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Abstract—We consider the optimal transmission power control
of a single wireless node with stochastic energy harvestingand
an infinite/saturated queue with the objective of maximizing a
certain reward function, e.g., the total data rate. We develop
simple control policies that achieve near optimal performance
in the finite-horizon case with finite energy storage. The same
policies are shown to be asymptotically optimal in the infinite-
horizon case for sufficiently large energy storage. Such policies
are typically difficult to directly obtain using a Markov Dec ision
Process (MDP) formulation or through a dynamic programming
framework due to the computational complexity. We relate our
results to those obtained in the unsaturated regime, and highlight
a type of threshold-based policies that is universally optimal.

I. I NTRODUCTION

Harvesting renewable energy has been one of the most
exciting technological developments in recent years. In the
context of wireless communication such technologies promise
to significantly alleviate the energy constraint that low cost
(mobile) wireless devices operate under and prolong their
operational lifetime, through harvesting ambient light, heat,
vibration, etc; see e.g. [1], [2], [3] for more examples and
surveys. While such technologies will undoubtedly improvethe
continuous operability of future wireless networks [4], itis also
important to note that the amount of renewable energy available
to a device usually fluctuates due to environmental factors
(e.g., in the case of wind and solar energy) with typically low
replenishing rates. Consequently, for wireless networks with
energy harvesting nodes, efficient energy management both in
terms of charging and discharging with quality of service (QoS)
provisioning remains a critical issue and challenge that has
motivated extensive research in various application contexts.
Literature Overview.[5], [6], [7], [8] have investigated optimal
transmission policies with a non-causal formulation where
future energy arrivals are assumed knowna priori, which
results in deterministic optimization. In [5], two problems
are addressed through transmission power control, namely the
maximization of reward (throughput, utility) given a deadline
and the minimization of transmission completion time givena
total reward objective; the optimal control is characterized for

This work was partially supported by the NASA under grants NNX06AD47G
and NNX09AE91G.

both problems. [6] revisits the completion time minimization
problem, incorporating a deterministic data session arrival pro-
cess. In [7], the throughput maximization problem is addressed
using a geometric framework under a similar setting. They
have also solved the minimization problem with the interesting
observation of its connection to the throughput maximization
counterpart. The above works all assume a packetized energy
arrival model with the exception of [8], where similar problems
are solved assuming continuous energy arrival as well as time-
varying battery capacity due to degradation and energy leakage.
For throughput maximization it is generally assumed that the
data queue issaturated, that is, the transmitter always has data
to transmit.

Stochastic energy harvesting has also been considered in the
literature, see e.g., [9], [10], [11] with similar objectives like
reward maximization as in the non-causal formulation, along
with efficient online algorithms. [9] presented first a shortest
path characterization of the optimal policy for the finite-horizon
non-causal problem, and then an online algorithm that guaran-
tees a fraction of the optimal performance when the estimateof
the energy replenishment rate has bounded deviations. In [10],
the throughput optimal policy, i.e., the data queue stabilizing
policy that achieves the maximum throughput, is studied for
a single node using results fromG/G/1 queues. In [11],
the authors considered a rate maximization problem using an
infinite-horizon Markov Decision Process (MDP) framework
with discount; main results include certain monotonicity and
threshold properties of the optimal policy.
Contribution. In this paper, we consider the optimal transmis-
sion power control of a single node with stochastic energy
harvesting, assuming a saturated data queue, and we present
simple yet near-optimal online algorithms.

• Compared to previous work on stochastic throughput
maximization in the saturated regime, we develop simple
and explicit control policies that achieve near-optimal
performance in the finite-horizon case with a finite bat-
tery capacity, and that are asymptotically optimal in the
infinite-horizon scenario with sufficiently large battery
capacity; such policies are typically difficult to directly
obtain from an MDP or dynamic programming framework
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due to the curse of dimensionality.
• We relate our results to those that have been obtained

previously in the unsaturated regime, and highlight a type
of threshold policies that is universally optimal.

