacheable

objects), while forwarding packets to the client at the same

time. Thus the cache automatically ‘breaks’ the server–

client transfer into two separate connections [5]. In terms of

TCP performance during the file transfer, this has exactly

the same effect as split TCP (although the connection

establishment is different). However, in this case the TCP

semantics is preserved because the cache does not spoof the

client’s address, and so it acknowledges the server on behalf

of itself rather than ‘pre-ack’ on behalf of the client.

Caching not only reduces latency by pushing the content

closer to end users but also results in redirection of traffic

that is meant for web servers, and can achieve better load

balancing.

0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.01.005

Computer Communications 27 (2004) 961–975

www.elsevier.com/locate/comcom

* Corresponding author.

E-mail addresses: nehsan@eecs.umich.edu (N. Ehsan); mingyan@

eecs.umich.edu (M. Liu).

http://www.elsevier.com/locate/comcom

There has been implementation and experimental

study of TCP performance improvement using such

proxies, especially split TCP in satellite and terrestrial

wireless communications (e.g. Refs. [1–3]). In this paper,

we develop simple mathematical models to derive the

TCP performance (mainly latency) when such a proxy is

used, and analyze the level of performance improvement

under different scenarios. Our motivation is three-fold: to

have an analytical and quantitative study to gain insights

into the dynamics of a shortened TCP loop in addition to

simulation and experimental studies; to investigate the

use of proxy as a general solution to problems involving

heterogeneous links and large amounts of traffic; and

more importantly, to apply such understanding to system

level design issues.

In general, shortening the TCP feedback loop does not

have to come at the price of breaking the end-to-end

semantics, e.g. feedback from the proxy can be a signal for

the server to increase its window, rather than to purge the

retransmission buffer. This of course may imply that the

proxy is not transparent to the end users anymore and

involve modifications to the existing systems, which is out

of scope of this paper. In subsequent sections, we will

ignore whether the proxy spoofs addresses or not since it

does not affect our analysis, and instead focus on a general

model of server–proxy–client communication. The server

and the client can either have an end-to-end TCP

connection, where the proxy simply acts as a router, or

they can have a connection in which the proxy breaks up

the connection in two.

Due to the complexity involved, detailed analysis is

only available in the lossless scenario, and our discussion

in the lossy scenario is largely limited to steady-state

behavior. Nevertheless, we are able to obtain useful insight

through such analysis. In summary, we found that overall,

using the proxy results in higher utilization of the link

capacity and lower latency. However, when the proxy

becomes congested this performance gain is limited. In

addition, when a connection is broken in two, the slower

one always dominates the overall performance, and as this

dominance increases, the gain from using the proxy is

again reduced. These results imply that while optimization

of separate parts of a connection (segregated by the proxy)

is important, it is equally important to minimize the

‘asymmetry’ between these parts, especially in a hetero-

geneous environment.

The organization of the paper is as follows. In Section 2

we present the network model and describe how a proxy

functions. In Sections 3 and 4 we analyze the latency in file

transfer with or without using the proxy under the lossless

and lossy scenario, respectively. The accuracy of our model

is also evaluated and discussed. Section 5 discusses the

effects of initial window size, the congestion level of the

proxy, and the asymmetry between the two segments

segregated by the proxy. Section 6 summarizes our results

and concludes the paper.

2. Split connection and the network model

2.1. Network model

Our analysis is based on a two-link model with one

end host on each side and a proxy in the middle, as shown in

Fig. 1. This is a simple abstraction of certain connectivity. In

reality, each of the two links may contain multiple

intermediate routers and physical links, which are abstracted

into a single link with a single round-trip time (RTT)

parameter and a single loss rate parameter. Note that under

such abstraction the transmission rate of the server

essentially represents the slowest physical link on the path

from the server to the client. In practice, a spoofing proxy is

usually placed between a wired part and a wireless (or

satellite) part, and the client is usually located at the end of

the wireless link. The location of a cache proxy is more

arbitrary. File transfer is our main application of interest,

and without loss of generality is considered to be from the

server to the client.

When an end-to-end connection is established, the proxy

functions as a normal router that forwards packets from the

server to the client and vice versa. When connection

splitting is used, the proxy acknowledges to the server, the

client acknowledges to the proxy, and the proxy relays

packets from the server to the client. Same procedure is used

for the other direction of the connection. The two

connections are inevitably coupled, but they keep separate

sequence numbers and queues, and the proxy does not relay

out-of-order packets from one to the other thus acting as a

virtual source of the file. In general, with a spoofing proxy

the initial connection establishment (three-way handshake)

and the final closing are done in an end-to-end fashion. The

connection is only split in two during the data transfer

period, as shown in Fig. 2(a). With a cache proxy there are

two separate connection from the very beginning, i.e. three-

way handshake is first conducted between the client and the

proxy. If there is a cache miss, another three-way handshake

is conducted between the proxy and the server, as shown in

Fig. 2(b). Both situations result in approximately the same

delay in connection establishment for a single connection,

about 1.5 times the RTT between the server and the client.

We therefore do no include this initial delay in our analysis

and instead focus solely on the delay of data transfer, which

is the duration between when the server sends the first data

packet of a file and the time when the client receives the last

data packet of the file. For a cache proxy if there is a hit on

the file request, the content is retrieved directly from the

cache. In this case, the connection model is simply end-to-

end from the client to the proxy, with a fraction of the entire

Fig. 1. Network model.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975962

server–client RTT. Our analysis, therefore only applies to

situations where there is a cache miss.

2.2. Assumptions and parameters

We assume that a file contains exactly M segments of the

maximum segment size (MSS). This is an approximation to

an arbitrary file size whose last segment may be a fraction of

MSS. However, this does not affect our method of analysis,

and also does not affect the comparison between with or

without using the proxy. Slow-start threshold (ssthresh),

Wss; and the maximum window size Wmax are assumed to be

in number of segments rather than number of bytes to

simplify our analysis.

The server, the proxy, and the client have transmission

rates of C1; Cp; and C2; respectively. Assuming packet

length of D ¼ MSS þ h (where h includes both TCP and IP

headers and is typically equal to 40 bytes), the time it takes

for the server to transmit a packet is m1 ¼ D=C1; and mp ¼

D=Cp; m2 ¼ D=C2 for the proxy and the client, respectively.

When there are two separate connections, we assume a per-

packet processing delay of tp at the proxy. All other

processing delays are ignored. We assume that each link has

the same propagation delay in both directions. The one-way

propagation delay on the server–proxy link (also referred to

as the first link or the first connection) and the proxy–client

link (also referred to as the second link or the second

connection) are denoted by I1 and I2; respectively.

