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Abstract—In this paper we formulate a contract design problem
where a primary license holder wishes to profit from its exces
spectrum capacity by selling it to potential secondary uses/buyers.
It needs to determine how to optimally price the excess speacim
so as to maximize its profit, knowing that this excess capagit
is stochastic in nature, does not come with exclusive accesnd
cannot provide deterministic service guarantees to a buyeAt the
same time, buyers are of differenttypes, characterized by different
communication needs, tolerance for the channel uncertaipt and
so on, all of which a buyer's private information. The licen®
holder must then try to design different contracts catered b
different types of buyers in order to maximize its profit. We
address this problem by adopting as a reference a traditiona
spectrum market where the buyer can purchase exclusive acsg
with fixed/deterministic guarantees. We fully characteriz the
optimal solution in the cases where there is a single buyer pe,
and when multiple types of buyers share the same, known chah
condition as a result of the primary user activity. In the mog
general case we construct an algorithm that generates a sef o
contracts in a computationally efficient manner, and show tlat
this set is optimal when the buyer types satisfy a monotonity
condition.

|. INTRODUCTION

The scarcity of spectrum resources and the desire to impr
spectrum efficiency have led to extensive research and -de
opment in recent years in such concepts as dynamic spect
access/sharing, open access, and secondary (spot otestmoyt-
spectrum market, see e.g., [1], [2]. From the inception ef t

open access paradigm, it was clear that for it to work twoeiss
must be adequately addressed: sensing and pricing. The
refers to the ability of a (secondary) device to accuratelgct
channel opportunity and more generally to acquire inforomat
on the spectrum environment. The second refers to mechan
that provide license holders with the right incentives s they
will willingly allow access by unlicensed devices.

There has been a number of mechanisms proposed to add
this incentive issue, the most often used being the aucti
mechanism, see e.g., [3]-[5]. Auction is also the primarga
mechanism used in allocating spectrum on the primary marlée
[6]. In this paper we consider an alternative approach, th
based oncontracts to the trading of spectrum access on thﬁ1
secondary market (see Section VI on a discussion comparin
the two mechanisms). This is conceptually unlike the deefgn

pricing plans by a cellular operator: it presents a poténsar
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\rf%ense holder’'s own spectrum under-utilization. Its dyails
h&efore often uncontrolled and random, both spatially an

h

with a set of contract options, each consisting of pararseter
including the duration of the contract, discount on the deyi
number of free minutes per month, price per minute for those
over the free limit, window of unlimited calling time, and so
on. In coming up with these calling plans the operator tylpica
studies carefully the types of callers it wants to attract toeir
calling patterns/habits; the subsequent plans are cdtetbdse
patterns with the objective of maximizing its revenue. Aleal
interested in entering into contract with the operator jsezted

to look through these plans and pick one that is the bestdsuite
for him/her needs.

In this paper we adopt such a contract design approach
in the context of the secondary spectrum market, where a
license holder advertises a set of prices and service phahei
hope that a potential buyer will find one of them sufficiently
appealing to enter into contract. The contracts are degigith
the goal of maximizing the expected revenue of the license
holder given a set of buydypes(more precisely defined in the
next section).

To make the contracts appealing to a buyer, one must address
the issue that the spectrum offered on the secondary (short-
m) market is typically the excess capacity due to the @nym

temporally, and strongly dependent on the behavior of the
primary users. The primary license holder can of course 800
0 _eliminate the randomness by setting aside resources (e.g
rfi’lﬁdwidth) exclusively for secondary users. This will hgere
likely impinge on its current users and may not be in the eger

.of its primary business model. The alternative is to simpieg

n-exclusive access to secondary users for a fee, whiohsll
the secondary users thare a certain amount of bandwidth
simultaneously with its existing licensed users, but oniger