Organization.We proceed as follows. In Section II, we for-
mulate the finite-horizon reward maximization problem with
preliminary structural results, motivating a policy namedgθ,
of which performance bounds are derived in Section III. We
also consider the infinite-horizon reward maximization in Sec-
tion III, and show that a limiting form ofgθ is asymptotically
optimal as the battery capacity grows. We show numerical
results for the proposed heuristics in Section IV and conclude
in Section V. For the remainder of this paper, most proofs are
omitted due to the space limit.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete-time energy packet arrival process
Et, t = 0, 1, . . . that models the energy harvesting process of
the node, and suppose that each packet assumes values in a
compact spaceS ⊂ R+ with an independent and identical
distribution (i.i.d.) with a meanE over the sample spaceΩ. The
arriving energy is stored in an on-board battery up to a capacity
B. Assume that the data queue of the node is saturated, that
is, the node always has data to transmit. At each time stept,
given any sample path of the energy arrivalses, s = 0, 1, . . . , t,
the node determines the transmission powerpt to use so as
to collect an amount of rewardrt = r(pt), where r is a
concave and increasing continuous function. Our objectiveis
to maximize the total amount of reward while satisfying the
energy constraint imposed by the energy harvesting process
and the battery capacity. Formally, letXt denote the energy
available in the battery after the energy arrival at timet, which
evolves as follows,

Xt = min{Xt−1 − Pt−1 + Et, B}, t = 1, 2, . . . , (1)

X0 = min{Binit + E0, B}, (2)

where Binit is the initial level of the battery. The node
determines the transmission power at timet as a function
of its history of battery states and past actions. Formally,
Pt = gt(X

t, P t−1) with 0 ≤ Pt ≤ Xt for each t, and the
function gt is called the power control rule of the node at
time t. Denote byT a finite time horizon, and denote the
control policy, the collection of functions before the horizon by
g = (g0, g1, . . . , gT ). We then consider the following stochastic
optimization:

maximize Jg = E
g

{

T
∑

t=0

r(Pt)

}

, (3)

where we use the superscript to emphasize the dependence on
the control policy. Before proceeding, we introduce an upper
bound on the optimum of (3), which we will then use as a
benchmark to evaluate the performance of a given policy in the
rest of this paper. Suppose that a sample path of energy arrivals
from t = 0 to t = T is given a priori, namely{Et(ω)}Tt=0

for someω ∈ Ω. Since
∑T

t=0 Pt(ω) ≤ Binit +
∑T

t=0 Et(ω),

the maximum achievable average reward over this sample path
r(T, ω) is upper bounded as follows,

r(T, ω) ≤ r

(

Binit +
∑T

t=0 Et(ω)

T + 1

)

,

due to the concavity of the reward function. We will call thisthe
deterministic non-causal boundon the average reward, as the
energy causality and capacity limit may be violated at some
time instants in achieving this bound. Using the strong law
of large numbers, we havelim supT→∞ r(T ) ≤ r(E) almost
surely. As we shall see,r(E) is an achievable upper bound on
the average reward for the infinite-horizon reward maximization
problem.

In principle, (3) can be solved through the following dynamic
program [12],

VT (x) = max
0≤p≤x

r(p)

Vt(x) = max
0≤p≤x

{r(p) + E[Vt+1(Xt+1)|Xt = x, Pt = p]}

t = 0, 1, . . . , T − 1,

where Vt(x) is the value function denoting the maximum
reward achievable at timet under statex. Note first that
VT (x) = r(x). Furthermore,Xt is a controlled Markov process,
thus an optimal policy exists in the space of Markov policies,
i.e., we can limit our attention to the set of policiesPt = gt(Xt)
[12]. We proceed with the following preliminary results.