Throughout our analysis, we assume that the transmission

time of an ACK is negligible.

We further assume that the TCP sender is only

constrained by the congestion window and not

the advertised receive window size. Most work in TCP

analysis assumes an infinite source, e.g. Refs. [7–9].

However, when we have two connections, the window of

the second connection (proxy–client) evolves not only

according to the window dynamics of TCP, but also

according to the availability of packets (from the server–

proxy connection), i.e. the first connection may not ‘catch

up’ with the second connection due to factors like initial

window size, transmission rate, etc. Therefore, the window

of the second connection will be forced to grow at a slower

rate. We will discuss both in the subsequent sections.

3. Delay analysis of a connection over lossless links

Assuming that the window grows in the slow-start phase

and congestion avoidance stages until the maximum

window size is achieved, the number of windows that is

needed to cover a file of M segments can be calculated by

extending the method presented in Ref. [10]. We also

assume that delayed ACK is implemented. As shown in Ref.

[11], since one ACK is generated for every b packets

received before the timer expires, the rate of exponential

growth of the congestion window is r ¼ 1 þ ð1=bÞ; which

equals 2 when no delayed ACK is used. Let wo denote the

initial window size. Let S be such that

worS21 , Wss # worS ð1Þ

if M .
PS

i¼1 wori21; i.e. the slow-start threshold ssthresh is

reached during the ðS þ 1Þth window if the file is big

enough. Therefore the ðS þ 1Þth window size is Wss and the

ðS þ 2Þth window size is Wss þ 1; and so on. Similarly,

Fig. 2. File transfer using (a) a splitting proxy and (b) a cache upon miss.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 963

let Mx be such that

Wss þ
Mx 2 S 2 1

b
, Wmax # Wss þ

Mx 2 S

b
ð2Þ

i.e. the maximum window size is achieved during the

ðMx þ 1Þth window if the file is big enough. All subsequent

windows have the same window size Wmax: The number of

windowsneededtotransferafile is thengivenbythe following:

3.1. Delay of an end-to-end connection

We first consider an end-to-end connection between the

server and the client. Assuming that the links are lossless

and that connections are only constrained by congestion

window size, after the server sends a window’s packets it

waits for the first ACK to come back, if it takes longer for

the ACK to arrive than it takes to transmit the window’s

worth of data. The time it takes to transmit the kth window is

a function of the packet transmission time at the sender

given by

tkðm1Þ ¼

work21m1; if k # S

Wss þ
k 2 S 2 1

b

� �
m1; if S , k # Mx

Wmaxm1; if Mx , k

8>>>><
>>>>:

ð4Þ

Therefore if m1 $ mp; which indicates that the proxy

transmits at least as fast as the server and thus packets

will not experience queueing delay at the proxy, the RTT of

the end-to-end connection is 2ðI1 þ I2Þ: The time it takes for

the first ACK to arrive after the first packet was sent is equal

to bm1 þ mp þ 2ðI1 þ I2Þ:

Note that this expression assumes that there are at least b

packets in a window so that the receiver can immediately

return an ACK upon receipt of the bth packet. If for example

wo ¼ 1 and b ¼ 2; then the receiver may have to wait for the

delayed ACK timer to expired to return an ACK. For

simplicity in the rest of our analysis, we will ignore this

difference, which can be taken into account by straightfor-

ward modifications to our model. The total time it takes to

transfer the file is then

TeðMÞ ¼ Mm1 þ I1 þ I2 þ mp þ
XK21

k¼1

½bm1 þ mp

þ 2ðI1 þ I2Þ2 tkðm1Þ�
þ ð5Þ

where ½a�þ ¼ a for a positive and 0 otherwise. K is

calculated by replacing the server’s initial window size,

ssthresh and maximum window size in Eq. (3). This latency

reflects the total transmission time, the time that the server

spends waiting for ACKs, and the time for the last window

to reach the client.

When m1 , mp; packets could build up at the proxy

waiting to be transmitted into the slower link and

experience additional queueing delay at the proxy. In

this case the ACKs of the same window arrive at the

server approximately mp apart instead of m1; thus the

server may need to wait for every ACK of the same

window instead of stalling after sending out the entire

window. We derive the latency by examining from the

client’s side. Since mp . m1; the client receives packets of

the same window continuously at rate 1=mp: The time that

the client is idle is therefore ½m1 þ mp þ 2ðI1 þ I2Þ þ

ðb 2 1Þmp 2 tkðmpÞ�
þ; where tkðmpÞ is the time it takes the

client to receive the kth window, and tkð·Þ is given by Eq.

(4). The latency is then

TeðMÞ ¼ Mmp þ I1 þ I2 þ m1 þ
XK21

k¼1

½bmp

þ m1þ2ðI1 þ I2Þ2 tkðmpÞ�
þ ð6Þ

which reflects the time the client spends receiving the file,

waiting for the next window, and the time for the first

window to reach the client. Defining Re as

Re ¼ minðm1;mpÞ þ bmaxðm1;mpÞ þ 2ðI1 þ I2Þ ð7Þ

Eqs. (5) and (6) can be combined to obtain the following

proposition

Proposition 1. The latency of transmitting a file of M

packets using an end-to-end connection is

TeðMÞ ¼ Mmaxðm1;mpÞ þ I1 þ I2 þ minðmp;m1Þ

þ
XK21

k¼1

½Re 2 tkðmaxðm1;mpÞÞ�
þ ð8Þ

K ¼

min k :
Xk

i¼1

wori21 $ M

()
; if k # S

min k :
XS

i¼1

wori21 þ
Xk

i¼Sþ1

Wss þ
i 2 S 2 1

b

� �
$ M

()
; if S , k # Mx

min k :
XS

i¼1

wori21 þ
XMx

i¼Sþ1

Wss þ
i 2 S 2 1

b

� �
þ

Xk

i¼Mxþ1

Wmax $ M

8<
:

9=
;; if Mx , k

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975964

3.2. Delay of a split connection

When the proxy is used, we have two serial connections.

Note that these two connections are not independent but

coupled by data. This is because the second connection

(proxy–client) cannot send any data packets it has not

received from the first connection (server–proxy) and

therefore is constrained. This can be caused by a much

larger initial window size and/or a much shorter RTT on the

second connection. In this scenario, the second connection

has a limited source depending on the sending of the first

connection. In what follows we will first study the case

where the server is fast enough so that the proxy is never

constrained by unavailability of data, then study the case

where the proxy–client connection may be constrained by

the first connection.