Ttain conditions on the primary traffic/spectrum usagw. F
f?%tance, a secondary user is given access but can only eise th
ndwidth if the current activity by the licensed users iple
I:ertain level, e.g., as measured by received SNR, thellsalca
ectrum overlay. Many spectrum sharing schemes proposed i
e literature fall under this scenario, see e.qg., [7]-{10]
9n this case a secondary user pays (either in the form of
money or services in return) to gain spectrum access but not
for guaranteed use of the spectrum. This presents a challeng
to both the primary and the secondary users: On one hand, the
secondary user must assess its needs and determine winether t



uncertainty in spectrum quality is worth the price askeddfiod which is random and non-guaranteed in nature, by using
what level of uncertainty can be tolerated. On the other hargliaranteed service as a reference.
the primary must decide how stochastic service quality khou There are two parties to a contract, the seller and the buyer.
be priced so as to remain competitive against guaranteed (e selleris also referred to as the owner or the primary license
deterministic) services which the secondary user may be ahblder, who uses the spectrum to provide business and servic
to purchase from a traditional market or a different primanp its primary users and carryprimary traffic He is willing
license holder. to sell whatever underutilized bandwidth he has as long as it
To address this challenge we adopt a reference point in #enerates positive profit and does not impact negatively his
form of a traditional spectrum market from where a secondapyimary business. We will assume that the seller can pregdes
user can purchase guaranteed service, i.e., exclusivessaceg to M contracts and announce them to potential buyers. If a
rights to certain bandwidth, at a fixed price per unit. Thibuyer accepts one of the contracts, they come to an agreement
makes it possible for the secondary user to reject the affenf and they have to follow the contract up to a predetermined
the primary if it is risk-averse or if the primary’s offer ion period of time. We will leave this duration unspecified as it
attractive. This also implies that the price per unit of baiatth  does not affect our analysis under the current model.
offered by the primary user must reflect its stochastic ¢yiali  Each contract is in the form of a pair of real numbeérsp),
Work most relevant to the study presented in this papetherexz € R andp € R™.

includes [11], [12]. In [11] a contract problem is studiedesd  , ; is the amount of bandwidth they agree to trade on (i.e.,
the secondary users help relay primary user’s data andumret  access to this amount of bandwidth is given from the seller

are allowed to send their own data. In [12] an optimal poidfol to buyer).
problem is studied, where a secondary user can purchase @  is the price per unit of:; thus a total ofzp is paid to
bundle of different stochastic channels, with the price atte the seller if the buyer purchases this contract.

already determined, and seeks to find the optimal purchase. The seller's profit or utility from contractz, p)
Main contributions of this paper are as follows: ’

1) We formulate a contract design problem where the spec- Ulz,p) =z(p—c)

trum Ilcer_lse holder seeks to sell his excess bandW'(WIHerec is a predetermined constant that takes into account the
to potgnﬂal buyers. The model captures the fOIIOngperating cost of the seller. We will assume that any cohtrac
essential features: (1) excess bandwdth on the S(_acond@]ré( seller presents must be such that c; that is, the seller
spectrum market often comes with non-exclusive Ugg ot sell at a loss. If none of the contracts is acceptedHeay
gnd therefore hlghly uncertain channel conditions; (@uyer, thereserve utilityof the owner is defined b¥ (0, 0) = 0.
incentives are built in for_ both the seller and the buyer We next consider what a contract specified by the pair
to conduct spectrum trading on the secondary market. x,p) means to a potential buyer. To see this, we will assume
2) We fully characte_nzg the opiimal Set_Of contracts thig i there exists a traditional (as opposed to this emeyrging
seller should provide in thg case of a single or two types%c:ondary) market from where the buyer can purchase ssrvice
of buyers, and Whe_n_ multiple types of buyers s_ha_lr_e With fixed or deterministic guarantees. What this means is
same channel condition due to primary user activities. . o+ the buyer can purchasxclusiveuse of certain amount

3) When there are multiple types of buyers and each &r bandwidth, which does not have to be shared with other

periences dlfferent. ghannel gondltlons, we COnStrUCt( rimary) users. This serves as an alternative to the bayet,
computationally efficient algorithm and show that the s€ Used in our model as a point of reference. We will not