Lemma 1:The value functionVt is a concave and nonde-
creasing function. Moreover,Vt satisfies the following inequal-
ity:

Vt(x) ≤

{

(T − t+ 1)r(x+(T−t)E
T−t+1 ), if x ≥ E

r(x) + (T − t)r(E), if x < E
(4)

for all t.
Remark 1:As a byproduct, the proof of Lemma 1 would

yield a feasible Markov policyg, namely, pt = gt(xt) =

min{xt+(T−t)E
T−t+1 , xt} for all t. This policy is intuitively appeal-

ing with the following interpretation. At timet, this policy
essentially selects the optimal transmission power subject to
the current battery level, if future energy arrivals are constant
given by its statistical mean. More generally, note first that
similar results as Lemma 1 can be obtained for the case
where the energy arrivals are independent but with non-identical
distributions. In particular, letEt be the mean value ofEt,
and a similar argument would give rise to the policypt =

min{
xt+

∑
T

s=t+1
Es

T−t+1 , xt}. This policy in fact coincides with the
so called “directional water-filling algorithm” which has been
shown to be optimal for the deterministic optimization given
non-causal knowledge of all energy arrivals [5] (also foundby
[13] under the name “staircase water-filling algorithm”).

This observation suggests that this policy may perform
quite well if the energy arrival process has a small variation.
However, if the variation is large, due to the concavity of
the objective function, instead of depleting the battery when
specified by the above policy, it may be beneficial to reserve a
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portion of storage in case the energy arrivals drop significantly.
Accordingly we can modifyg as follows:

pt = min

{

xt + (T − t)E

T − t+ 1
, θxt

}

when t < T, andpT = xT ,

where0 < θ ≤ 1. We will denote this policy bygθ, and argue
in the next section thatgθ can achieve a near-optimal average
reward.

III. O PTIMALITY ANALYSIS

In this section, we first examine the policygθ for the finite-
horizon reward maximization problem. Through a sequence of
analysis combined with heuristic arguments, we characterize
its average reward, justifying the claim of its near-optimal
performance. We proceed in two steps.

1) We consider first a simple policy called theθ-policy,
pt = θxt for t = 0, . . . , T − 1 and pT = xT , and
show that the gap between the average reward of this
rudimentary policy and the non-causal bound can be
significantly closed by properly tuningθ.

2) We given reasons whygθ should outperform theθ-policy
in many cases.

Though the measure of suboptimality is not explicit in the
finite-horizon case, we show in the second part that the limiting
form of gθ is in fact asymptotically optimal in the infinite-
horizon case with increasing battery capacity.

A. Performance characterization of theθ-policy

Assume for the time being that the battery capacity is infinite,
or alternatively, it is sufficiently large:B > (T + 1)Emax,
whereEmax = supS is the largest possible value of a single
energy arrival. The stateXt then evolves without the minimiza-
tion operator. Assume zero initial battery level for simplicity,
Binit = 0. Consider a sample path of energy arrivals,{et}Tt=0.
By the θ-policy we have

pt =

t
∑

s=0

θ(1− θ)t−ses if t < T ; pT =

T
∑

s=0

(1− θ)T−ses.

To make our argument concrete, we consider in the following
the log reward function given byrt = r(pt) = log(1 + pt).
Note that 12r(·) is the discrete-time Gaussian channel capacity
with unit-variance noise [14]. Letρmin = mint ρt where
ρt = et/

∑T

s=0 es and let ρ̂t =
∑t

s=0
θ(1−θ)t−s

1−(1−θ)t+1 · ρs, i.e.,
ρ̂t is a weighted average ofρs’s where s ≤ t, and weights
are concentrated on the last few terms ifθ is large while more
evenly distributed whenθ is small. Also, let

T =

{

t :

t
∑

s=0

(θ + (1− θ)1{t=T})(1 − θ)t−sρs <
1

T + 1

}

,

where1{·} is the indicator function of an event. Denote by
∆ the per unit time difference between the deterministic non-
causal bound and the average reward achieved by theθ-policy.
It can be then shown that

∆ ≤
1

T + 1

∑

t∈T

[

log

(

1 + (θ − 1)1{t=T}

(T + 1)ρ̂t

)

+
1

θ
(1− θ)t+1

]

.

The above bound reveals how the parameterθ may be adjusted
according to the property of the energy arrival process. If the
arrival process has a small deviation, thenρ̂t can be close to
its statistical mean1/(T + 1) regardless of the choice ofθ. In
this case we can choose a largeθ so that both terms would
be small; this corresponds to the intuition of using most of the
stored energy when one is fairly certain it would be replenished
the next time instant. If on the other hand the arrival process
has a large deviation, then we have a tradeoff: a smallθ would
keepρ̂t close to1/(T +1) thereby keeping the first term small,
while causing the second term to increase. This correspondsto
the intuition that when there is greater uncertainty in energy
arrival, we may need to “save for a rainy day”.

