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Abstract—Existing work on pursuit-evasion problems typically
either assumes stationary or heuristic behavior of one side and
examines countermeasures of the other, or assumes both sides
to be strategic which leads to a game theoretical framework.
Results from the former may lack robustness against changes
in the adversarial behavior, while those from the latter are often
difficult to justify due to the implied full information (either as
realizations or as distributions) and rationality, both of which may
be limited in practice. In this paper, we take a different approach
by assuming an intelligent pursuer/evader that is adaptive to the
information available to it and is capable of learning over time with
performance guarantee. Within this context we investigate two
cases. In the first case we assume either the evader or the pursuer
is aware of the type of learning algorithm used by the opponent,
while in the second case neither side has such information and
thus must try to learn. We show that the optimal policies in the
first case have a greedy nature, hiding/seeking in the location
that the opponent is the least/most likely to appear. This result
is then used to assess the performance of the learning algorithms
that both sides employ in the second case, which is shown to be
mutually optimal and there is no loss for either side compared to
the case when it completely knows the adaptive pattern used by
the adversary and responses optimally.

I. INTRODUCTION

The pursuit-evasion (or hide-and-seek) problem models a

variety of applications and has been extensively studied. For

instance, it can be used to model the pursuit of a moving target

by a radar or an unmanned vehicle [1], or a radio performing

channel switching in an attempt to hide from a jammer [2].

Existing work typically falls into two categories. The first

considers stationary or heuristic behavior of one side and ex-

amines corresponding countermeasures of the other. Examples

include [3], [4], [5], [6] and the references therein, that assume

a stationary target (the evader) hiding in any of a set of

locations with known prior probabilities. Variants of this model

include, e.g., [7] that uses a random prior probability of hiding

in a given location, and [8] where the detection probability

is random with known distribution. Search problems with a

moving evader have also been extensively studied. However,

the evasion is typically either independent of the pursuer’s

activity, or heuristically given without clearly defined rationale

or performance guarantee, see e.g., [9], where the evader’s

motion is given by a discrete-time Markov chain independent

of the pursuer’s activity, and [10] for a similar, continuous-

time formulation. The second category assumes both sides

to be strategic, leading to a game theoretical framework. A

typical method is to use differential games [11] to capture
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the continuous evolution; in fact, the pursuit-evasion problem

bears the genesis of differential games. See also [12], [13],

[14] for texts and examples of differential games and their

application in the pursuit-evasion problem. We note that results

from the first category may lack robustness against changes in

the adversarial behavior, while those from the second category

are often difficult to justify due to the implied full information

(either as realizations or as distributions) and rationality, both

of which may be limited in practice.

In this paper, we take a different approach by assuming an

adaptive pursuer or evader that is simply capable of learning

over time, and investigate the resulting decision problems. In

other words we assume the pursuer is able to adapt over time

using its observations of the evader’s behavior; it need not

possess all the information available to the evader nor does

it presume that the evader is rational. The same applies to the

evader.

To model the adaptive behavior of the pursuer or the evader,

we will employ online learning algorithms developed for

the class of adversarial or non-stochastic multi-armed bandit

problems [15], [16], which provide robust and considerable

performance guarantee, without assuming any probabilistic

model of the underlying reward process. We then investigate

two cases. In the first case we assume either the evader or

the pursuer is aware of the type of learning algorithm used by

the opponent, while in the second case we consider the more

realistic scenario when neither side has such information and

thus both must try to learn. We show that the optimal policies

in the first case have a greedy nature, hiding/seeking in the

location least/most likely searched/used by the opponent. We

also examine the use of a decoy by the evader to sufficiently

mislead the pursuer’s learning process. These results are then

used to assess the performance of the learning algorithms that

both sides employ in the second case, which is shown to be

mutually optimal. Furthermore, there is no loss for either side

compared to the case when it knows the adaptive pattern of the

adversary and responses optimally.

The remainder of the paper is organized as follows. Section II

describes the system model and the problem formulation,

followed by the two cases in Sections III, IV and Section V,

respectively. Section VI concludes the paper. All proofs of our

results can be found in the appendix unless otherwise noted.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Consider the repeated hide-and-seek interaction between a

pursuer and an evader in discrete time. At each time step
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t, the evader selects one of m locations, indexed by the set

C = {1, 2, . . . ,m}, to hide in, while the pursuer searches

possibly multiple locations simultaneously. The evader’s and

the pursuer’s behavior are generally described by their re-

spective sets of marginal probabilities τ(t) = (τk(t))k∈C and

α(t) = (αk(t))k∈C , where τk(t) and αk(t) are the respective

probabilities that the kth location is chosen by the evader and

the pursuer at time t; we will also call τ(t) and α(t) the the

adversarial behavior with respect to one’s opponent at time t.
There are two interpretations of τ(t) and α(t): they can describe

randomized strategies of the players, or a probabilistic belief

possessed by one side about the likelihood of an action by the

other side.

The evader’s objective is to maximize its total number of

successful evasion, while the pursuer aims to maximize its total

number of successful pursuit. Within this context we investigate

two cases. In the first case, we assume either the evader or

the pursuer knows the type of learning algorithm or decision

process used by its opponent (Section III and IV), while in the

second case both sides have no such information (Section V).

This leads to different perceptions one side has on the other as

we elaborate below.

We define two sets of variables zk(t) and xk(t) such that

zk(t) = 1 if the pursuer does not search location k at time t,
and zk(t) = 0 otherwise, while xk(t) = 1 if the evader hides

at location k at time t, and xk(t) = 0 otherwise. When the

evader (or the pursuer) knows the type of algorithm/reasoning

the pursuer (resp. the evader) uses, it may regard zk(t) (re-

sp. xk(t)) as stochastic, i.e., assuming its opponent behaves

probabilistically according to P (zk(t) = 0) = αk(t) (resp.