of contracts it generates Is pptlmal when the buyer typgﬁecify how the price of exclusive use is set, and will simply
satisfy a monotonicity condition. normalize it to be unit price per unit of bandwidth (or pertuni
The remainder of the paper is organized as follows. W transmission rate). The idea is that given this alteveati
present the contract design problem in Section II. Sectibn the seller cannot arbitrarily set his price because the bege
characterizes the utility region and the optimal contratt kiways walk away and purchase from this traditional market.
the single buyer case. Section IV deals with the case wWheRjs traditional market will also be referred to as tieéerence
the channel condition is common knowledge, while Sectiafiarket, and the service it offers as tfieed or deterministic
V focuses on the case when channel conditions are privaivice. Our model allows a buyer to purchase from both
knowledge. Discussion is given in Section VI and numericaharkets should that be in the interest of the buyer. Note that
results in Section VII. even though we have assumed a single seller model, this is not
a monopoly because of the existence of this reference market
However, we do not explicitly model the competition between
In this section we describe in detail the models for theaultiple sellers on the secondary market, which remains an
two parties under the contract framework: the seller and tiheresting subject of future study.
buyer, and their considerations in designing and acceming When the set of\/ contracts are presented to a buyer, his
contract, respectively. We also illustrate a basic idesedgiohg choices are (1) to choose one of the contracts and abide by
our model to capture the value of secondary spectrum serviite terms, (2) to reject all contracts and go to the tradélon

is given as

II. MODEL AND ASSUMPTIONS



market, and (3) to purchase a certain combination from bathter into this contract, i.e., whether the cost of this citis

markets. The buyer’s goal is to minimize his purchasing cosb higher than the reserve price. The latter is also refaoed

as long as certain quality constraints are satisfied. the individual rationality (IR) constraint,C(x,p) < C(0,0) =
While the framework presented here applies to any meaning— ¢. Any contract that satisfies both constraints of a buyer is

ful quality constraint, to make our discussion concreteolwel referred to asacceptableo that buyer.

we will focus on a loss constraint. Suppose the buyer choosesVe will assume that a potential buyer may be one of a

to purchase; units of fixed service from the reference marketumber of differenttypes each type is characterized by a

together with a contradtz, p). Then its constraint on expectedunique triple(q, ¢, b), which is a buyer'sprivate information

loss of transmission can be expressed as: That is, a type is characterized by its transmission needs

n (amountq to be transferred and loss requiremeptas well

El(¢ -y —=2B)"] < ¢ ,where as its perceived spectrum/channel qualiy. Throughout the

« ¢ is the amount of data/traffic the buyer wishes to transmRaper we will assume that a type, ¢, b) is such that there exists

« B € {0,1} is a binary random variable denoting thed contract withp > ¢ acceptable to the buyer, for otherwise the
quality of the channel for this buyer. We will denoteseller has no incentive to sell.

b:=P(B=1). We will further assume two cases, whdrds common to
« ¢ is a threshold on the expected loss acceptable to thk types and wheré may be different for different types.
buyer. The first case models the scenario where buyers are relativel

Note that quantitiess,y and ¢ are of the same unit; this homogeneous and their perceived channel quality is largely

unit can be bit (total amount of transmission), or rate (bigetermined by the primary user traffic reflectedbinin this
per second), and so on. Here we have adopted a simplifyi e it is also natural to assume thas known to the seller.
assumption that the purchased service (in the amouny o The second case models the scenario where buyers may differ

either available in the full amount (whe® — 1) or unavailable Si9nificantly in their location, quality of transceiver dess,
(when B — 0), with b being the expected availability. If theand so on, which leads to different perceived channel gualit

contract duration is comparable to the time constant of tH@'(;]h 1S (l)lnly.known to g buyker h|mhsel(fj.. bution of th
primary user activity (e.g., peak vs. off-peak hours) thieis t The seller is assumed to know the distribution of the types

model captures the spectrum condition at the time of co’ntrelﬂz':,Jt not the actual type of a particular buyer. Specifical!yq W
signing. More sophisticated models can be adopted here,\%g assume there_ _aré{ types of buyers, and_ a buyer is of
replacingzB with another random variabl& () denoting the YP€ @ with probability; and is given by the triplég;, b, ¢;).

random amount of data transmission the buyer can actuaq}}(;ntinuous type distribution is discussed in Section VI. In
realize subsequent sections we proceed in the following sequehge: (

With a purchase ofy, (z, p)), the buyer's cost is given by SINdle user type, (2) multiple user types; commigrand (3)

y + zp. The cost of the contradtr, p) to this buyer is given multiple user types; different and privalieDue to space limit,
‘by the value of the following mini;nization problem: we omit some proofs and offer intuitive explanations indtea

Complete proofs can be found in [13].