We obtained the above result assuming that the battery has
infinite capacity orB > (T + 1)Emax. These assumptions are
however unrealistic, but using the proposition below we show
that this assumption can be relaxed since theθ-policy in fact
regularizes the battery level. Consider alternatively thescenario
when the horizon is extended to the infinity when theθ-policy
is applied and assume for the moment thatB > (T + 1)Emax.
Let τH := min{t : Xt < H} for some constantH > Emax

θ
. We

then have the following result.

Proposition 1: Governed by theθ-policy, τH is finite. In
particular, ifBinit < (1

θ
− 1)Emax, thenXt < H for all t.

Remark 2: If the battery capacity satisfiesB > Emax
θ

, and
the initial level is as in the lemma, we would never lose energy
packets due to the battery capacity constraint. Moreover, the
required capacityB under this setting is much smaller than
(T + 1)Emax that we supposed.

B. gθ versusθ-policy

The above bound suggests that theθ-policy could be practi-
cally efficient despite its seemingly naiveness. We have pre-
viously discussed why it may make sense to use thegθ

policy rather than theθ-policy. In the rest of this section, we
provide a heuristic argument for its performance advantage
when θ = 1. We first establish a property of deterministically
bounded battery level undergθ, which parallels Proposition 1.
To this end, letH ′ > (T +1)Emax−TE be some fixed number.

Proposition 2: Governed bygθ when θ = 1, if Binit <
T (Emax− E), thenXt < H ′ for all t.

Remark 3: If xt ≥ H ′, we have

xt+1 − xt ≤ −
1

T − t+ 1
H ′ −

T − t

T − t+ 1
E + Emax < 0.

Hence, if B > H ′ and the initial state is greater thanH ′,
the battery state can be stabilized. Note also that the required
battery capacityB under this setting is much smaller than(T+
1)Emax, if E is roughly of the same order asEmax.

We present in the following a heuristic argument thatgθ

outperforms theθ-policy in many cases whenθ = 1. Assume
that the battery capacity is sufficiently large as required in
Propositions 1 and 2, i.e.,B > max{Emax

θ
, (T+1)Emax−TE},

and assume thatBinit = 0 for simplicity. Given the same
sample path of energy arrivals, we compare the transmission
power profiles over time under theθ-policy andgθ. We first
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consider the trajectories of battery states under these two
policies, which are denoted byxθ

t and x
g
θ

t , respectively. We
observe that wheneverxg

θ

t1
≤ E at somet1, gθ depletes the

battery andxθ
t andxg

θ

t start to coincide fromt1 +1, resulting
in the same transmission power and the same reward, until
xθ
t2

= x
g
θ

t2
> E at somet2. From t2 on, xθ

t andx
g
θ

t diverge
until they coincide again next time, which might not occur up
to the end of the horizonT when both policies nevertheless
deplete the battery. As a result, the comparison of the two
power profiles reduces to a comparison over these divergent
segments between their respective trajectories; an example is
illustrated in Figure 1.

T0

Segment 1 Segment 2
Overlap

x
g
t
θ

x
t
θ

t

x
t

E

Fig. 1. The trajectories ofxgθ

t
andxθ

t
.

All such segments including the last one ending at the
horizon are defined as a period[t0, t0+L] for someL ≥ 1 such
that the states under the two policies are only the same att0,
i.e., xθ

t0
= x

g
θ

t0
, and moreoverxg

θ

t > E for all t0 ≤ t < t0 +L
andpt0+L = xt0+L for both policies. Since the power profiles
within such a segment are independent of the starting timet0
for both policies (gθ only depends on the stepsto go and
the θ-policy is stationary), we will assume this segment of
length L + 1 starts at time0 with an initial statee0, and
with a time to goT remaining in the horizon. We also note
that P g

θ

L = X
g
θ

L ≥ EL = P θ
L, that is,gθ always achieves a

higher amount of reward than theθ-policy does at the final
step of a segment. Therefore, we consider the firstL steps
of a segment. To simplify notation, we suppress the policy
superscript whenever there is no ambiguity. Usinggθ, it can
be show that

p = (Φ− ΦΨ+Ψ)e+ (ΦΨ −Ψ)ǫ =: Qe+Mǫ,

where

Φ =











1
T+1 0 . . . 0
1

T+1
1
T

. . . 0
...