3.2.1. Unconstrained proxy–client connection

The fact that the second connection is never

constrained by the first connection could imply wo $

w0
o;m1 # mp and/or I1 # I2; where w0

o is the proxy’s

initial window size. In the following we assume that I1 ,

I2; and that the server’s initial window size is greater or

equal to that of the proxy. Since a larger initial window

size of the server–proxy connection does not change the

end-to-end latency (for additional packets will simply be

queued at the proxy), we consider cases where both

connections use the same initial window size. We also

assume that mp $ m1: For an initial window size of wo;

assuming both connections use the same Wss and Wmax;

we get S;Mx; and K as shown in Eqs. (1)–(3), for both

connections. The proxy receives the first packet from the

server at time m1 þ I1: Assuming there is tp delay for

TCP processing, the proxy starts sending this packet to

the client at time m1 þ I1 þ tp: From this point on, we

only need to focus on the second connection since the

latency is only determined by this connection.

We therefore have the following result on the latency

of a split connection.

Proposition 2. The latency of transmitting a file of M

packets using a split connection where the proxy is never

constrained by unavailability of data is

TpðMÞ ¼ m1 þ I1 þ tp þ Mmp þ
XK 021

k¼1

½R2 2 tkðmpÞ�
þ þ I2

ð9Þ

where tkð·Þ is given in Eq. (4), K 0 is the total number of

windows needed for the transfer (calculated by replacing

proxy’s initial window size, ssthresh and maximum window

in Eq. (3)), and R2 ¼ bmp þ 2I2 is the time it takes for the

ACK to come back to the proxy.

This latency reflects the initial delay for the first packet

to arrive at the proxy, the total transmission time at the

proxy, stall time and the time for the last packet to reach

the client.

Fig. 3 compares the numerical results from our model

with NS-2 simulation, for both the end-to-end and split

connections. In this case, C1 ¼ Cp ¼ C2 ¼ 1 Mbps: The

initial window size is set to 1 and 4, respectively. Unless

pointed out explicitly, our numerical results and simu-

lation throughout this paper are based on the following

parameters: MSS ¼ 512 bytes, Wss ¼ 128 segments. Each

graph contains four curves, two from NS-2 simulation

(sim) and two from our model (mod). We see that each

pair (sim and mod) overlaps almost completely. This

shows that our analysis in the unconstrained proxy case is

very accurate.

3.2.2. Constrained proxy–client connection

The conditions under which the proxy–client connec-

tion can be modeled as an infinite source, i.e. wo $

w0
o;m1 # mp or I1 # I2 in a lossless situation, may be

Fig. 3. Latency vs. file sizes, with initial window size of 1 and 4, respectively. I1 ¼ 150 ms; I2 ¼ 250 ms:

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 965

reasonably satisfied when the proxy–client link is a

satellite link (for GEO satellite, the most commonly used

for data communications, the one-way propagation delay

is 250 ms), but is not in general true for a terrestrial

wireless link. When these conditions do not hold, it may

take certain period of time for the server– proxy

connection to catch up with the proxy–client connection

when the proxy starts sending packets at full window

size, or it may never catch up with the proxy–client

connection. During this period, the proxy–client connec-

tion will be constrained by the availability of packets to

send, in addition to its window size. The dynamics of the

connection with such limited source model is much more

difficult to analyze, and it is not clear whether the file

transfer latency can be found in a closed form as before.

Below we develop a fluid flow based model to describe

the coupling between the two connections, by defining

the sending rates of the server and proxy as functions of

time. This model can then be used to compute the file

transfer latency of a split connection.

Assuming lossless links, the speed of a connection is

mainly determined by the initial window size and the

RTT (assuming fixed Wss). We will define R2 ¼

2I2 þ bmp for the proxy–client connection as before,

and similarly define R1 ¼ 2I1 þ bm1 for the server–proxy

connection. Both values represent the time it takes for an

ACK to reach the data sender over its respective

connection.

There are four possible cases: (1) wo . w0
o and R1 # R2;

the server–proxy connection is always going to be faster

than the proxy–client connection, so the analysis in Section

3.2.1 can be applied; (2) wo , w0
o and R1 . R2; the server–

proxy connection can never catch up with the proxy–client

connection; (3) wo , w0
o and R1 # R2; the server–proxy

connection may eventually catch up depending on the file

size; (4) wo . w0
o and R1 . R2; which is exactly the

opposite of (3). In this case, the proxy–client connection

may be able to send at full window size for some time, but

eventually will be constrained by the server–proxy

connection depending on the file size. Here we mainly

focus on cases (1)–(3) by noting that similar analysis can be

used for case (4) as well.

Let sðtÞ; pðtÞ; WsðtÞ; WpðtÞ be the sending rate (in

packets per second) and the congestion window size of

the server and the proxy at time t; respectively. Let NsðtÞ

and NpðtÞ denote the total number of packets sent by the

sever and proxy up to time t; respectively. Wss and W 0
ss

denote the slow-start threshold of the two connections,

respectively. To simplify our analysis, we will further

assume that the pipe/link capacity is lower than, Wmax; i.e.

ðR1=m1Þ # Wmax; ðR2=mpÞ # Wmax; and therefore the trans-

mission is ultimately limited by the capacity of the link

rather than the maximum window size. This assumption is

adopted purely for simplicity of presentation and does not

affect the applicability of the analysis and the result it

provides.

Adopting the above notation, the window dynamics of

the server can be expressed as follows:

WsðtÞ¼

wor
t

R1 ; WsðtÞ,Wss

Wssþ
t2tss

bR1

; Wss#WsðtÞ,
R1

m1

min Wmax;
R1

m1

þ
ðt

tf

1

WsðtÞbm1

dt

� �
; otherwise

8>>>>>><
>>>>>>:

ð10Þ

where tss and tf are such that WsðtssÞ ¼ Wss;WsðtfÞ ¼

ðR1=m1Þ: The last equation can be shown to be

min Wmax;

ffiffiffiffiffiffiffiffiffiffiffiffi
2t

bm1

þ C

s()

where

C ¼
R1

m1

� �2

2
2tf

bm1

� �

The sending rate of the server is therefore

sðtÞ ¼ min
WsðtÞ

R1

;
1

m1

� �

¼

wo

R1

r
t

R1 ; t # tss

Wss

R1

þ
t 2 tss

bR2
1

; tss , t # tf

1

m1

; tf , t

8>>>>>>><
>>>>>>>:

ð11Þ

The number of packets sent by the server up to time t is

NsðtÞ ¼

ðWsðt þ R1Þ2 woÞb; t , tss

Nss þ
ðt

tss

WsðtÞ

R1

dt; tss # t , tf

Nf þ
t 2 tf
m1

; tf , t

8>>>>><
>>>>>:

¼

wo

r 2 1
r

tþR1

R1 2 1

� �
; t , tss

Nss þ
Wssðt 2 tssÞ

R1

þ
ðt 2 tssÞ

2

2bR2
1

; tss # t , tf ð12Þ

Nf þ
t 2 tf
m1

; tf , t

8>>>>>>>><
>>>>>>>>:

where Nss ¼ NsðtssÞ; Nf ¼ NsðtfÞ: The proxy’s transmission

depends on the amount of packets received from the server

in addition to its congestion window size, and thus

pðtÞ ¼ min sðt 2 I1 2 m1Þ;
WpðtÞ

R2

;
1

mp

()
ð13Þ

that is, the proxy sending rate is governed by the receiving

rate from the server, its congestion window size and its

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975966

transmission capability. We want to find tp; the time at

which the proxy–client connection is no longer constrained

by the server–proxy connection, i.e. tp is the smallest of all t

such that

pðtÞ ¼ min
WpðtÞ

R2

;
1

mp

()

For any t # tp; pðtÞ ¼ sðt 2 I1 2 m1Þ; NpðtÞ ¼

Nsðt 2 I1 2 m1Þ: For a file of size M; if tp exists and

Npðt
pÞ # M; then the server–proxy connection catches up

with the proxy–client connection sometime before the

transfer is completed (tp ¼ 0 corresponds to case (1)

discussed earlier). The time it takes to transfer the remaining

M 2 NpðtpÞ packets, denoted by TeðM 2 Npðt
pÞÞ can be

derived using methods described in Section 3.1 for the end-

to-end connection, with initial window size Wpðt
pÞ and end-

to-end round-trip delay R2: The total latency of the file

transfer is then TpðMÞ ¼ tp þ TeðM 2 Npðt
pÞÞ:

If Npðt
pÞ . M or tp does not exist, then the proxy–client

connection is constrained by the server–proxy connection

throughout the entire file transfer period. In this case, the

total latency in transferring the file can be approximated by

TpðMÞ ¼ t0 þ I2; where t0 is such that Npðt
0Þ ¼ M:

What remain to be calculated are tp and Wpðt
pÞ: For

t # tp;

WpðtÞ ¼

w0
o þ

Npðt2R2Þ

b
; WpðtÞ, W 0

ss

W 0
ss þ

ðt

t0ss

pðt2 I2 2mpÞ

bWpðtÞ
dt; W 0

ss # WpðtÞ,
R2

mp

R2

mp

þ
ðt

tf0

1

bmpWpðtÞ
dt;

R2

mp

, WpðtÞ# Wmax

8>>>>>>>><
>>>>>>>>:

¼

w0
oþ

Nsðt2R22 I12m1Þ

b
; WpðtÞ,W 0

ss

2

b
Nsðt2 I12 I22m12mpÞþC1

� �1=2

; W 0
ss #WpðtÞ,

R2

mp

2t

bmp

þC2

 !1=2

;
R2

mp

,WpðtÞ

8>>>>>>>><
>>>>>>>>:

where Wpðt
0
ssÞ ¼ W 0

ss; Wpðt
0
fÞ ¼ R2=mp; C1 ¼ W 0

ss2 2

ð2=bÞNsðt
0
ss 2 I1 2 mpÞ;

C2 ¼
R2

mp

 !2

2
2t0f
bmp

 !

Combining Eqs. (13) and (14), we can compute tp: Fig. 4

compares the results of the above model with simulation. In

the first case the proxy–client connection has a larger initial

window size and the server–proxy connection catches up at

roughly tp ¼ 0:54 s. In the second case, the proxy–client

connection is not constrained. We see that since this is a

continuous fluid-based model, there is discrepancy between

the prediction and the actual evolution of the number of

transmitted packets (which is discrete). But overall it

provides quite accurate estimates.

We now show how the asymmetry in the RTT of the two

links affects the proxy performance by using the above

model. Suppose wo # w0
o and R1 . R2; i.e. the proxy–client

connection is constrained by the server–proxy connection

throughout the entire file transfer. Further assume that

the file transfer is only limited to the slow-start phase.

Using Eq. (12),

Npðt
0Þ ¼ Nsðt

0 2 I1 2m1Þ ¼
wo

r 2 1
r

t0þR12I12m1

R1 2 1

 !
¼ M

ð15Þ

Therefore

t0 ¼ R1 logr

Mðr 2 1Þ

wo

þ 1

� �
2 R1 þ I1 þ m1;

and

TpðMÞ ¼ t0 þ I2 ¼ R1 logr

Mðr 2 1Þ

wo

þ 1

� �
2 I1 þ I2

< R1 logr

Mðr 2 1Þ

wo

þ 1

� �

with an error within half of R1:

Suppose we now let R1 , R2; but keep R1 þ R2

unchanged, and let wo . w0
o; then using the analysis in

Section 3.2 we get

TpðMÞ ¼ R2 logr

Mðr 2 1Þ

w0
o

þ 1

� �

while the latency of end-to-end connection remains the

same

TeðMÞ ¼ ðR1 þ R2Þlogr

Mðr 2 1Þ

wo

þ 1

� �

We see that when using the proxy, the longer connection of

the two ðmax{R1;R2}Þ determines the total latency. As the

difference between the two RTTs increases, the gain from

using the proxy reduces. In this scenario the performance of

the proxy is maximized when the two connections are

‘similar’, i.e. R1 < R2;wo < w0
o: Similar argument can also

be used for file transfers that enter congestion avoidance

phase. This is an interesting observation considering the fact

that many such proxies are used or proposed to be used in a

heterogeneous environment where links have very different

properties. This indicates that while it is very important to

optimize each link separately, it is equally important to

minimize the asymmetry between links since if separate

optimization only increases the difference, e.g. making the

fast link even faster, the resulting performance might not be

improved.

(14)

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 967

4. Delay analysis of a connection over lossy links

When losses (either due to congestion or link failure) are

present the analysis becomes more complicated. Moreover

the analysis is largely limited to the steady-state study of

TCP connections which is applicable in the case of an

unlimited file transfer, less accurate in the case of a finite

TCP connection, and much less in the case of a proxy as

shown in this section.