P (xk(t) = 1) = τk(t)), though the value of this probability

may be unknown to the evader (resp. the pursuer). Accordingly,

if the evader knows the behavior pattern of the pursuer, the

expected utility it derives from using location k, denoted by Uk,

is given by Uk(t) = 1 − αk(t). Symmetrically, if the pursuer

is the side with such knowledge, its expected utility from

searching location k, denoted by Vk, is given by Vk(t) = τk(t).
Note that Uk and Vk are essentially the average numbers of

successful evasion and pursuit at this location if chosen.

When the evader (or the pursuer) has no such information,

it may regard zk(t) (or xk(t)) as a predetermined but unknown

number. Accordingly, the evader’s utility of choosing location

k in this case is given by Uk(t) = zk(t), while for the pursuer’s

utility, Vk(t) = xk(t).

B. Formulation: against known adaptive search/evasion

In Sections III and IV, we assume either the evader or the

pursuer knows the type of adaptive algorithm used by the

other, and seeks to make optimal location selections so as to

maximally evade/discover the opponent in repeated interaction.

For simplicity of presentation, in the following we assume

the evader is the party with the knowledge as in Section III;

the other case can be formulated similarly. Specifically, the

evader assumes the pursuer behaves probabilistically as the

latter indeed does, and knows the value of the adversarial

behavior α(t) at the beginning of the time slot t. α(t) is a

vector of probability distribution and will be referred to as

the state of the system at t and may be random itself. We

describe the pursuit pattern in detail in Section III-A. Thus,

the evader perceives the pursuer activity zk(t) as stochastic.

Results obtained in this section are then used as benchmarks

when we examine the more realistic situation where both sides

do not presume to know the other’s adaptive behavior.

We assume that the evader has perfect recall of all past

states and control actions, though later (c.f. the remarks after

Theorem 3) it is shown that this assumption can be significantly

weakened. At time t, the evader decides the control action

π(t) ∈ C, i.e., the location to hide in, as a function of the

history of system states, past control actions, and a private

randomization device that is independent from any activity of

the pursuer (to allow randomized strategies):

π(t) = γt(α
[t], π[t−1], ω(t)),

where α[t] := (α(1), . . . , α(t)) with π[t−1] similarly defined,

and (ω(t), t = 1, 2, . . .) denotes the private randomization

device. The control policy is given by γ = (γt, t ≥ 1) and Γ
denotes the policy space. Given a location selection sequence

π = (π(1), π(2), . . .) under policy γ, the evader receives an

expected reward rπ(t) = Uπ(t)(t) = 1−απ(t)(t) at time t, and

considers the following two reward maximization problems,

maximize
γ∈Γ

E

{

T
∑

t=1

rπ(t)

}

, (1)

and

maximize
γ∈Γ

lim inf
T→∞

E

{

1

T

T
∑

t=1

rπ(t)

}

, (2)

where the expectation is w.r.t. the randomness of system states

and the private randomization device.

For the case when the pursuer holds the knowledge on the

evader, we will denote the pursuer’s control rule and control

policy by λt and λ, respectively, with Λ being the policy

space, and (θ(t), t = 1, 2, . . .) its private randomization device.

We also denote by ξ = (ξ(1), ξ(2), . . .) the induced location

selection sequence, and by bξ(t) = Vξ(t)(t) = τξ(t)(t) the

expect reward of the pursuer at time t. A similar problem can

then be formulated in parallel.

C. Formulation: against unknown adversarial behavior

In Section V, we consider the more practical scenario where

neither side has the information on the adaptive behavior of

the opponent. Both sides hence regard zk(t) and xk(t) as

predetermined but unknown numbers, respectively. We assume

the evader can observe the value of zk(t) of the selected

location after the action at time t, and so can the pursuer for the

value of xk(t). We also assume both sides have perfect recall of

past observations and control actions, and the resulting control

actions are given by

π(t) = γt(z
[t−1]
π , π[t−1], ω(t)),

and

ξ(t) = λt(x
[t−1]
ξ , ξ[t−1], θ(t)),
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where z
[t−1]
π := (zπ(1)(1), . . . , zπ(t−1)(t − 1)) with x

[t−1]
ξ

similarly defined. We also define the control policies γ and λ,

and the policy spaces Γ and Λ in parallel. The evader receives a

reward rπ(t) = Uπ(t)(t) = zπ(t)(t) at each time t; the pursuer

receives bξ(t) = Vξ(t)(t) = xξ(t)(t). Both sides consider the

similar reward maximization problems as in the previous case,

with the expectation in the objective taken w.r.t. the randomness

of private randomization devices.

Note that the objectives typically cannot be directly evaluated

by either side in this case, given the unknown and non-

stochastic nature of the opponent. The optimal control in

this setting is typically addressed in the framework of non-

stochastic online learning, where the existing literature focuses

on minimizing the (weak) regret of a strategy compared to a

best single-action strategy. These online learning techniques are

employed as our main model for the adaptive behavior of either

side.

III. OPTIMAL EVASION AGAINST ADAPTIVE PURSUIT

A. Against single-location pursuit

We start by considering a pursuer who is only capable of

searching one location at a time. Both sides decide which

location to use (for hiding or searching) at the beginning of a

time slot and cannot change their mind till the next slot. Both

sides also receive feedback by the end of a slot: the evader finds

out whether it has been discovered by the pursuer, while the

pursuer finds out which location the evader has been hiding.

In other words, we assume the pursuer could scan through the

locations to find out after the fact the evader’s action, although

it needs to make the right decision a priori in order to make

the pursuit effective (e.g., to have the right resources in place).

