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Abstract—We consider the optimal transmission power control
of a single wireless node with stochastic energy harvestingnd
an infinite/saturated queue with the objective of maximizig a
certain reward function, e.g., the total data rate. We devedp
simple control policies that achieve near optimal performace
in the finite-horizon case with finite energy storage. The sam
policies are shown to be asymptotically optimal in the infinie-
horizon case for sufficiently large energy storage. Such picies
are typically difficult to directly obtain using a Markov Dec ision
Process (MDP) formulation or through a dynamic programming
framework due to the computational complexity. We relate ou
results to those obtained in the unsaturated regime, and higight
a type of threshold-based policies that is universally opthal.

|. INTRODUCTION
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both problems. [6] revisits the completion time minimipati
problem, incorporating a deterministic data session alrpvo-
cess. In [7], the throughput maximization problem is adskds
using a geometric framework under a similar setting. They
have also solved the minimization problem with the intengst
observation of its connection to the throughput maximarati
counterpart. The above works all assume a packetized energy
arrival model with the exception of [8], where similar prebis
are solved assuming continuous energy arrival as well as-tim
varying battery capacity due to degradation and energyalgak
For throughput maximization it is generally assumed that th
data queue isaturated that is, the transmitter always has data
to transmit.

Harvesting renewable energy has been one of the moskigchastic energy harvesting has also been considered in th
exciting technological developments in recent years. 1@ thyterature, see e.g., [9], [10], [11] with similar objeati like
context of wireless communication such technologies pseMireward maximization as in the non-causal formulation, glon
to significantly alleviate the energy constraint that lowstcoith efficient online algorithms. [9] presented first a skstt
(mobile) wireless devices operate under and prolong thejsth characterization of the optimal policy for the finiterizon
operational lifetime, through harvesting ambient ligheah non-causal problem, and then an online algorithm that guara
vibration, etc; see e.g. [1], [2], [3] for more examples anges a fraction of the optimal performance when the estimfate

surveys. While such technologies will undoubtedly imprtwe

the energy replenishment rate has bounded deviationsOln [1

continuous operability of future wireless networks [4]isilso e throughput optimal policy, i.e., the data queue stzibij
important to note that the amount of renewable energy ablailaponcy that achieves the maximum throughput, is studied for
to a device usually fluctuates due to environmental factogssingle node using results fro¥/G/1 queues. In [11],
(e.g., in the case of wind and solar energy) with typically 10 the authors considered a rate maximization problem using an
replenishing rates. Consequently, for wireless networks Winfinite-horizon Markov Decision Process (MDP) framework
energy harvesting nodes, efficient energy management botyjth discount; main results include certain monotonicityda
terms of charging and discharging with quality of service® threshold properties of the optimal policy.

provisioning remains a cnncql ISsue and challgnge that hgontribution. In this paper, we consider the optimal transmis-
motivated extensive research in various application casite sjon power control of a single node with stochastic energy

Literature Overview[5], [6], [7], [8] have investigated optimal harvesting, assuming a saturated data queue, and we present
transmission policies with a non-causal formulation wheigmple yet near-optimal online algorithms.

future energy arrivals are assumed knowanpriori, which

results in deterministic optimization. In [5], two problem
are addressed through transmission power control, narhely t

maximization of reward (throughput, utility) given a deael

and the minimization of transmission completion time gieen

total reward objective; the optimal control is charactediZor

This work was partially supported by the NASA under grantsXOSAD47G
and NNX09AE91G.