...
. . . 0

1
T+1

1
T

. . . 1
T−L+2











,Ψ =







1
L

. . . 1
L

...
. . .

1
L

. . . 1
L






,

e = (e0, . . . , eL−1)
T andp similarly defined,ǫ = 1

T
e− LE,

and ǫ =
(

0 ǫ
)T

. Assume thatǫ is small. Recall thatp is
the transmission power profile undergθ and e is the power
profile under theθ-policy. We note that the sum reward function
Γ(p) :=

∑L−1
t=0 r(pt) is a Schur concave function onRL

+, and
henceΓ(x) ≥ Γ(y) if y majorizesx, which is equivalent to
the existence of a doubly stochastic matrixΠ such thatx = Πy
(see [15] for more information). In our problem, however,Q
is not doubly stochastic but nearly so. The sum of each row

of Q is one, but the sum of thejth column is1 + L+1−j
T+2−j

−
1
L
( L
T+1 + L−1

T
+ · · ·+ 1

T−L+2 ), and the(i, j)th entry ofQ is
1

T+2−j
· 1(i ≥ j) + 1

L
− 1

L
( 1
T+1 + 1

T
+ · · ·+ 1

T+2−i
). Hence,

whenT is much greater thanL, i.e., this segment is far away
from the end of the horizon, all elements are nonnegative, and
the column sum approaches one asT increases. This suggests
that when we are far away from the end, thegθ policy is at
least as good as theθ policy. (Indeed in the next subsection
we prove that thegθ policy is asymptotically optimal over an
infinite horizon.) On the other hand, whenL is close toT ,
while the column sum can be close to one, a small portion of
entries inQ are negative with small values. This is a reflection
of the boundary effect in a finite horizon problem when we get
close to the end, and the advantage of thegθ policy cannot be
as clearly ascertained.

C. Infinite-horizon case

In this part, we examine the infinite-horizon counterpart
of the reward maximization problem with energy harvesting.
Formally, for any power control policyg = (g0, g1, . . .), where
eachgt is similarly defined as in the finite-horizon case, we
consider the following optimization problem

maximize Jg = lim sup
T→∞

E
g

{

1

T + 1

T
∑

t=0

r(Pt)

}

. (5)

We first note that asT → ∞, the gθ policy that we studied
in the finite-horizon case reduces to the stationary policypt =
g∞θ (xt) = min{E, θxt}. We later show that whenθ = 1 the
policy g

∞
θ = (g∞θ , g∞θ , . . .) is asymptotically optimal as the

battery capacityB increases.
In the rest of this part, we assume zero initial state of the

battery for the simplicity of presentation, i.e.,Binit = 0. Using
Jensen’s inequality, we haveEg [r(Pt)] ≤ r(Eg [Pt]) for any
policy g. Since

∑T

t=0 Pt ≤
∑T

t=0 Et for any feasible policy
g for any T , we have

∑T

t=0 E
g[Pt] ≤ (T + 1)E. Hence,

combining the above results and further using the concavity
of r, we have

∑T

t=0 E
g [r(Pt)] ≤ (T + 1)r(E), and therefore

Jg ≤ r(E) for any policyg. Fix ǫ > 0 and letgǫ = (gǫ, gǫ, . . .)
where gǫ(xt) = min{E − ǫ, xt}. We show in the following
proposition thatgǫ approaches the neighborhood ofr(E).

Proposition 3: Jg
ǫ → r(E − ǫ) as capacityB → ∞. In

addition,Jg
ǫ is continuous at infinity as a function ofB.