C(z,p) = minimize 1
() Yy y+ap @) I11. OPTIMAL CONTRACT FOR A SINGLE BUYER TYPE

subjectto  E[(¢—y—-2B)]<e¢ (2)  We begin by considering the case where there is only one

That is, to assess how much this contract actually costs hifP€ Of buyer(g, ¢, b). Through this simplified scenario we wil

the buyer has to consider how much additional fixed service firoduce a number of concepts key to our analysis and obtain
needs to purchase to fulfill his needs. some basic understanding of the nature of this problem.

The buyer can always choose to not enter into any of theUnder our assumption that the seller knows the buyer type
presented contracts and only purchase from the traditioﬁér?t”bu_t'on' having a single type (|.e.,. a singleton dimftion)
market. In this case, his cost is given by the value of ﬂf'essentlally means that the triplg, ¢, b) is known to the seller.

following minimization problem: Denote byT' = {(z,p) : C(z,p) < C(0,0)} the set of all
acceptable contracts for the buyer, or theceptance regian

C(0,0) = minimizey, subject toE[(q —y)*] <e This is characterized by the next result.
Yy

Since every term is deterministic in the above problem, we'€orem 1. Wheng(1 —b) < ¢, the buyer accepts a contract

immediately conclude tha€(0,0) = ¢ — ¢, which will be (z,p) iff
referred to as theeserve priceof the buyer. It is natural to b if p < 9=€
assume that any buyer must be such that ¢, for otherwise p = { 4= jf 4> T (3)
the buyer does not need to perform any transmission as it can * b .
tolerate the loss of all of its data. Wheng(1 — b) > ¢, the buyer accepts the contract iff

In deciding whether to accept a given contrdetp), the b if o< _€
buyer has to consider (1) whether the contract would saitisfy p < { be if . ; 10 (4)
quality (loss) constraint, and (2) whether there is an itigerio z(1-b) 1-b



The above theorem can be proved for each of the cades the seller is given by the “knee” (the intersection point
listed above. For brevity below we only show the proof fowhere the straight line meets the curve) on the boundaryeof th
the sufficient condition undey(1 — b) < e for the first case in acceptance region, denoted @s, p*).

Eqn (3); other cases can be done using similar arguments. Theorem 2. The optimal contract for the seller is the intersec-

Lemma 1. Wheng(1 — b) < ¢, the buyer accepts the contracttion point (z*, p*) on the acceptance region boundary of the
(z,p) if © < 4F andp < b. buyer.

Proof: If both the IR constraint and the loss constraint  Proof: We prove the optimality in two steps. First we show
are satisfied under the stated conditions, then the buyeptc that the seller’s utility is strictly increasing im which implies
the contract. Below we check these two constraints. Let thgat the optimal contract must be such that (3) and (4) hold
buyer supplement this contract with an additional purchafse with strict equality. Then we show that the intersectionnpoi
y = q— ¢ — zp deterministic service. Note thgt> 0 under the is strictly better than any other point on the boundary. For a
stated conditions. The total cost of this contract to theebiy = > 0 andVp’ > p, we have
then given by:
Jven By U(w,p) = 2(p =€) > 2(p — ©) = U(,p).
ThusU (z,p) is strictly increasing irp. For anyz < z* (points
The IR constraint is therefore satisfied. The buyer's loggenn 0N the straight line) we have
this combination of purchases is given by: Uz*,p*) = a*(p* — ¢) > a(p* — ¢) = Ulz, p*),

Clz,p) =y+ap=q—e—ap+ap=q—e=C(0,0).