The pursuer is not assumed to know the evader’s decision

making rationale, and thus regards the evader activity variable

xk(t) as deterministic but unknown. Given the full information

on past activity in all locations to the pursuer, we assume it

adopts the Hedge algorithm introduced by Auer et al. [15];

this is a variant of the original Hedge algorithm introduced

by Freund and Schapire [17], within the line of work on

multiplicative weights learning [18] (see [19] for an in-depth

survey and references therein). Hedge is an online learning

algorithm in the adversarial multi-arm bandit setting [15], [16],

which presumes no probabilistic behavior of the opponent

(in our case, the evader). It is shown to guarantee an order-

optimal sublinear weak regret, which in our context translates

into sublinear “missing” of discovery opportunities compared

to always searching the (hindsight) most active/used location

under an arbitrary evasion policy.

Formally, let x(t) := (xk(t), ∀k ∈ C) for t = 1, · · · , T over a

finite horizon T . For any search sequence ξ = (ξ(1), ξ(2), . . .)
and a fixed sequence of evasion (x(1), x(2), . . .), the total

reward of the pursuer at T , denoted by Gξ(T ), is given by

Gξ(T ) =

T
∑

t=1

bξ(t) =

T
∑

t=1

Vξ(t)(t) =

T
∑

t=1

xξ(t)(t),

while the maximum reward from consistently searching the

most evader-active location is

Gmax(T ) = max
k∈C

T
∑

t=1

Vk(t) = max
k∈C

T
∑

t=1

xk(t).

Hedge aims to minimize the gap (i.e., regret) between its total

reward GHedge and Gmax, by selecting locations randomly

using an adaptive probability distribution based on past evader

activities: it selects the most rewarding (evader-active) location

seen in the past with the highest probability. The algorithm is

shown below.

Hedge

Parameter: A real number a > 1.

Initialization: Set Gk(0) := 0 for all k ∈ C.

Repeat for t = 1, 2, . . . , T

1) Choose location kt according to the distribution α(t) =
(α1(t), αt(t), . . . , αm(t)) on C, where

αk(t) =
aGk(t−1)

∑m
j=1 a

Gj(t−1)

2) Observe (reward) vector (x1(t), x2(t), . . . , xm(t)).
3) Set Gk(t) = Gk(t− 1) + xk(t) for all k ∈ C.

The performance of Hedge is formally characterized by the

following theorem from [15].

Theorem 1: If a = 1 +
√

2 ln(m)/T , then EGHedge(T ) ≥
Gmax(T ) −

√
2T lnm, where the expectation is w.r.t. the

randomness in the actions taken by Hedge.

Under our assumption, the evader knows the fact that the

pursuer is using Hedge and its initial condition1. Due to its per-

fect recall of past actions, it maintains the correct belief about

the evolution of the adversarial behavior απ(t) determined

by Hedge. In principle, the finite-horizon problem (1) can

be solved backwards using dynamic programming. However,

we will first try to argue intuitively what the optimal policy

should behave like. Since Hedge has a sublinear regret for

the pursuer, if the evader favors one location, the pursuer

will eventually identify this most evader-active location and

search it at a rate linear in T and miss it at a rate no more

than sublinear in T . It follows that the best strategy for the

evader is to use each location equally, either deterministically

or stochastically. This intuition indeed provides the precise

solution to the infinite-horizon problem (2) as shown below.

Let r∞ := lim infT→∞ E{ 1
T

∑T
t=1 r

π(t)}. Denote by g the

location selection sequence of the greedy policy γgreedy, where

g(t) ∈ argmink∈C αg
k(t) for all t. Note that the greedy

policy can be deterministic, i.e., independent of the private

randomization device ω(t) or in the case of ω(t) being a

constant.

Theorem 2: r∞ ≤ m−1
m for any policy γ, and the greedy

policy achieves this upper bound.

1This is to simplify the presentation; it is possible for the evader to estimate
the initial condition of Hedge. The resulting policy however is much more
complex than the greedy policy derived here.
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Proof: Note that

EGπ
Hedge(T ) = E

{

T
∑

t=1

xπ
ξ(t)(t)

}

=

T
∑

t=1

m
∑

k=1

xπ
k (t)α

π
k (t)

=

T
∑

t=1

απ
π(t)(t) = T −

T
∑

t=1

rπ(t)

for any realization of π. Therefore,

r∞ = 1− lim sup
T→∞

E

{

1

T
EGπ

Hedge(T )

}

≤ 1− lim sup
T→∞

E

{

1

T
(Gπ

max(T )−
√
2T lnm)

}

= 1− lim sup
T→∞

E

{

1

T
Gπ

max(T )

}

≤ m− 1

m
,

for all γ, where the outer expectation is over the randomness

of the private randomization device, and the last inequality is

due to the fact Gπ
max(T ) ≥ T

m for any π.

Under the greedy policy we have αg
g(t)(t) ≤ 1

m and hence

rg(t) ≥ m−1
m for any t, which implies that using γgreedy, r∞ ≥

m−1
m , i.e., the greedy policy is optimal.

Without loss of generality, we will assume under the greedy

policy ties are broken in favor of the lowest-indexed location.

Note that since γgreedy always selects the location least likely to

be searched, it eventually (in finite time) leads to equal weights

over all locations even if the initial weights under Hedge is

unequal. Once the weights are equal, the evader’s action is a

simple round robin, using locations in the order 1, 2, · · · ,m.

The above proof also suggests that any policy that results in

an equal frequency of presence on each location has the same

infinite-horizon average reward, thus asymptotically optimal.