o Compared to previous work on stochastic throughput
maximization in the saturated regime, we develop simple
and explicit control policies that achieve near-optimal
performance in the finite-horizon case with a finite bat-
tery capacity, and that are asymptotically optimal in the
infinite-horizon scenario with sufficiently large battery
capacity; such policies are typically difficult to directly
obtain from an MDP or dynamic programming framework



due to the curse of dimensionality. the maximum achievable average reward over this sample path
o We relate our results to those that have been obtained’,w) is upper bounded as follows,

previously in the unsaturated regime, and highlight a type T

of threshold policies that is universally optimal. (T, w) < T<Bi“it + Dm0 Be(w) >7
Organization.We proceed as follows. In Section I, we for- T+1
mulate the finite-horizon reward maximization problem witldue to the concavity of the reward function. We will call ttig
preliminary structural results, motivating a policy namgg deterministic non-causal bourmh the average reward, as the
of which performance bounds are derived in Section Ill. Wenergy causality and capacity limit may be violated at some
also consider the infinite-horizon reward maximization acS time instants in achieving this bound. Using the strong law

tion 111, and show that a limiting form of, is asymptotically of large numbers, we haviém sup;_, . 7(T) < r(£) almost
optimal as the battery capacity grows. We show numericglirely. As we shall see,(E) is an achievable upper bound on
results for the proposed heuristics in Section IV and cateluthe average reward for the infinite-horizon reward maxinigzra
in Section V. For the remainder of this paper, most proofs apgoblem.

omitted due to the space limit. In principle, (3) can be solved through the following dynami

program [12],

Il. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete-time energy packet arrival process Vr(z) = Oglz‘glgw r(p)

E;,t = 0,1,... that models the energy harvesting process of o -~ -

the node, and suppose that each packet assumes values in Yilz) = o?fgm{r(p) +EVipa (Xop)|Xe = 2, B = pl}

compact space&s C R, with an independent and identical t=0,1,....,7 -1,

distribution (i.i.d.) with a meat® over the sample spaée The . ] ) ]

arriving energy is stored in an on-board battery up to a dgpacvhere Vi(z) is the value function denoting the maximum

B. Assume that the data queue of the node is saturated, tigyard achievable at time under statez. Note first that

is, the node always has data to transmit. At each time step/” (#) = 7(x). FurthermoreX; is a controlled Markov process,

given any sample path of the energy arrivalss = 0, 1,. .., t, Fhus an opuma}l policy eX|_sts in the space of_ Markov policies

the node determines the transmission powetto use so as I-€, We can limit our attention to the set of policigs= g:(X)

to collect an amount of reward, = r(p;), wherer is a [12]. We proceed with the following preliminary results.

concave and increasing continuous function. Our objedive Lemma 1:The value functionV; is a concave and nonde-

to maximize the total amount of reward while satisfying thereasing function. MoreoveV; satisfies the following inequal-

energy constraint imposed by the energy harvesting procéys

and the battery capacity. Formally, |1&f; denote the ener N . _
y capacity y, let; ay e <{(T_t+1)r(%), if o >F

available in the battery after the energy arrival at timerhich =
r(z) + (T —t)r(E), if z <FE

evolves as follows,

(4)

X, =min{X, , —P_,+E,B}t=1,2,..., (1) forallt

. Remark 1:As a byproduct, the proof of Lemma 1 would
Xo = min{Bini; + Eo, B}, @ : yp - P

yield a feasible Markov policyg, namely,p, = g.(z¢) =

where Bi,;; is the initial level of the battery. The nodemin{wwt} for all ¢. This policy is intuitively appeal-
detgrmlqes the transmission power at timeas a function ing with the following interpretation. At time, this policy
of its hlStCiI‘y tOfl battery states and past actions. Formallygsentially selects the optimal transmission power stlifec
P = g.(X", P'77) with 0 < P, < X; for eacht, and the the current battery level, if future energy arrivals are stant
function g; is called the power control rule of the node agiven by its statistical mean. More generally, note firstt tha
time ¢. Denote byT' a finite time horizon, and denote thesimilar results as Lemma 1 can be obtained for the case

control policy, the collection of functions before the frum by \where the energy arrivals are independent but with nontickn

g = (90,91, -, 7). We then consider the following stochastigjistributions. In particular, lef;, be the mean value of;,
optimization: and a similar argument would give rise to the poligy =
llar ar
o T min{%, x;}. This policy in fact coincides with the
maximize J9 =E9S> "r(P,) ¢, (3) so called “directional water-filling algorithm” which hagén
t=0

shown to be optimal for the deterministic optimization give
where we use the superscript to emphasize the dependenceamcausal knowledge of all energy arrivals [5] (also foinyd
the control policy. Before proceeding, we introduce an uppfl3] under the name “staircase water-filling algorithm”).