4.1. Server–proxy link lossless

If we assume that the server–proxy link is lossless, then

methods introduced in Refs. [7–9] can be applied to

determine the throughput and delay of the proxy–client

connection. In particular, the TCP bulk data transfer

throughput is shown to be well approximated by

lðRTT; pÞ ¼

ffiffiffiffiffiffi
3

2bp

s
1

RTT

where p is the probability of loss for a single packet at low

loss rate [9], and is more accurately approximated in Ref.

[8] by considering timeouts. These results were developed

for bulk TCP transfers and were based only on analysis of

the TCP congestion avoidance phase. In Ref. [7], it was

shown that they can be equally effective when applied to

short TCP connections if combined with slow-start phase

analysis.

The performance implication of using a proxy when

losses are present immediately follows: these results show

that the throughput of a TCP transfer is inversely

proportional to the connection RTT and the square root of

the loss rate. If losses are concentrated on the proxy–client

link, then using the proxy effectively isolates the part of the

connection that involves loss, and reduces the RTT required

to recover the losses, thus achieving higher throughput and

lower latency. The same key concept can be seen in schemes

such as Snoop TCP [12,13], WTCP [14,15], and [16,17] that

use local retransmission (some at the link layer, some at the

transport layer).

Specifically, denoting the loss rate on the proxy–client

link by p2; and the throughput by lðRTT; p2Þ; the transfer

latency of a file of size M using end-to-end connection is

given by

Te ¼
XM
n¼0

pðnÞ TeðnÞ þ
M 2 n

lðRTT; p2Þ

� �

¼
XM
n¼1

pðnÞTeðnÞ þ
M 2 mloss

lð2ðI1 þ I2Þ; p2Þ
ð16Þ

where pðnÞ ¼ ð1 2 pÞnp for n , M and pðnÞ ¼ ð1 2 pÞM for

n ¼ M are the probability that n packets are successfully

sent before the first loss occurs.

mloss ¼
ð1 2 ð1 2 p2Þ

MÞð1 2 p2Þ

p2

þ 1

is the expected number of packets sent before the first loss

occurs. Teð·Þ is the latency function of an end-to-end

connection shown in Section 3.1.

When using the proxy, assuming that the proxy–client

connection is not constrained by the server–proxy connec-

tion (e.g. I1 , I2;m1 , m2Þ;

Tp ¼
XM
n¼1

pðnÞTpðnÞ þ
M 2 mloss

lð2I2; p2Þ
: ð17Þ

Fig. 4. Graph shows latency vs. file sizes using the proxy. I1 ¼ 100 ms; I2 ¼ 200 ms: One on the left: wo ¼ 1;w0
o ¼ 8 so the proxy–client connection is

constrained by the server–proxy connection; the one on the right: wo ¼ 8;w0
o ¼ 8 so the proxy–client connection is never constrained.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975968

The difference of the two (using results from Section 3) is

Te 2 Tp ¼
XM
n¼1

pðnÞðTeðnÞ2 TpðnÞÞþ
ðM 2mlossÞ

ffiffiffiffiffiffi
2bp2

pffiffi
3

p ð2I1Þ

<
XM
n¼1

pðnÞðkn 2 1Þ þ
ðM 2mlossÞ

ffiffiffiffiffiffi
2bp2

pffiffi
3

p

 !
ð2I1Þ

where kn is the number of windows needed to cover a file of

n segments. The approximation in the last equation is based

on the assumption that the link capacity is not filled during

the transfer of n packets. For a given file size and loss rate on

the proxy–client link, the first term of the above equation is

a constant, and the amount of gain in using the proxy

depends on the RTT of the server–proxy connection.

When the proxy–client connection is constrained by the

server–proxy connection, the effective throughput of the

second connection becomes min{lðR2; p2Þ; sðtÞ}: If the loss

is sufficiently low and the server–proxy link has a much

larger round-trip than the proxy–client link, then again the

delay could be dominated by the server–proxy connection.

Fig. 5 compares the latency obtained using this analysis

with the result from simulation, averaged over 50

independent runs. There is an obvious discrepancy between

the two curves. This is mainly due to the fact that the delay

model assumes that the connection goes into steady state

right after the first loss. The two curves eventually approach

each other as the file size increases (number of packets sent

in this figure). This is because for a large file transfer the

effect of the above assumption is diluted (since the effect of

steady state will dominate).

4.2. Random losses on both links

When losses are present on both links, using the

previous analysis for both connections provides only

gross approximation. Suppose the loss rates on the

server–proxy link and the proxy–client link are p1 and

p2; respectively. Assuming losses are independent, the

overall loss rate experienced by an end-to-end connection

is p ¼ p1 þ p2 2 p1p2: For an infinite file transfer, in the

long run the server–proxy connection has an average

throughput

l1 ¼

ffiffiffiffiffiffiffi
3

2bp1

s
1

R1

and the proxy–client connection has an average throughput

l2 ¼

ffiffiffiffiffiffiffi
3

2bp2

s
1

R2

if unconstrained by the server–proxy connection. The

slower one of the two is going to dominate the combined

throughput and delay. However, both values are greater

than the throughput of the end-to-end connection

l ¼

ffiffiffiffiffiffi
3

2bp

s
1

R1 þ R2

since it has a larger loss rate and a larger RTT. Therefore

by segregating the server–client connection into parts that

each has a smaller loss rate and RTT, using the proxy

achieves higher throughput and thus lower latency.

For a finite file transfer, the latency of the end-to-end

connection is given by Eq. (16) with loss rate p: When using

the proxy, we consider m1;m2; the expected number of

packets sent successfully before the first packet loss occurs

to the two connections, respectively. The two connections

have bulk transfer throughput l1 ¼ lð2ðI1 þ I2Þ þ

mp; p1Þ; l2 ¼ lð2I2; p2Þ; respectively. Since we have com-

plete characterization ðsðtÞ;WsðtÞ;NsðtÞÞ of the server for the

first m1 packets from Section 3.2.2, and using l1 as an

approximation to the remaining of the transfer, the

characterization of the proxy can be obtained by listing all

possible cases comparing m1 and m2; Teðm1Þ and Tpðm1Þ; l1

and l2: Fig. 6 compares the results obtained using this

approach to that of simulation. It can be seen that the two do

not match for a wide range of file sizes. Indeed the

discrepancy seems to diverge. Our conclusion is that the

bulk TCP (infinite source) throughput/latency model is

insufficient to accurately predict the latency of a short file

(finite source) transfer using a proxy with losses on both

links, due to the complicated dynamics caused by random

losses and the coupling between two connections. In Section

4.3, we investigate an alternative model.