E [(q—y—zB)"] which used the fact that* > c. (Recall we have assumed that
(@—y—2)"b+(@—y)"(1-b) for any buyer there must exist a contract wjih> ¢ that it
= (e+ap—2)Tb+ (e+zp)(1—1b) finds acceptable_. This |_mpl|_es such_ a p_omt must be within the
g—e acceptance region, which in turn implies that we must have
(e+a2p)(1—b) < (e+ bT)(l —b) p* > c sincep* > p, Vp in the region.) For any paifz,p)
— =q¢(l-b)<e if e+a(p—1)<0 such thatzp = 2*p* andz > z* (points on the curve)
(e+2(p—1))b+ (e +xzp)(1 —b) '
=e+az(p-0b)<e ifet+a(p—-1)>0 U(z,p) =x(p —c) =x"p* —xzc>z"(p* —¢) =U(z*,p").
Thus the loss constraint is also satisfied. B ThusU(z*, p*) is strictly greater than any poiff(z, p) on the
The two acceptance regions given by Theorem 1 are illuseundary. [ ]

trated in Figs. 1. Any contract that falls below the boundary Once the seller determines the optimal contract and present
is acceptable to the buyer. The two cases have the followiitigo the buyer, the buyer will accept because it satisfie$ bot
interpretation. In the first case wheiil — b) < ¢, the quality the loss and the IR constraints. It can be easily shown that
of the stochastic channel is sufficiently good such that tliee buyer’s cost in accepting is exact{y(0,0). Note that
loss constraint (2) may be met without any purchase of tiechnically since the cost of the contract is exactly equal
deterministic channel. In this case the buyer is willingpersd to the reserve price, the buyer is indifferent between mgtti
up to the entire reserve pri€e&(0,0) = g—e on the contract. In only deterministic service and getting a mix of both types of
the second case wheiil —b) > ¢, the quality of the stochastic services. In practice the seller can always lower the undepr
channel is such that no matter how much is purchased, sopidy an arbitrarily small amount to provide a positive inceati
deterministic channel is needeg (> 0) to satisfy the loss so that the buyer will accept the contract. For this reas@mev
constraint (noterp < lbjb < q — ¢ becausey(1 — b) > ¢). For though the costs are equal, for simplicity we will assume tha
the buyer will accept this contract. For the same reason, we
Acceptance boundary of two types of buyer will also assume that when there exist multiple contracts of
equal cost to the buyer, the seller can always induce theetdksi
choice from the buyer by introducing a small difference te th
desired contract. We have now a complete characterizafion o
the contract design for a single type of buyer. We end this
section by introducing the concept of aqual-cost lineof a
‘ ‘ ‘ ‘ buyer. Consider a contra¢t’, p’). Denote byP(z',p’,z) a
0 2 pandwidthbo  ° 1o price such that the contratt, P(z’,p’ ,x)) has the same cost
as contracta’, p’) to a buyer.

price (p)
2 8 8

o
N

Fig. 1. The upper curve is whep(1l — b) < =5,b=0.8,¢ = 3), the .
|o\?ver curve is \?v?werq(l —b) < G?Z(: 5, b): 5_%‘{6 =3) €=9) Definition 1. The equal-cost liné” of a buyer of typdq, €, b)

is the set of contracts within the buyer's acceptance redion
a given buyer typeq e, b), the seller can choose any point irthat are of equal cost to the buyer. This p) € E if and only
the corresponding acceptance regbno maximize its utility: if p = P(a’,p’, z) for some othefa’, p’) € E. The cost of this
max(, ,yer U(x,p). We next show that the optimal contractine is given byC(2’, p'), ¥(2',p') € E.



Equal cost line (Cost of accepting) Three buyer types with same channel condition
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Fig. 2. Example of equal cost lines Fig. 3. Three buyer types with comman

It should be clear that there are many equal-cost lines, eaethonor its contracts. For this reason throughout our dision
with a different cost. Figure 2 shows an example of a set @fe will take the view of a single buyer drawn from a certain
equal-cost lines. We will therefore also write an equaltcog/pe distribution. In Section VI we discuss the case when the
line as E, , for some (z’,p’) on the line to distinguish it seller has limited bandwidth to trade.
from other equal-cost lines. The next theorem gives a peecis Consider a set of contracts = {(z1,p1),..., (zx,px)}
expression for the equivalent price that characterizesjaale designed by the seller with the intention that a buyer of type
cost line. prefers(z;, p;). This is true iff

Th_eorer? 3; For a buyer of type(q,e,_b) with an intersectio_n Ci(zi,pi) < Cilzj,p;) Vi#i.