bound on the optimum of (3), which we will then use as a This observation suggests that this policy may perform
benchmark to evaluate the performance of a given policyén tuite well if the energy arrival process has a small varmatio
rest of this paper. Suppose that a sample path of energplsrrivHowever, if the variation is large, due to the concavity of
fromt = 0 to ¢t = T is givena priori, namely { E;(w)}L, the objective function, instead of depleting the batteryewh
for somew € Q. Since ZtT:o Pi(w) < Binit + ZtT:o E,(w), specified by the above policy, it may be beneficial to reserve a



portion of storage in case the energy arrivals drop sigmifiga The above bound reveals how the parameéteray be adjusted
Accordingly we can modifyy as follows: according to the property of the energy arrival processhéf t
= arrival process has a small deviation, thgncan be close to
. [+ (T —t)E ) o )
py = min § ————— 0z, p whent < T, andpr = zp, its statistical mean /(T + 1) regardless of the choice éf In
T—-t+1 .
. . . this case we can choose a largeso that both terms would
where( < ¢ < 1. We will denote this policy by, and argue pe small; this corresponds to the intuition of using mosthe t
in the next section thag, can achieve a near-optimal averaggtored energy when one is fairly certain it would be repleais
reward. the next time instant. If on the other hand the arrival preces
I1l. OPTIMALITY ANALYSIS has a large deviation, then we have a tradeoff: a séhaibuld
keepp; close tol/(T+ 1) thereby keeping the first term small,

In this section, we first examine the poligy for the finite- : : : .
. L while causing the second term to increase. This corresponds
horizon reward maximization problem. Through a sequence S . o
fhe intuition that when there is greater uncertainty in gper

analysis combined with heuristic arguments, we charamteri . y . .
arrival, we may need to “save for a rainy day”.

Itzﬂ% \?ranrzggerwsrd;oiisggl:%w?itg?m of its near-optima We obtained the above result assuming that the battery has
P 1) W ' i pf_ ‘ imol I|3 ) led thenoli infinite capacity orB > (T' + 1) Emax. These assumptions are
) We consider first a simple policy calle POICY.  however unrealistic, but using the proposition below wewsho

p;\ = fﬁtt ft(;]r t= %t T _thl and pr = wr, gmdf tthat this assumption can be relaxed since dkmolicy in fact
show that the gap between the average reward o rPlésgularizes the battery level. Consider alternativelystenario

rudimentary policy and the non-causal bound can l?/ﬁwen the horizon is extended to the infinity when thpolicy

signiﬁcantly closed by properly tuning ) is applied and assume for the moment tBat> (T + 1) Emax-
2) We given reasons why, should outperform thé-policy Let 757 := min{¢ : X; < H} for some constan#l > % We

- ";] T:ny Ccases. ¢ subontimality . licit | ththen have the following result.
finite-horizon case, we show in the second part that theifigit . ~1oPOSition 1: Governed by thef-policy, s is finite. In
' P o particular, if By, < (% — 1) Emax thenX; < H for all ¢.

form of g, is in fact asymptotically optimal in the infinite- Remark 2:If the battery capacity satisfieB > Zzm. and

horizon case with increasing battery capacity. N . . 0
9 y capacty the initial level is as in the lemma, we would never lose eperg

A. Performance characterization of tiéepolicy packets due to the battery capacity constraint. Moreober, t
Assume for the time being that the battery capacity is irdinitrequired capacityB under this setting is much smaller than

or alternatively, it is sufficiently largeB > (T + 1)Emax, (1" +1)Emax that we supposed.

whereEma?< = sup S is the largest possiple value of_q s!ngl%_ g, versusd-policy

energy arrival. The stat&, then evolves without the minimiza-

tion operator. Assume zero initial battery level for singl,

Biniy = 0. Consider a sample path of energy arrivdls,}7,.