4.3. An alternative latency model for short file transfers

The reason that the previous analysis is not accurate

enough is because the throughput model for bulk TCP

transfer only gives the steady-state throughput. The latency

model built on this throughput model considers the time
Fig. 5. Latency when splitting is used, where the first link lossless, I1 ¼ 50

ms; I2 ¼ 100 ms; p2 ¼ 0:005:

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 969

spent in the slow-start phase, but assumes that the

connection reaches steady state right after the initial

slow-start is ended (when the congestion control phase is

first entered). This is in general not true. For example,

Fig. 7 illustrates the window size evolution of TCP

(averaged over 50 independent connections) for the same

scenario shown in Fig. 6. We see that after the initial

slow-start ended (i.e. after the first loss) there is a certain

‘transient period’ before the connection reaches the steady

state (when the window size stabilizes). In this case, it

takes a relatively long time for TCP to achieve this steady

state after the first loss. Therefore assuming that the

steady state is immediately reached can result in

significant error in estimating the connection throughput

and latency when the connection is short.

In Ref. [18], we developed the following TCP window

evolution model to take into account this transient period

and it results in very accurate estimate of short file transfer

latency over an end-to-end connection, also shown in Fig. 7.

We divide the TCP window evolution into three distinct

regions: the slow-start phase where the window grows

exponentially, the congestion control transient phase (which

approximately decays exponentially), and the steady state,

as illustrated in Fig. 8.

The detailed derivation of this model can be found in

Ref. [18]. In Ref. [18] this model has been shown to give

very accurate latency estimate for an end-to-end connec-

tion under a wide range of file sizes. However, this

alternative model again fails to provide satisfying

quantitative estimate when a proxy is used. This is

mainly due to the complex coupling relationship between

the two split connections. Nevertheless, in Section 5 we

will use this alternative model as shown in Fig. 8 to show

qualitatively some interesting effects connection asymme-

try has on proxy performance.

5. Analysis and discussions

In this section we use the models developed in previous

sections to further examine a number of factors that affect

the performance comparison of an end-to-end connection

and a split connection. Specifically we will first use the

lossless latency model to analyze the implication of the

initial window size, a slow or congested proxy, and file

sizes. This is not a completely realistic scenario, never-

theless insights are obtained via certain simplification

especially for short file transfers. We will then use the

alternative model presented in Section 4.3 to study a few

special cases where the server–proxy connection and the

proxy–client connection are highly asymmetric in terms of

their steady-state sending rate.
Fig. 7. Congestion window size for the case where I1 ¼ 100 ms; I2 ¼ 200

ms; p1 ¼ 0:01; p2 ¼ 0:005:

Fig. 8. Summary of the congestion window evolution of TCP.

Fig. 6. Latency when splitting is used with losses on both links, I1 ¼ 100

ms; I2 ¼ 200 ms; p1 ¼ 0:01; p2 ¼ 0:005:

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975970

5.1. Initial window size

From the definition of S and Mx;

S ¼ logr

Wss

wo

� �� �
; Mx ¼ bðWmax 2 WssÞ þ S

Consider a file that finishes transferring within the slow-start

phase, the total number of windows needed to cover the file,

K, would be such that time K # S: Since

M #
XK
i¼1

wori21 ¼ wo

rK21

r 2 1

this means

M #
Wss 2 wo

ðr 2 1Þ

K is the smallest integer that satisfies

M # wo

rK 2 1

r 2 1

therefore,

K ¼ logr

M

wo

ðr 2 1Þ þ 1

� �� �
< logr

M

wo

ðr 2 1Þ þ 1

� �
þ 1

Assuming m1Wss # Re; i.e. the link (or pipe) capacity is not

filled during slow-start, and m1 , mp that the proxy is

slower than the server, we have

Te ¼ Mmp þ ðK 2 1ÞRe 2
XK21

k¼1

work21mp þ I1 þ I2

þ m1 < Re logr

M

wo

ðr 2 1Þ þ 1

� �
þ C1 ð18Þ

where C1 ¼ I1 þ I2 þ m1: This last equation is the same as

presented in Ref. [7], but derived in a different way.

Similarly, for an initial window size w0
o used by the

proxy, assuming mpWss # R2; we have

K 0 ¼ logr

M

w0
o

ðr 2 1Þ þ 1

� �� �
< logr

M

w0
o

ðr 2 1Þ þ 1

� �
þ 1

and

Tp < R2 logr

M

w0
o

ðr 2 1Þ þ 1

� �
þ C2 ð19Þ

where C2 ¼ I1 þ I2 þ m1 þ tp: Note that C1 < C2 and both

are close to one half of Re: Since Re . R2;wo has to be

greater than w0
o in order to achieve the same delay. More

specifically,

M

wo

ðr 2 1Þ þ 1

� �Re

<
M

wo

ðr 2 1Þ þ 1

� �R2

leads to

wo ¼
Mðr 2 1Þ

M

w0
o

ðr 2 1Þ þ 1

� �R2=Re

21

Table 1 shows some values of M and wo based on this

approximation for r ¼ 2; w0
o ¼ 1; R2=Re ¼ 0:5 and Wss ¼

128 segments. We see that in order to achieve similar

latency even for relatively small files we need significantly

larger initial window size for the end-to-end connection.

5.2. Slow or congested proxy

When the same initial window size wo is used, the

difference in delay between the two is

Te 2 Tp ¼ ðRe 2 R2Þlogr

M

wo

ðr 2 1Þ2 1

� �

¼ ð2I1 þ m1Þlogr

M

wo

ðr 2 1Þ2 1

� �
ð20Þ

This difference increase as M and I1 increase, but seems

invariant to changes in mp: As mp increases, which

corresponds to a slower proxy, the difference in delay

remains constant so long as mpwork21 # R2 for any k # K:

However, as mp keeps increasing to the point where the pipe

is filled before the file transfer completes, the difference

quickly reduces. In particular, if this is achieved during the

keth window for the end-to-end connection, i.e.

mpworke21 $ Re; then

ke ¼ logr

Re

mpwo

 !
þ 1

& ’

and

Te < Mmp þ Relogr

Re

mpwo

 !
2

Re 2mpwo

r 2 1
þ I1 þ I2 þm1

ð21Þ

We can get a similar expression for Tp; and thus

Te 2 Tp < Relogr

Re

mpwo

 !
2 R2logr

R2

mpw0
o

 !