It should be noted that these equi-occupancy polices are not

necessarily optimal for the finite-horizon problem posed in (1)

as we elaborate at the end of this subsection. The greedy policy,

however, is in fact also optimal over the finite horizon. Below

we prove this result for a two-location scenario so as to avoid

letting technicalities obscure the main idea. The general case

is stated in a theorem. For simplicity we drop the superscript

π when this dependence is clear from the context.

Lemma 1: In a two-location scenario, the optimal finite-

horizon policy yields π(t) = k if αk(t) < 1/2, k = 1, 2,

and π(t) can be either 1 or 2 when α1(t) = α2(t) = 1/2.

Proof: For any policy, let ∆(t) := |G1(t)−G2(t)|; this is

the difference between the number of times locations 1 and 2

have been used by the end of slot t. Thus |∆(t+1)−∆(t)| = 1
for all t. An example of ∆(t) up to T is shown in Figure 1: an

edge connecting two adjacent time points represents a particular

location selection, a down edge indicating the selection of a

currently under-utilized location. At t we have

r(t) =

{

a∆(t−1)

1+a∆(t−1) , ∆(t) < ∆(t− 1)
1

1+a∆(t−1) , ∆(t) > ∆(t− 1)
.

Suppose along any trajectory of ∆(t) there exists a point

∆(t) = d ≥ 2 such that either of the following cases is true:

(C1) d − 1 = ∆(t − 1) = ∆(t + 1) < ∆(t), t < T ; or

(C2) ∆(T − 1) < ∆(T ). Then consider a change of policy by

“folding” the point at t down in (C1) and the point at T in

(C2), as shown by the dashed line in the figure. Clearly, we

would only change the reward collected at time t and t+1 for

the case (C1) and the reward at time T for (C2). Let r′ denote

the reward of this alternate policy. For (C1) we have

r′(t) + r′(t+ 1)− r(t) − r(t+ 1)

=
ad−1

1 + ad−1
+

1

1 + ad−2
− 1

1 + ad−1
− ad

1 + ad

=
1

1 + ad
+

1

1 + ad−2
− 2

1 + ad−1
> 0

as 1
1+ax is strictly convex in x for x > 0. It is clear the reward

also increases in (C2) with this change. Thus the reward can

always be increased by folding down such “peaks” if they exist.

This eventually leads us to the greedy policy where ∆(t) ≤ 1
at all times.

t t+ 1t - 1

(C1) (C2)
TT

· · · · · · · · ·

- 1

Fig. 1. The change of policy in two cases.

Theorem 3: The greedy policy is optimal for the finite-

horizon problem (1).

Note that α(t) can be recursively updated as follows:

απ
k (t+ 1) =

απ
k (t)a

1π(t)=k

∑

j∈C α
π
j (t)a

1π(t)=j
,

with 1{·} being the indicator function. It is therefore only

necessary for the evader to recall/store the last control action

and the last system state. The same result can also be extended

to the case where the evader is able to hide and perform its

operation in multiple locations simultaneously.

In Figure 2 we plot the finite-horizon (expected) average

reward for the greedy and a randomized uniform policy that

selects either location with equal probability in a two-location

scenario. Our infinite-horizon proof suggests that this latter

policy is asymptotically optimal; it is however clearly not

optimal for the finite-horizon problem. Based on the proof

of Theorem 2, analytically the finite-horizon average reward

rT := 1
T

∑T
t=1 r(t) of the greedy policy is given by

rT =
1

T



⌊T/m⌋
m
∑

j=1

r(j) +

(T mod m)
∑

j=1

r(j)





where r(j) = 1− 1
ja+(m−j) , while the expected average reward

of the uniform policy is simply m−1
m . Note that in this two-

location example, the zigzag in the reward of the greedy policy

when T is small is due to the fact that the single-step reward

at an even step is higher than an odd step.
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Fig. 2. The finite-horizon (expected) average reward of the greed policy and
the uniform policy in a two-location example.

We conclude this part by noting that our formulation im-

plicitly assumes zero detection error when the pursuer selects

the right location; similar results can be obtained for the more

general case of positive detection error.

B. Against multi-location pursuit

We next consider a pursuer capable of searching M > 1
locations simultaneously, with all other assumptions being the

same. Accordingly, we assume the pursuer employs the fol-

lowing multiple-play (search) extension of the Hedge algorithm

called Hedge-M 2.

Hedge-M

Parameter: A real number a > 1.

Initialization: Set wk(1) := 1 for all k ∈ C.

Repeat for t = 1, 2, . . . , T
1) If maxk∈C

wk(t)∑
m
j=1 wj(t)

> 1
M , then compute v(t) such that

v(t)
∑

k:wk(t)≥v(t) v(t) +
∑

k:wk(t)<v(t) wk(t)
=

1

M
,

and set C0(t) := {k : wk(t) ≥ vt}. Otherwise, set

C0(t) := ∅.

2) Set

w′
k(t) =

{

v(t), k ∈ C0(t)
wk(t), k ∈ C \ C0(t)

.

3) Let α(t) = (α1(t), αt(t), . . . , αm(t)) where

αk(t) = M
w′

k(t)
∑m

j=1 w
′
j(t)

,

and choose M locations with the marginal distribution

α, using a subroutine Dependent Rounding that returns

the set C1(t) of locations selected.

4) Observe (reward) vector (x1(t), x2(t), . . . , xm(t)).
5) Set

wk(t+ 1) =

{

wk(t), k ∈ C0(t)
wk(t)a

xk(t), k ∈ C \ C0(t)
.

2Hedge-M is reverse-engineered from the algorithm Exp3.M [20], which is
a multiple-play algorithm with partial information (the pursuer only observes
activities in locations it searched).