By the #-policy we have

The above bound suggests that thpolicy could be practi-
cally efficient despite its seemingly naiveness. We have pre
viously discussed why it may make sense to use ghe
. policy rather than thé&-policy. In the rest of this section, we

s s provide a heuristic argument for its performance advantage
pe= 0(1—60) e if t<T; pr=73 (1-6)" . when® = 1. We first establish a property of deterministically
=0 =0 bounded battery level undet,, which parallels Proposition 1.

To make our argument concrete, we consider in the followiRg) ihis end. lets’ > (T+1)Emax—TE be some fixed number.
the log reward function given by, = r(p;) = log(1 + py). .
. . . K .. Proposition 2: Governed byg, when 6 = 1, if By <
Note thatlr(-) is the d te-time G h | — o : init
ote that3r(-) is the discrete-time Gaussian channe capam&y(EmaX_ E), then X, < H' for all 1.

with unit-variance noise [14]. Lebmin = i where
[14]. Leppin Nt P Remark 3:If z; > H’, we have

pr= e/ Y ges and letp, = S 0 g e,

T

pr 1S a weighted average qf,'s wheres < ¢, and weights Tip1 —xy < — 1 r_ T—t E + Epax < 0.
are concentrated on the last few term$ i large while more T—t+1 T—-t+1
evenly distributed whe# is small. Also, let Hence, if B > H’ and the initial state is greater thai’,
¢ the battery state can be stabilized. Note also that the nedjui
T=<t: Z(a + (1 =)yl —60)"ps < 1 ., battery capacity3 under this setting is much smaller thef+
5=0 T+1 1)Emax If E is roughly of the same order dgnax.

where 1, is the indicator function of an event. Denote by We present in the following a heuristic argument tiggt
A the per unit time difference between the deterministic noRutPerforms the-policy in many cases whefi = 1. Assume
causal bound and the average reward achieved by-fhaicy. that the battery capacity is sufficiently large as required i
It can be then shown that Propositions 1 and 2, i.eB > max{ 2z (T+1)Ena—TE},
and assume thaB;,;; = 0 for simplicity. Given the same
A < b lo (1 + (0 1)1“—“) + 1(1 —g)t+t|. sample path of energy arrivals, we compare the transmission
T T+l (T+1)p 0 power profiles over time under thpolicy andg,. We first




consider the trajectories of battery states under these tafo@ is one, but the sum of th¢th column is1 + ;I;:;

policies, which are denoted by and z7¢, respectively. We %(TLH + % S T_;m), and the(i, j)th entry of Q is
observe that whenever!’ < E at somet;, g, depletes the L 1> ) +L - Lz + L+ + L) Hence,
battery andz{ andz{* start to coincide front; + 1, resulting whenT is much greater thath, i.e., this segm+entl is far away
in the same transmission power and the same reward, Ufdim the end of the horizon, all elements are nonnegative, an
xj, = «}? > F at somet,. Fromt, on, 2} andz{ diverge the column sum approaches oneZaincreases. This suggests
until they coincide again next time, which mlght not occur Ughat when we are far away from the end, l?ﬁl&? p0||Cy is at

to the end of the horizod” when both pOIiCies neverthelesaeast as good as the p0||Cy (|ndeed in the next subsection
deplete the battery. As a result, the Comparison of the Wi prove that th@e po“cy is asymptotica“y Optima| over an
power profiles reduces to a comparison over these diverggitinite horizon.) On the other hand, wheh is close toT,
segments between their respective trajectories; an examplyhile the column sum can be close to one, a small portion of
illustrated in Figure 1. entries inQ are negative with small values. This is a reflection
of the boundary effect in a finite horizon problem when we get
close to the end, and the advantage of ghepolicy cannot be

as clearly ascertained.