point (z*,p*) on its acceptance region boundary, and given

a contract (2, p’), an equal-cost lineE,. ,, consists of all Let R;(C) denote the contract that a typdwuyer selects given
contracts(x, P(«/,p’,x)) such that a setC. ThenR;(C) = argmin,, ,,c Ci(z,p) and the seller's
expected utility for a giverC is E[U(C)] = >, U(R;(C))r;

s N ; / *
b, ,/w (b=7) :; I’I, § I* In this section we consider the case where different types
P p z) = fb](D *x_ Nt gy e if I}i —*I< share the same channel conditign=b,i = 1, --- , K, which
* B} * , C,Cp o x* af is also known to the seller. As mentioned earlier, this methes
b— (z*b—2a'p)/x ifz<a*<ux

case where the condition is primarily determined by theessl|

The form of the equal-cost line is the same regardlepsmary user traffic. An example of the acceptance regions of
whetherg(1 —b) < e or g(1 —b) > . Note that every contract three buyer types are shown in Figure 3; note that we will
below an equal-cost line is strictly preferable to a cortat always reindex the types such thaiax;’s are ordered in.
the line for the buyer. This is an observation we will use ifthere are two possible cases: (1) the seller can announce as
subsequent sections. We end this section with a propertyeof thany contracts as he liked/{ = K’; note that there is no point
equivalent price we will use later. in designing more contracts than the number of types); @) th
Lemma 2. P(z',p/, ) i strictly increasing iy’ whena’ > 0 seller is Ii_mited to at mosf/ < K contracts. Below we fully

' e " characterize the optimal contract set in both cases.

This lemma is easily shown by notin@(«’,p') = y + 2'p/,
where y is only a function ofz’. Thus,p > p’ implies
C(x',p) > C(«',p’) whenz’ > 0.

Theorem 4. WhenM = K, the contract set that maximizes
the seller’'s profit is(max1, mazs, ..., mazk).

This result holds for the following reason. As shown in

IV. COMMON CHANNEL CONDITION Figure 3, with a constanb, the intersection points of all

We now considerkK types of buyers indexed by = acceptance regions are on the same fine b. For a buyer
1,2,---, K, each defined by the tripléqg;,e;,b;) with an of type 4, all points to the left ofmaz; on this line cost the
associated acceptance regibn We will use the notation same asnax;, and all points to its right are outside the buyer’s

- acceptance region. Therefore the tyipbuyer will select the
maz; = (&7, p;) = AGMax, e, Uz, p) contractmax; given this contract set (see earlier discussion on
to denote the optimal contract if typewere the only type how the seller can always incentivize this contract oveerh
existing. Similarly, we will useC;(x,p) to denote the cost to with equal cost). Since this is the best the seller can do with
a types buyer for accepting contra¢t:, p). type< buyer (see Theorem 3) this set is optimal for the seller.
A buyer is of typei with probability »;. We assume that It is also relatively straightforward to obtain a similarsudts
the seller knows only this distribution of types but not thé the case of\/ < K given next.
actual type of.a given buyer. Coﬂs?q”e'.“'y it has to desi Bmma 3. WhenM < K and Vb; = b, the optimal contract
the contracts in a way that maximizes its expected payoff., .
. . . . ) ..° Sétis a subset dimaxy, ..., max k).
Since the payoff is measured in expectation, it turns outitha
does not matter whether the seller is faced with a single uye This lemma suggests the following iterative way of finding
or multiple buyers as long as they are drawn from the santhe optimal contract set without having to solve what would
known type distribution and the seller has sufficient bamithvi seem like a combinatorial problem. Define functigtm, i)



where G denotes the intersecting point between accep-
08 tance region boundaries of the two types.
Bo. Eos msz | 2) If max, € Ts.
-Eé’_ _ -g’_m max; \_° timal — 4 AT if U(mazy) > roU(maxs)
I, optemat = maxy If  roU(maxe) > U(maxy)
0.2 |
! 3) If maxs € T1.