þ
mpðwo 2 w0

oÞ2 2I1 2 m1

r 2 1
ð22Þ

This expression decreases as mp increases. This result can be

clearly observed in Fig. 9. A slower proxy (increased mp and

decreased transmission rate) can be viewed as an approxi-

mation to a busier or more congested proxy, because under

such situation each TCP connection only gets a fraction of

the total proxy capacity (assuming the proxy has sufficient

buffer), and queuing is increased. This result shows that as

the proxy becomes busy, the gain from using separate

connections reduces because the bottleneck dominates

the overall performance no matter which scheme we use.

Table 1

Initial window size of the end-to-end connection

File size (kbytes) 10 20 25 30 35

wo 5 7 8 9 9

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 971

In a system where a proxy is placed at the aggregation point

of incoming traffic, adequate provisioning of such a proxy

becomes very important since otherwise very little is gained

from using a proxy.

5.3. File size

In the case where the file transfer enters the congestion

avoidance stage, i.e.

M .
Wss 2 wo

r 2 1

similar analysis apply and we have

Te ¼ Mmp þ Reðke 2 1Þ2
Xke21

k¼1

tkðmpÞ þ I1 þ I2 þ m1 ð23Þ

Tp ¼ Mmp þ R2ðk
0
e 2 1Þ2

Xke21

k¼1

tkðmpÞ þ I1 þ I2 þ m1 þ tp

ð24Þ

where ke and k0e are the total number of windows

sent before the pipe becomes full for the end-to-end

and the split connection, respectively. In case when

the file finishes transfer before the pipe is full, ke ¼ k0e ¼

K; and the difference between the two is mainly

ðRe 2 R2ÞðK 2 1Þ; which increases as M increases (K

increases with M). However, if M is large enough and the

pipe is filled up before the transfer completes, then the

difference between the two stays constant, and both

increase with rate mp as the file size increases. This can be

observed in Fig. 10.

5.4. Connection with asymmetric segments

In Section 3.2.2 we briefly compared the performance of

an end-to-end connection and a split connection when the

two segments of the connection are highly asymmetric in

terms of their respective RTTs when losses are ignored.

Here we use the alternative model presented in Section 4.3

Fig. 9. Latency vs. Cp; the transmission rate of the proxy. File size is 11 and 51 kbytes, for the graph on the left and right, respectively. C1 ¼ C2 ¼ 1 Mbps in

both cases. These graphs are derived from our model.

Fig. 10. Latency vs. file size. For small files the latency of an end-to-end connection increases faster than that of split connections. However as file size grow big

enough to fill up the capacity, the two have same growth rate and the difference stays constant. These graphs are derived from our model.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975972

to re-examine the effect of connection asymmetry when

losses are taken into account.

Using the model in Fig. 8 and the fact that the

sending rate is the ratio between the congestion window

size and RTT, we have the characterization of the

sending rate of both segments/links that looks like Fig. 8.

We will call this the unlimited sending rate of a segment.

To simplify our discussion, we will define a segment to

dominate another segment, if the unlimited sending rate

of the first segment is less than or equal to the unlimited

sending rate of the second segment at all times.

Intuitively one may expect the dominant link to

determine the overall performance, i.e. the overall latency

of the connection is primarily determined by the

dominant link.

(1) Case I: server–proxy link dominant, R2 p R1; p1 <
p2 : The comparison between the server window evolution

of an end-to-end connection and a split connection is

summarized in Fig. 11. Fig. 11 can be explained as the

following. When splitting is used the server merely sees the

loss in the server–proxy link q1; but when the connection is

end-to-end, the loss seen by the server is equal to p ¼

p1 þ p2 2 p1p2; which is larger than the loss seen in the

splitting case. Thus, the average window size where the

congestion avoidance starts is smaller than in the end-to-end

case. Also because of the larger loss probability the steady-

sate window size

<

ffiffiffiffiffiffi
3

2bp

s !

is smaller in the end-to-end case, thus justifying Fig. 11.

The comparison between the server sending rate in two

cases are approximately the same as shown in Fig. 11

since the RTTs seen by the server in both cases are

approximately R1:

(2) Case II: server–proxy link dominant, R1 p R1 þ

R2; p2 p p1 : This is a case where the delay on the proxy–

client link is significant, but due to much higher error

probability on the server–proxy link, the latter dominates.

The comparison between the server sending rate in two

cases are qualitatively shown in Fig. 12. It should be

obvious that the average server window size evolution is the

same in both cases, since the server perceived error is

approximately the case in both cases ð< p1Þ: Thus the server

sending rate when splitting is used is higher, since the server

perceived RTT is much smaller in the splitting case (R1 vs.

R1 þ R2Þ: Therefore the ratio between the steady-state

throughput in the end-to-end case and the splitting case is

approximately

R1 þ R2

R1

There are some interesting observations. We see that in

Case I, where the second link is very short and lossy,

splitting does not give any gain for small file transfers (until

point P in Fig. 11). As the file-size increases, splitting

becomes more effective in decreasing the latency. In Case

II, where the second link is much less lossy, we have

splitting gain even for very small files and the difference

between the end-to-end and splitting cases increases as the

file-size increases.

Case III: proxy–client link dominant, R1 p R2; p1 <
p2 : When the proxy–client is dominant, in the end-to-end

case the sending rate of the proxy is essentially a time

shifted version of the server sending rate. Therefore, the

comparison between the two cases reduces to the

comparison between the proxy sending rate in the two

cases. Since the proxy sees a much lower error probability

in the splitting case, under the condition that R1 p R2;

p1 < p2; the comparison is very similar to that shown in

Fig. 11.

Case IV: proxy–client link dominant, R1 p R2; p1 < p2 :

this is a case where the proxy–client link is much worse

than the server–proxy link. Since p ¼ p1 þ p2 2 p1p2 < p2

and R1 þ R2 < R2; the server perceived error probability

and RTT in the end-to-end case are approximately the same
Fig. 11. Comparison between server window evolution of end-to-end and

splitting cases (Case I).

Fig. 12. Comparison between server sending rate of end-to-end and splitting

cases (Case II).

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 973

as that perceived by the proxy in the splitting case. This

results in similar proxy sending rate (a shifted version of the

server sending rate) in the end-to-end case as in the splitting

case. Therefore in this case, the two result in very similar

performance. In other words, using connection splitting

provides very little performance gain.

To summarize, the overall observation in the lossy

scenario remains the same as in the lossless scenario.

That is, when the performance in terms of file transfer

latency over the two links is significantly different,

connection splitting provides limited gain. This suggests

that the placement of the proxy should be such that the

two segments result in as similar performance as

possible.