Remark 4: It is worth noting thatgǫ coincides with the
throughput optimal policy found in [10] under an unsaturated
regime. Combining these results, it shows that this simple
threshold policy is optimal in both the unsaturated and the satu-
rated regimes. It remains an interesting open question whether
similar results can be established with a more sophisticated
energy harvesting and battery model.

IV. N UMERICAL RESULTS

In this section, we present numerical results for the algo-
rithms we proposed for the finite-horizon reward maximization
problem, and we consider three different distributions of the
energy arrivalE:
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1) uniform distribution over[0, 2E];
2) triangle distribution, that is,E = U1 +U2 whereU1 and

U2 are i.i.d. and uniformly distributed over[0, E];
3) truncated Gaussian distribution,i.e.,

E = max{min{N, 2E}, 0} whereN ∼ N (0, 1).

It is clearly that all distributions have the same mean value
E. Moreover, for our choice ofE below, their variances
follows a descending order. For each distribution, we generate
1000 sample paths of energy arrivals. For each sample path,
we record the corresponding performance metrics of different
policies and produce their sample means, respectively for the
cases with an infinite and finite battery capacity. We compare
the average total reward of bothgθ and theθ-policy with
two values ofθ, against the non-causal bound (NCB) and a
random policy (RP) defined as:pt = utxt for t < T and
pT = xT whereut’s are i.i.d samples generated uniformly over
[0, 1]. Note that the random policy is included as an additional
benchmark. As to the form of the reward function, we limit our
attention to the rate function described in Section III. We set
E = 10, Binit = 0, T = 100 and ǫ = 0.1, and the results are
reported in Table I.

TABLE I
EMPIRICAL RESULTS.

NCB g
θ

θ-policy RP

Total
Reward
B = ∞

Uniform
θ = 1

242.21
238.80 222.13

211.24
θ = .8 239.35 230.58

Triangle
θ = 1

242.04
240.53 233.44

214.68
θ = .8 240.70 236.75

Truncated
Gaussian

θ = 1
242.19

242.12 241.77
217.16

θ = .8 242.07 241.87

B = 20
Uniform

θ = 1
–

227.95 222.13
194.86

θ = .8 227.84 229.41

Triangle
θ = 1

–
235.85 233.44

201.06
θ = .8 235.36 236.54

Truncated
Gaussian

θ = 1
–

242.07 241.77
206.19

θ = .8 241.98 241.87

As can be seen, the proposed online algorithms provide effi-
cient solutions to the respective problems, and the performance
improves as the energy arrivals are more concentrated around
their mean for both the infinite and the finite capacity cases.In
the worst case of this numerical illustration, the best achieved
total reward is no more than5.9% below the NCB; similarly,
the achieved completion time is no more than6.5% above
the NCB minimum. For sufficiently large battery capacities,
gθ outperforms theθ-policy as we have argued. Interestingly,
when the battery capacity is very limited, theθ-policy may
be better in scenarios with larger deviations of energy arrivals.
In such cases the choice ofθ has non-negligible impact on the
performance metric, especially for theθ-policy. Another remark
is that whenθ = 1, in our setting we haveB ≥ H = Emax

θ
in

both cases of the battery capacity for all testing distributions,
and theθ-policy does result in the same performance regardless
of the battery capacity as Proposition 1 suggests.

V. CONCLUDING REMARKS

In this paper we studied the transmission power control of
a single node with stochastic energy harvesting, with simple

yet efficient online algorithms presented. This work can be
further pursued in the following two directions. An important
assumption we have made in this work is the independence
among energy arrivals, which is however unrealistic for most
application scenarios. It is an interesting problem to investigate
the optimal control in explicit forms with more realistic energy
arrivals, e.g., that given by a Markovian model. We have also
assumed that the battery has an infinite lifetime (or at least
beyond the finite horizon). In practice a battery has limited
lifetime and the efficient use of battery goes well beyond
merely considering a capacity constraint: a battery typically has
an optimal operating point depending on whether one wants
to maximize the total number of cycles or the total energy
output over its lifetime. These need to be taken into accountin
an optimal transmission control scheme when battery lifetime
becomes a relevant issue.
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