5 10 0 5 10
bandwidth (x) bandwidth (x) maxs if U(ma:cg) > rlU(maxl)

optimal = { maxy If rU(mazxy) > U(maxs)

Fig. 4. (left) maxz1 ¢ T> andmaz2 ¢ T1; (right) maz1 € T
as the the maximum expected profit for the seller by picking The above result is illustrated in Figure 4 and can be argued
contractmaz; and selecting optimallyn — 1 contracts from by showing the profit of every contract in a particular region
the set(maxi 1, ...,mazxx). Note that if we includemaz; (such asly) is no greater than some specific contract (such as
and maz; (i < j) in the contract set but nothing else inmaz1). Take the casewaz; ¢ 1> andmax; ¢ Ty for example,
betweeni and j, then a buyer of typé (i < [ < j) will pick any pointinIz is suboptimal to pointz because any contract
contractmaz;. These types contribute to an expected profit dft I3 is acceptable by both types of buyers, buhas a strictly
z¥(b — ¢) )=} /. At the same time, no types belowwill ~higher profit than any other point if.
selectmaz; (as it is outside their acceptance regions), and noWe now consider the cas@/ = 2. We shall see that
types at or above will select maz; (as for themmaz; is providing multiple contracts can help to obtain higher gsofi

preferable). _ _ , Theorem 7. In the case of\/ = 2, max; ¢ T and max, ¢
The functiong(m, i) can be recursively obtained as foIIOWS'T1 the optimal contract set i§maz1, mazs)

g(m, i) =  max glm —1,§) + x(b— C)lerl’ The p.roof as well as the intuition liehind the above result
Jii<j<K—m+2 — are straightforward. The next cask] = 2, max, € Ty or
) N . K maxe € Ty, is more complicated. Without loss of generality,
with the boundary condition(1,i) = = (b—c) > ;—; 1. we will assume that the typebuyer has a smallér (b; < b,),
Finally, it should be clear that the maximum expectegh,saz, € T,. We first determine the optimal contract when
profit for the seller is given bymaxi<i<x (M, i), and the ;= < ;x- this result is then used for the case when >
optimal contract set can be determined by going backwards: without loss of optimality we consider only contract pairs
first determinei}, = argmaxi<i<x g(M,i), theniy, , = (4, p)), (2, p2)} Where types buyer picks(z;, p; ) instead of
arg maxj<;<xK-—1 g(]\/f — 17i), and so on. the other one.
Theorem 5. The set{max;;, max;;,--- ,max;; } obtained To find the optimal contract, we 1) firs_t show that for each
using the above procedure is optimal and its expected pmofit(ir1, p1) We can express the optim@ts, p») in terms ofz; and
given byg(M,i%,). p1; 2) then we show thatz,, p1) must be on the boundary of
Ty with z; < z7; 3) using 1) and 2) we optimize the expected
V. PRIVATE CHANNEL CONDITION profit over possible choices of;.
We now consider multiple buyer types each with a different ) . .
channel conditiorb;, i = 1,---, K. We will start with the L_emma 4. WhenK = 2, if maz, € Ty anq 7y < a3, then
special case ofC = 2 and characterize the optimal contracty'V" & contract*for type'lxl; p1), the optimal contract for
in this case. Using these results we then construct an tigori YP€2 Must be(es, Pa(1, p1, 23))-

to compute a set of contracts for the case/of> 2. Proof: Given a contrac{z1, p;), the feasible region for
A. Two buyer typesk — 2 the contract of typ& buyer is the area below(z1, p1, z) as
defined in Theorem 3 (see Figure 5). Since the seller’s profit

_ Consider two buyertype@i,eijbi), ¢ = 1,2, with probabil- is increasing in botlp and z, the contract that generates the
ity r;, r1 + 72 = 1. We first consider the case that the seller 'ﬁighest profit is atrs = 235 andps = Po (a1, p1, 23) -
- 2 - ’ yv2)

limited to one contractl/ = 1.
Lemma 5. WhenK = 2, if maz, € T> and zj < z3, an

Theorem 6. The optimal contract whe =2 and M =1 is optimal contract for type-1 must he — b, andz; < .

as follows:
1) If maz, ¢ T» and mazs ¢ T, This lemma suggests that the optimal contract for type<l lie
i U - U on the straight line portion of its boundary; this can be stow
mazy i mU(maz,) 2 U (maa) using proof by contradiction. Using Lemmas 4, 5 and Theorem
: and rU(maz) > U(G) 3, the expected profit can be expressed as follows.
optimal = mazy if  roU(maxe) > rU(maxy)

and rU(maxs) > U(G) E[UC)] = rU(z1,p1)+ rU(za, Pa(21,p1,73))

G if U(G) > rU(maxs) - « Ty
and U(G) > riU(maxy) = U@ b))+ ez, ba = x_g(bQ — b))
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* 1 . . L.
= mai(by —¢) +rax5(by — —5 (b2 = b1) — ) from buying the secondary spectrum. This condition leads to
special properties which allows us to construct simplersaay
AE[U(C)] p prop p

o = 71(by —¢) —ra(ba — by) find the optimal contracts.