6. Conclusion

In this study we examined using proxy as a way of

improving TCP performance in various situations. Such

proxies typically break an end-to-end connection into two

segments, such as a spoofing proxy. We developed models

to investigate the TCP dynamics when proxies are used and

compared its performance with end-to-end TCP connection.

We summarize our observations and conclusions as

follows.

In general using proxy (or separate TCP connections)

results in lower latency from our analysis. For an end-to-

end connection this can be compensated by increasing the

initial window size. However, as we show in Table 1, it

requires significantly larger initial window size even for

reasonably small file sizes, which makes it less practical

in real applications. When the proxy becomes the

bottleneck, the gain from using the proxy quickly

diminishes. In systems where such a proxy is positioned

at a place that all connections have to go through, e.g. in a

satellite system the proxy is co-located with the satellite

gateway so that all connections go through the proxy, the

performance gain from the proxy can be limited especially

during busy hours. This may also cause buffer overflow at

the proxy, or cause the proxy to advertise smaller receive

window size, which we did not consider explicitly in this

paper. When this is the case, queueing becomes severe

and packets quickly build up at the proxy, especially if in

addition I1 is much smaller than I2. It is therefore

important to properly provision such systems and

implement some form of dynamic flow control at the

proxy. This may be prevented by using a much larger

initial window size over the proxy–client link.

A proxy achieves the effect of localizing error/loss

recovery and in general improves the throughput and

reduces latency of a connection when losses are present.

One of the common situations where proxies are used is a

heterogeneous environment where parts segregated by the

proxy have very different link characteristics, e.g. propa-

gation delay, loss rate, etc. Interestingly, the performance

gain in using a proxy is maximized when both parts have

similar properties. Since the slower part always dominates

the overall performance, as the level of asymmetry

increases, the performance gap between using a proxy and

using an end-to-end connection becomes smaller. This

implies that while it is important to separately optimize

these heterogeneous parts of the connection, it is also

important that such optimization reduces the asymmetry

between them.

It is worth pointing out that for a cache proxy when

there is a hit the resulting connection is simply between

the client and the cache proxy, so all our analysis on

end-to-end connections applies with a smaller RTT. This

essentially cuts down the size of the connection needed

if not using a proxy and achieves better throughput and

latency. Throughout our analysis we assumed that the

time it takes to transmit an ACK is negligible and that

the return channel is the same as the forward channel

(ACK path same as the data path). As pointed out in

Ref. [19], asymmetry increases TCP’s sensitivity to

random packet losses, and adjustments to our models are

needed.

References

[1] V.G. Bharadwaj, Improving TCP performance over high-bandwidth

geostationary satellite links, Tech. Rep. MS 99-12, Institute for

Systems Research, University of Maryland, College Park, 1999,

http://www.isr.umd.edu/TechReports/ISR/1999/.

[2] A. Bakre, B.R. Badrinath, I-TCP: indirect TCP for mobile hosts,

Proceedings of the IEEE ICDCS, 1995, pp. 136–143.

[3] A.V. Bakre, B.R. Badrinath, Implementation and performance

evaluation of indirect TCP, IEEE Trans. Comput. 46 (3) (1997)

260–278.

[4] K. Brown, S. Singh, A network architecture for mobile computing,

IEEE INFOCOM (1996) 1388–1396.

[5] S. Sibal, P. Rodriguez, O. Spatscheck, TPOT: translucent proxying of

TCP, Tech. Rep., AT & T labs—Research and EURECOM Technical

Report, 2000.

[6] M. Karir, IPSEC and the Internet, Tech. Rep. MS 99-14, Institute for

Systems Research, University of Maryland, College Park, 1999,

http://www.isr.umd.edu/TechReports/ISR/1999/.

[7] N. Cardwell, S. Savage, T. Anderson, Modeling TCP latency, IEEE

INFOCOM (2000).

[8] J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP reno

performance: a simple model and its empirical validation, IEEE

Trans. Netw. 8 (2) (2000) 133–145.

[9] T.V. Lakshman, U. Madhow, The performance of TCP/IP for

networks with high bandwidth-delay products and random loss,

IEEE Trans. Netw. 5 (3) (1997) 336–350.

[10] J. Kurose, K. Rose, Computer networking, a top-down approach

featuring the Internet.

[11] M. Allman, V. Paxson, On estimating end-to-end network path

properties, SIGCOMM (1999).

[12] H. Balakrishnan, S. Seshan, E. Amir, R.H. Katz, Improving TCP/IP

performance over wireless networks, ACM/IEEE Int. Conf. Mobile

Comput. Netw. (MobiCom’95) 2 (11) (1995).

[13] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, R.H. Katz, A

comparison of mechanisms for improving TCP performance over

wireless links, IEEE/ACM Trans. Netw. 5 (6) (1997) 756–769.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975974

http://www.isr.umd.edu/TechReports/ISR/1999/
http://www.isr.umd.edu/TechReports/ISR/1999/

[14] K. Ratnam, I. Matta, WTCP: an efficient mechanism for improving

TCP performance over wireless links, Proceedings of the IEEE ISCC,

1998, pp. 74–78.

[15] K. Ratnam, I. Matta, Effect of local retransmission at wireless access

points on the round trip time estimation of TCP, Proceedings of the

31st Annual Simulation Symposium (1998) 150–156.

[16] C. Parsa, J.J. Garcia-Luna-Aceves, Improving TCP performance over

wireless network at the link layer, ACM Mobile Netw. Appl. J. (1999).

[17] C. Parsa, J.J. Garcia-Luna-Aceves, TULIP: a link-level protocol for

improving TCP over wireless links, Proceedings of the IEEE

WCNC’99, 1999, pp. 1253–1257.

[18] N. Ehsan, M. Liu, Analysis of TCP Transient behavior and its effect

on file transfer latency, May 2003, Anchorage, AK.

[19] T.V. Lakshman, U. Madhow, B. Suter, TCP performance with random

loss and bidirectional congestion, IEEE Trans. Netw. 8 (5) (2000)

541–555.

N. Ehsan, M. Liu / Computer Communications 27 (2004) 961–975 975

	Modeling TCP performance with proxies
	Introduction
	Split connection and the network model
	Network model
	Assumptions and parameters

	Delay analysis of a connection over lossless links
	Delay of an end-to-end connection
	Delay of a split connection

	Delay analysis of a connection over lossy links
	Server-proxy link lossless
	Random losses on both links
	An alternative latency model for short file transfers

	Analysis and discussions
	Initial window size
	Slow or congested proxy
	File size
	Connection with asymmetric segments

	Conclusion
	References