The subroutine Dependent Rounding [21] draws M out of

m items with the given marginal distribution, and can be

found in the appendix. For any arbitrary searching strategy

A = (CM (1), CM (2), . . .), where CM (t) is the set of M
locations searched at time t, the total reward of the pursuer

is given by GA(T ) =
∑T

t=1

∑

k∈CM (t) xk(t). The maximum

reward Gmax of searching the M most evader-active locations

is similarly re-defined. The following result shows that Hedge-

M also has a sublinear regret w.r.t. consistently searching the

(hindsight) M most evader-active locations; the proof is based

on that of Hedge [15] and Exp3.M [20].

Theorem 4: If a = 1 +
√

2 ln(m/M)/(MT ), then

EGHedge-M(T ) ≥ Gmax(T ) −
√

2 ln(m/M)MT , the expec-

tation over the randomness in the actions taken by Hedge-M.

We first show the optimality of the greedy policy for the

infinite-horizon problem. Using the same argument as in the

proof of Theorem 2, we have

r∞ ≤ 1− lim sup
T→∞

E

{

1

T
Gπ

max(T )

}

≤ m−M

m

for any policy, since Gπ
max(T ) >

TM
m for any π in the multiple-

search case. On the other hand, the greedy policy yields αg
g(t) ≤

M
m and hence rg(t) ≥ m−M

m for any t. Therefore, using γgreedy,

we have r∞ ≥ m−M
m , which shows the optimality of the greedy

policy. With a bit more effort compared to the single-location

pursuit case, we can also obtain the optimality result for the

finite-horizon problem. The proof is based on reducing this case

to that proved in Theorem 3, and is omitted for brevity.

Theorem 5: The greedy policy is optimal for both the finite-

and infinite-horizon problems under the multi-location pursuit.

C. Using a decoy

We now consider the effect of using a decoy by the evader, a

device capable of performing similar operations as the evader,

and indistinguishable to the pursuer (i.e., a double)3. Intuitively,

the introduction of a decoy can artificially create the impression

of a “most evader-active” location so as to attract a majority

of the searches, thereby allowing the evader to perform “under

the radar” in a location less likely to be searched.

Indeed, this idea can be immediately verified in the infinite-

horizon problem, assuming the pursuer is only capable of

single-location pursuit. Define a greedy decoy (GD) policy by

letting the decoy and the evader respectively select the locations

with the highest and the lowest probabilities (the worst and the

best locations) to be searched. This policy causes the decoy to

persistently transmit in one location, and the evader to use other

locations in a round-robin fashion. With a similar argument:

r(t) ≥ 1− a⌈t/(m−1)⌉

at + (m− 1)a⌊t/(m−1)⌋
→ 1

as t → ∞. Hence,

r∞ = lim
T→∞

1

T

T
∑

t=1

rg(t) = lim
t→∞

rg(t) = 1.

3In the jamming application, the decoy can be a regular but much cheaper
transceiver, one without the ability to receive or perform channel switching.
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This asymptotic performance is asymptotically optimal and less

careful schemes can result in much inferior gain. For example,

if the evader and the decoy respectively select the best and

the second best locations in each time slot (referred to as the

doubly greedy (G2) policy), we have

r∞ = lim
T→∞

2

m

m/2−1
∑

j=0

m− 2j − 1 + 2ja

m− 2j + 2ja
=

m− 1

m
,

assuming m even for simplicity. In Figure 3, we plot the finite-

horizon average reward for the greedy decoy (GD) policy,

the doubly greedy (G2) policy, and the original greedy policy

without a decoy (GwoD) as a baseline. As can be seen, GD

significantly outperforms the others.

10
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10
2

10
3

0.7

0.75

0.8

0.85

0.9

0.95

1

T

r
π T

 

 

GD - analytical
G2 - analytical
GwoD - analytical
GD - simulation
G2 - simulation
GwoD - simulation

Fig. 3. The finite-horizon average reward of the greedy decoy (GD) policy, the
doubly greedy (G2) policy, and the greedy policy without the decoy (GwoD)
in a system of four locations.

We now show that GD is also optimal for the finite-horizon

problem (1). Note that Hedge can start from any (non-zero)

initial condition without affecting the scaling of the regret w.r.t.

the horizon. Given any set of the exponents of weights at t,
i.e., (Gk(t − 1))k∈C , let L(t) = argmaxk∈C Gk(t − 1). The

optimality result is then established using the following two

lemmas. The proof of Lemma 3 is similar to that of Theorem

3 and is thus omitted for brevity.

Lemma 2: For any given horizon T and any initial condition,

an optimal policy is such that the decoy always uses a location

from L(t) before the horizon and the evader from C \ L(t).
Lemma 3: Given the decoy always uses the worst location,

it is optimal for the evader to select the best location.

Combining these lemmas we have the following result.

Theorem 6: The greedy decoy policy is optimal for the

finite-horizon problem, i.e., it is optimal to let the decoy and

the evader respectively select the worst and the best locations

in each time slot.

The above result can be readily extended to the case when the

pursuer is capable of searching multiple locations simultaneous-

ly, with the evader deploying multiple decoys at or exceeding

the number of locations the pursuer is capable of searching.

We can obtain the same asymptotic performance as using a

single decoy against single-location pursuit. In essence, the use

of decoys “cancels out” or neutralizes the adversarial effect4.

Conversely, the pursuer can increase the number of locations

it searches (if it has the resources) to counter the effect of

decoys. However, the mere possibility of using a decoy can

create interesting and difficult dilemmas for the pursuer as we

elaborate in Section V-B.