C. Infinite-horizon case

. In this part, we examine the infinite-horizon counterpart
of the reward maximization problem with energy harvesting.
Formally, for any power control policy = (go, g1, - - .), where
Fig. 1. The trajectories of?’ andz}. eachg, is similarly defined as in the finite-horizon case, we
consider the following optimization problem
All such segments including the last one ending at the .
horizon are defined as a pen{iﬂ,tqu] for someL > 1 such maximize J9 — lim sup E9 1 ZT(Pt) G,
that t?e sta;es under the tWngO|IC_IeS are only the sanig, at Too T+1 —
i.e.,xzf = a3y, and moreover;’ > E forall to <t <ty+ L ) . .
andp:[?H :toxtﬁL for both pcﬁlicies. Since the power profiles’ /€ first note that ad” — oo, the g, policy that we studied
within such a segment are independent of the starting t'tme'noothe f|n|te-h0rzon case reduces to the stationary paiicy
for both policies §, only depends on the stegs go and 90 _(It) - mm{i’ GI;O}' We later show that whefi = 1 the
the 6-policy is stationary), we will assume this segment dfolicy 95~ = (95°,95°,-..) is asymptotically optimal as the
length L + 1 starts at time0 with an initial stateeg, and battery capacitys increases.

with a time to go7' remaining in the horizon. We also note In the rest of this part, we assume zero initial state of the
that ng _ Xnge > By — Pg, that is, g, always achieves a battery for the simplicity of presentation, i.€3;,,;; = 0. Using

higher amount of reward than th&policy does at the final Jeqsen’s in_equalit%/, we ha@?[r(ﬂ)] = T(Eg[Pt].) for any
step of a segment. Therefore, we consider the firssteps policy g. Since_,_o P: < 37, Ex for any feasible policy

T >
of a segment. To simplify notation, we suppress the poli@ for any 7, we have}_,_E?[F;] < (T + 1)E. Hence,
superscript whenever there is no ambiguity. Using it can combining the above results and further using the concavity

be show that of r, We_haveZtT:0 E9[r(P,)] < (T + 1)r(E), and therefore
J9 < r(E) for any policyg. Fix e > 0 and letg, = (gc, ge, - - -)
p= (P -2V +V)e+ (PV — V)e =: Qe + Me, where g.(z;) = min{E — ¢, z,}. We show in the following
where proposition thatg, approaches the neighborhoodsgf).
1y 0 Proposition 3: .J9¢ — r(E — ¢) as capacityB — oo. In
oy 0 + ... 1 addition, J9¢ is continuous at infinity as a function d.
R U= | - Remark 4:1t is worth noting thatg, coincides with the
: : 0 ’ : ol throughput optimal policy found in [10] under an unsatudate
ﬁ T . T_;m r L regime. Combining these results, it shows that this simple

T o ] T __threshold policy is optimal in both the unsaturated and #ta-s
e = (eo, . .. ,eL,%) andp 5|m|IarIy defined,e = 1"e — LE* rated regimes. It remains an interesting open questionhehet
ande = (0 ¢) . Assume that is small. Recall thap is similar results can be established with a more sophisticate

the transmission power profile undgp and e is the power energy harvesting and battery model.
profile under thé&-policy. We note that the sum reward function

I'(p) := Y1, r(p:) is a Schur concave function dk”, and IV. NUMERICAL RESULTS

hencel'(x) > T'(y) if y majorizesz, which is equivalent to  In this section, we present numerical results for the algo-
the existence of a doubly stochastic maliixsuch thate = ITy  rithms we proposed for the finite-horizon reward maximiati
(see [15] for more information). In our problem, howevér, problem, and we consider three different distributions tod t
is not doubly stochastic but nearly so. The sum of each ramergy arrivalE:



1) uniform distribution ovef0, 2E];
2) triangle distribution, that isE = Uy + Us wheﬁaUl and
U, are i.i.d. and uniformly distributed ovéo, E];

yet efficient online algorithms presented. This work can be
further pursued in the following two directions. An imparta
assumption we have made in this work is the independence
3) truncated Gaussian distributioirg., among energy arrivals, which is however unrealistic for imos
E = max{min{N,2E},0} where N ~ N(0,1). application scenarios. It is an interesting problem to &tigate
It is clearly that all distributions have the same mean valige optimal control in explicit forms with more realisticengy
E. Moreover, for our choice O@ belOW, their variances arrivals, e.g., that giVen by a Markovian model. We have also
follows a descending order. For each distribution’ we Mer assumed that the battel’y has an infinite lifetime (OI’ at least
1000 Samp'e paths of energy arrivals. For each Samp|e p&ﬁyond the finite horizon). In practice a battery has limited
we record the corresponding performance metrics of differdifetime and the efficient use of battery goes well beyond
policies and produce their sample means, respectivelynfer tnerely considering a capacity constraint: a battery tyfyides
cases with an infinite and finite battery capacity. We compa®@ optimal operating point depending on whether one wants
the average total reward of boty, and thef-policy with 1O maximize the total number of cycles or the total energy

two values OfG’ against the non-causal bound (NCB) and gutput over its lifetime. These need to be taken into account
random policy (RP) defined ag; = w.z, for t < T and @n optimal transmission control scheme when battery tifeti

pr = zr Whereu,’s are i.i.d samples generated uniformly ovePecomes a relevant issue.

[0, 1]. Note that the random policy is included as an additional
benchmark. As to the form of the reward function, we limit our
attention to the rate function described in Section II. Ve s [
E =10, Biniy = 0, T = 100 ande = 0.1, and the results are 2]
reported in Table I.

TABLE | (3]

EMPIRICAL RESULTS.

(4]

NCB 9o 0-policy RP
- T=1 238.80 | 222.13
o Uniform =1 242.21 |-Sosoe - Soeen | 21124 o
- =1 24053 | 233.44
Bli{elva;rg Triangle == 242.04 4070 23675 214.68
- Truncated| 0 =1 242.12 241.77
Gaussian [ 0 =8 2*?1° rozzo72arer| 21716
; 0=1 227.95| 222.13 [6]
B =g | Unifom ——3 - 2784 | 22041 | 19486
- T=1 23585 | 233.44
Tangle 5 ——5—  ~ | 73536 23654 | 20L08 7]
Truncated| 6 =1 B 242.07 | 24177 206.19
Gaussian | 0 = .8 241.98 | 241.87 )

8]

As can be seen, the proposed online algorithms provide effi-
cient solutions to the respective problems, and the pedooa [9
improves as the energy arrivals are more concentrated droun
their mean for both the infinite and the finite capacity cabes.
the worst case of this numerical illustration, the best exdl
total reward is no more thaf.9% below the NCB; similarly,
the achieved completion time is no more théu5% above
the NCB minimum. For sufficiently large battery capacitieé,ﬂ]
g, outperforms th&-policy as we have argued. Interestingly,
when the battery capacity is very limited, tifepolicy may [12]
be better in scenarios with larger deviations of energyalsi
In such cases the choice 6fhas non-negligible impact on the
performance metric, especially for tAepolicy. Another remark
is that whend = 1, in our setting we havé3 > H = % in 14]
both cases of the battery capacity for all testing distidng, [15]
and thef-policy does result in the same performance regardless
of the battery capacity as Proposition 1 suggests.

[10]

[13]

V. CONCLUDING REMARKS

In this paper we studied the transmission power control of
a single node with stochastic energy harvesting, with smpl
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