IV. OPTIMAL PURSUIT AGAINST ADAPTIVE EVASION

We next consider the parallel problem for the pursuer when

the evader hides adaptively. We now have the opposite situation:

The evader does not know the decision process of the pursuer,

and regards its action zk(t) as a deterministic but unknown

value. Both sides receives feedback after a decision: the pursuer

on whether the search is successful, and the evader on which

location is searched regardless of its success. The evader adopts

the Hedge algorithm given its full information on the pursuer’s

action after the fact, and the pursuer is aware of the evader’s

using Hedge.

Due to the symmetry between this and the previous sections,

most results can be readily obtained similarly. For this reason

we only highlight the main difference and will limit our

attention to the single-location pursuit. To avoid ambiguity, we

separately introduce the notation for the evader’s version of

Hedge. Denote by Rk(t) the exponent of the weight assigned

to location k at time t, and Rk(t) = Rk(t − 1) + zk(t). The

probability that the evader chooses location k is then given by

τk(t) =
aRk(t−1)

∑
j∈C

aRj(t−1) . Denote by RHedge(T ) the total reward

of the evader at a horizon T under Hedge and by Rmax(T )
the total reward from consistently hiding in the least searched

location in hindsight. Recall that ξ = (ξ(1), ξ(2), . . .) denotes

the search sequence of a policy λ by the pursuer, and bξ(t) its

expected reward at time t. Observe that

ERξ
Hedge = E

{

T
∑

t=1

zξπ(t)(t)

}

=

T
∑

t=1

m
∑

k=1

zξk(t)τ
ξ
k (t)

=

T
∑

t=1

∑

k 6=ξ(t)

τξk (t) = T −
T
∑

t=1

bξ(t)

Let b∞ := lim infT→∞ E{ 1
T

∑T
t=1 b

ξ(t)}. Using a similar

argument as for the evader, we can obtain

b∞ ≤ 1− lim sup
T→∞

E

{

1

T
Rmax(T )

}

≤ 1

m

since Rmax(T ) ≥ T m−1
m for any ξ. Define a greedy policy

λgreedy, of which the search sequence is given by g̃(t) ∈
argmaxk∈C τ

g̃
k (t). It is clear that bg̃(t) ≥ 1

m , implying the

optimality of λgreedy for the infinite-horizon problem. The same

can be established for the finite-horizon problem. Consider the

two-location scenario in Section III as an example, and define

∆̃(t) := |R1(t)−R2(t)|. One can similarly find that

b(t) =

{

a∆̃(t−1)

1+a∆̃(t−1)
, ∆̃(t) < ∆̃(t− 1)

1
1+a∆̃(t−1)

, ∆̃(t) > ∆̃(t− 1)
.

4This greedy decoy policy can also be shown to be optimal over a finite
horizon against multi-location pursuit; the technical detail is omitted for brevity.
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Hence using the same argument, the optimality of λgreedy can

be shown.

Theorem 7: The greedy policy is optimal for the pursuer for

both the infinite- and finite-horizon problems when the evader

adopts Hedge.

V. AGAINST UNKNOWN ADVERSARIAL BEHAVIOR

We now turn to the more realistic case where both sides

presume no knowledge on the reasoning used by the opponent,

and accordingly employ their respective learning techniques.

A. Hiding versus multi-location seeking

We first consider the case when each side has full posterior

information on its adversary’s action, and thus respectively

adopts Hedge and Hedge-M as the hiding and seeking strate-

gies, though this fact is unknown to the other side. We have

seen from the weak regret results that 1
T ERHedge ≥ m−M

m +o(1)
and 1

T EGHedge-M ≥ M
m + o(1) when the pursuer can search M

locations simultaneously and the evader hides in one location,

where the o(1) terms are w.r.t. the growth of T . Hence,

r(Hedge;λ) ≥ m−M

m

when the evader uses Hedge and the pursuer uses a policy λ,

and

b(Hedge-M; γ) ≥ M

m
,

when the pursuer uses Hedge-M and the evader uses a policy

γ, where we explicitly denote the average reward as a function

of a chosen pair of policies. Note that r(γ;λ) + b(λ; γ) = 1
for any γ and λ. Therefore, the above inequalities become

equalities when Hedge and Hedge-M are respectively used.

That is, Hedge and Hedge-M are mutually best responses for

the infinite-horizon problem, and up to a diminishing term

over a finite horizon. Also note that the above results suggest

that Hedge results in the same average reward for the evader

compared to the case when it knows that the pursuer is using

Hedge-M and responds optimally (Section III-B). This shows

that there is no loss of optimality when using online learning

techniques against an unknown pursuer who happens to use a

similar algorithm.

Moreover, the above conclusion also holds when the evader

only gets to find out whether a search is conducted in the

location it happens to be hiding, but not otherwise (as opposed

to finding out after the fact the set of locations searched, as we

have previously assumed). This results in partial information

for the evader, and for this reason it can no longer use Hedge.

In this case a partial information counterpart Exp3 [15], [16]

can be used to update its probability τk(t) of choosing location

k in at t. Following the same line of argument, we can show

that Exp3 and Hedge-M are also mutually best responses. As

might have been realized, the mutual optimality is the result of

the sublinear-regret performance of these non-stochastic online

learning algorithms. For our hide-and-seek problem, the mutual

optimality holds for any pair of sublinear-regret algorithms.

B. Using a decoy

We re-examine the idea where the evader employs a decoy

but assumes no knowledge on the pursuer, which makes using

the decoy as a camouflage more difficult. Toward this end

we make the important observation that if there is a single

most evader-active location, then the pursuer can guarantee

sublinear weak regret if and only if all suboptimal locations are

searched with time sublinear in T . In other words, a strategy

that guarantees sublinear weak regret for the pursuer must

ultimately identify and aim for the most evader-active location.

Therefore, the evader can always use the decoy to “create” this

most evader-active location while performing operations in a

virtually search-free environment, by letting the decoy reside

in one location and using an algorithm like Exp3 on the rest

m−1 locations. This will result in an asymptotic average reward

of 1, the same as in the case when the adversarial behavior is

known.

Embedded in this observation is an interesting dilemma that

the pursuer faces in the presence of the possibility of a decoy

that it cannot distinguish. On one hand, if the pursuer adopts a

sublinear-regret algorithm like Hedge (or Hedge-M), arguably

the best class of algorithms to use under uncertainty, then it is

setting itself up for a very effective decoy defense by the evader,

so much so that its search is rendered useless (asymptotically).

This is the point illustrated above. On the other hand, if for

this reason the pursuer decides not to use such algorithms, then

it may face a worse outcome as the alternative algorithm may

provide no performance/regret guarantee. In this sense the mere

possibility or threat of using a decoy may be viewed as effective

defense.

VI. CONCLUDING REMARK

Modeling individual behavior from a learning perspective

as shown in this paper typically requires weaker knowledge

assumptions than a game theoretical framework does. Inter-

estingly, the convergence of these learning algorithms has

been shown to be closely related to game theoretical solu-

tion concepts [22]. The learning perspective thus provides a

different and possibly more natural angle to interpret certain

game-theoretic results. Extending the “two-player” scenario

investigated in this paper to groups of evaders and pursuers

is an interesting direction of future research.
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APPENDIX A

PROOFS

Proof of Theorem 3: Define ∆ij(t) := Gi(t) − Gj(t).
Then,

αk(t) =
1

∑m
j=1 a

∆jk(t−1)
,

and

rπ(t) =

∑

j 6=π(t) a
∆jπ(t)(t−1)

1 +
∑

j 6=π(t) a
∆jπ(t)(t−1)

.

Let K(t) = argmink∈C Gk(t), and define T = {t ≤ T :
maxk/∈K(t) ∆k,j(t) ≥ 2, j ∈ K(t)}. Suppose that T 6= ∅, and

let t0 = min T . Then, either (C1) there exists some time t1
with t0 < t1 ≤ T when some location j ∈ K(t0) is selected

for the first time after t0 by the evader or (C2) any location

j ∈ K(t0) is never selected by the horizon T .

Consider first the case (C1). Without loss of generality,

assume that the location selected at t1 − 1 is 2 and 1 is chosen

at t1. Let ∆ij(t1 − 1) = dij . Then,

• ∆ij(t1) = ∆ij(t1 + 1) = dij for all i, j ≥ 3;

• ∆1j(t1) = d1j for all j ≥ 3, ∆12(t1) = d12−1, ∆1j(t1+
1) = d1j + 1 for all j ≥ 3, and ∆12(t1) = d12;

• ∆2j(t1) = d2j + 1 for all j 6= 2, ∆2j(t1 + 1) = d2j + 1
for all j ≥ 3, and ∆21(t1 + 1) = d21.

Consider now a change of policy by selecting location 1 at

t1− 1 and location 2 at t1. Denote ∆ under this new policy by

∆′. Then,

• ∆′
ij(t1) = ∆′

ij(t1 + 1) = dij for all i, j ≥ 3.

• ∆′
1j(t1) = d1j + 1 for all j ≥ 2, ∆′

1j(t1 + 1) = d1j + 1
for all j ≥ 3, and ∆′

12(t1) = d12;

• ∆′
2j(t1) = d2j for all j ≥ 3, ∆′

21(t1) = d21−1, ∆′
2j(t1+

1) = d2j + 1 for all j ≥ 3, and ∆′
21(t1 + 1) = d21.

Hence, this change of policy only affects the reward of the

evader collected at t1 − 1 and t1. Denote by r′ the reward

under this alternative policy, and we have

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=

∑

k≥3 a
dk1 + ad21

1 +
∑

k≥3 a
dk1 + ad21

+

∑

k≥3 a
dk2 + ad12+1

1 +
∑

k≥3 a
dk2 + ad12+1

−
∑

k≥3 a
dk2 + ad12

1 +
∑

k≥3 a
dk2 + ad12

−
∑

k≥3 a
dk1 + ad21+1

1 +
∑

k≥3 a
dk1 + ad21+1

=
1

1 + C + ad21+1
+

1

1 +D + ad12

− 1

1 + C + ad21
− 1

1 +D + ad12+1
,

where C =
∑

k≥3 a
dk1 and D =

∑

k≥3 a
dk2 . Note that C =

Dad21 and d12 = −d21. Set d = d21, and we obtain

r′(t1 − 1) + r′(t1)− r(t1 − 1)− r(t1)

=
1

1 +Dad + ad+1
+

1

1 +D + a−d
− 1

1 +Dad + ad
−

− 1

1 +D + a−d+1
,

=
ad − ad+1

(1 +Dad + ad+1)(1 +Dad + ad)
+

+
a−d+1 − a−d

(1 +D + a−d)(1 +D + a−d+1)

=
(a2d−1 − ad−1)(a− 1)2

(1 +Dad + ad+1)(1 +Dad + ad)(1 +Dad−1 + ad−1)

> 0.

For (C2), it is clear that alternatively selecting location 1 at T
results in a higher reward.

Therefore, the optimal policy would never allow the differ-

ence between the times that any two locations are selected to be

greater than 2. In other word, the optimal policy always selects

the most under-utilized location. When there are multiple

locations with the same lowest number of times of the evader’s

presence, the evader would be indifferent in selecting any

location between/among them, since locations are symmetric

(and the reward is only related to the the relative difference

between the numbers of location usage).

Proof of Theorem 4: Let Wt :=
∑m

k=1 wk(t) and W ′
t :=

∑m
k=1 w

′
k(t), and let a = 1+θ for some θ > 0. Denote C\C0(t)

by Cc
0. Then, for any t ≤ T ,

Wt+1

Wt
=

∑

k∈Cc
0(t)

wk(t+ 1)

Wt
+

∑

k∈C0(t)

wk(t+ 1)

Wt
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=
∑

k∈Cc
0(t)

wk(t)

Wt
(1 + θ)xk(t) +

∑

k∈C0(t)

wk(t)

Wt

≤
∑

k∈Cc
0(t)

wk(t)

Wt
(1 + θxk(t)) +

∑

k∈C0(t)

wk(t)

Wt

= 1 + θ
∑

k∈Cc
0(t)

wk(t)

Wt
xk(t) = 1 + θ

W ′
t

Wt

∑

k∈Cc
0(t)

w′
k(t)

W ′
t

xk(t)

≤ 1 + θ
∑

k∈Cc
0(t)

αk(t)xk(t),

where the first inequality is due to the fact that xk(t) ∈ {0, 1}.

Therefore,

ln
WT+1

W1
=

T
∑

t=1

ln
Wt+1

Wt
≤

T
∑

t=1

ln



1 + θ
∑

k∈Cc
0(t)

αk(t)xk(t)





≤ θ

T
∑

t=1

∑

k∈Cc
0(t)

αk(t)xk(t) (3)

where the last inequality is due to ln(1+x) ≥ x. On the other

hand, let A∗ ⊂ C be the set of locations with the top M highest

total rewards, and then we have

ln
WT+1

W1
≥ ln

∑

k∈A∗ wk(T + 1)

W1

≥
∑

k∈A∗ lnwk(T + 1)

M
− ln

m

M

= ln(1 + θ)
∑

k∈A∗

∑

t:k∈Cc
0(t)

xk(t)− ln
m

M
(4)

where the second inequality is due to the inequality of arith-

metic and geometric means, 1
M

∑M
j=1 aj ≥

(

∏M
j=1 aj

)
1
M

.

Note that
∑

k∈A∗

∑

t:k∈C0(t)

xk(t) ≤
∑

t=1

∑

k∈C0(t)

xk(t)

=
∑

t=1

∑

k∈C0(t)

αk(t)xk(t). (5)

Combining (3) (4) and (5), we obtain

EGHedge-M =

T
∑

t=1

∑

k∈C

αk(t)xk(t)

≥ ln(1 + θ)

θ

∑

k∈A∗

T
∑

t=1

xk(t)−
ln(m/M)

θ

=
ln(1 + θ)

θ
Gmax −

ln(m/M)

θ

≥ Gmax −
θ

2
Gmax −

ln(m/M)

θ

≥ Gmax −
√

2 ln(m/M)MT

when θ =
√

2 ln(m/M)/(MT ), where the third inequality is

due to ln(1 + x) ≥ x(1 − x/2), and the last inequality is due

to the fact that Gmax ≤ MT .

Proof of Lemma 2: Given any initial condition

(Gk(0))k∈C , we can relabel locations such that 1 ∈
argmaxk∈C Gk(0). Since the choice of the decoy at T does

not affect the reward of the evader, we assume it always selects

from L(T ) for simplicity. We then prove by induction. For

T = 1, the claim is clearly true. Assume that the claim holds

for T = 1, 2, . . . , t′. For T = t′ + 1. At the first time slot,

suppose that using an optimal policy the decoy node selects

some location i such that Gi(0) < G1(0), and the evader selects

location j. If Gj(0) > Gi(0), we can always swap the choice of

the decoy and the evader to obtain a higher reward of the evader,

and hence Gj(0) ≤ Gi(0). Thus, 1 ∈ argmaxk∈C Gk(1). Then,

the rest t′ steps until reaching the horizon can be thought as

using Hedge with the initial condition (Gk(1))k∈C . Hence, by

the induction hypothesis, the decoy always selects a location

from L(t) from t = 2. It can be easily seen that some location

in L(t) is then always selected by the decoy until the horizon.

Without loss of generality, we assume that the decoy always

selects location 1. We also denote the location chosen by the

evader at time t by kt. Set dij(t) := Gi(t− 1)−Gj(t− 1) for

this optimal policy. At each time t > 1, we have

r(t) =

∑

l 6=kt,1,i
adlkt

(t) + ad1kt (t) + adikt
(t)

1 +
∑

l 6=kt,1,i
adlkt

(t) + ad1kt (t) + adikt
(t)

.

Consider now a change of policy by letting the decoy select

location 1 at the first slot, and keeping the choice of the evader

unchanged. The reward of the evader at each time t > 1
becomes

r′(t) =

∑

l 6=kt,1,i
adlkt

(t) + ad1kt (t)+1 + adikt
(t)−1

1 +
∑

l 6=kt,1,i
adlkt

(t) + ad1kt (t)+1 + adikt
(t)−1

> r(t),

since d1kt
(t) ≥ dikt

(t) for all t and a > 1, which is a

contradiction of the optimality, and the proof is then complete.

APPENDIX B

THE DEPENDENT ROUNDING

ALGORITHM

Dependent Rounding

Input: A marginal distribution (αk, k ∈ C) and a natural

number M < |C| such that
∑

k∈C αk = M .

Output: A subset C1 of C such that |C1| = M .

Initialization: pk = αk for all k ∈ C.

While {k ∈ C : 0 < pk < 1} 6= ∅ do

1) Choose distinct i and j with 0 < pi < 1 and 0 < pj < 1.

2) Set a = min{1− pi, pj} and b = min{pi, 1− pj}.

3) Update pi and pj as

(pi, pj) =

{

(pi + a, pj − a), w.p. b
a+b

(pi − b, pj + b), w.p. a
a+b

Return {k ∈ C : pk = 1}.