The 1 acheiving the optimal contraét is given by, Lemma 6. When the MC is satisfied, the optimal contract such

that typei buyer picks(z;, p;) for all i« must haver; < ... <
oy {0 if r1(b1 —c) —r2(ba —b1) <0 rg. Furthermore, we must have < z},Vi=1,2,--- , K
1=

@i i r1(by—¢) —r2(by —b1) > 0 This result allows us to restrict our search for the optimal
{maza} if r1(by —c)—ra(ba—b1) <0 contract to the set where; < z; andz; < ... < zx. We
C= {mazy, (x5, by — i(bg — b))} O.W. can further simplify our search by expressing the valpgs
T Vi = 1..K as functions ofz; Vi = 1...K, by the following
This result shows two operating regimes: 1) Whén < theorem.

ba=bi type2 fitable and the seller will distribute
2 ype2 is more profitable and the seller will distribute . -
’ITLl(ISCQ In this case there is no way to distribute anotherheorem 8. Given a setr; < ... < g, define(zo,po) =

contract for typet without affecting the behavior of type- (0,0) and find the contractéw:, pi) = (xi, Pi(wi-1,pi-1,2:))

2. Consequently, the seller only distributes one contrat. @r(:gié)ergzri:o_niragse/\tl?ﬁ;ttrr:lZXniziss?:llzﬂsee?let?ss prg)hceer(flwure
When 2+ > %= typed is more profitable and the seller? P

will dlstrlbute maxl After choosingmaz, the seller can also each type: buyer acceptgzs, pi).

choose(x3,bs — (b2 — by)) for the type2 buyer without Figure 6 shows an example of applymg this theorem with
affecting the typel- buyer's choice. As a result, the selletthree buyer types: givem; = 2, o = 4, 3 = 6, p; IS
distributes a pair of contracts to get the most profit. Theequentially determined on the equal-cost line of the previ
optimal contract forz > 25 can be determined with a similarcontract. With Lemma 6a( < =), the equal cost line can be
argument. restricted to the forn®; (z;_1,p;_1,2;) = bi — 2=L(b; —pi_1)-

The expected profit of the seller can now be expressed as:

B. K buyer typesK > 2

The previous section gives the explicit solution to the conE[R(C)] = maz riz1(b1 — ¢)
tract design problem wheR = 2. WhenK > 2 we no longer Tt
have explicit solutions; even numerically searching foe th +o b rii(pi =€) + TR (PR~ €)
optimal contract set becomes very complicated. For instanc= m]g”b__(_lgwﬁxl(bl =)+ .. +rixi(Pi(xio1, pio1, 1) — ¢)
even if we assume that both and p are from discrete sets, -
with X and P possible values, respectively, the search must
be done over the space of all possible setskofdifferent By plugging in the values ofp; = Pj(zi_1,pi_1,2;) =
contracts, on the order afX P)*. In generalX and P both p, _ 2i-1(p, 5. ) recursively. Each term in the optimization
take on real values, making the search space uncountablep,lab|em can be simplified to
order to reduce the complexity we will need to exploit specia
properties of the problem. We first reindex the buyer typehi su
thatb, < ... < bg, under certain conditions we will determine riwi(pi —¢) = ri(wi(bi = ¢) ij j+1 = bj))
a procedure which finds the optimal contract.

+ ..+ rxeg(Pr(Tr—1,pK-1,ZK) — C)

Definition 2. The buyer types are said to satisfy a monotonicig/y simplifying and separate the terms with respect-ipthe

condition (MC), ifi, j, b; < b, implies; < x°. (Remember xpected profit of the seller can be expressed as,

W*e will relngexed the types so that < ... g bK and thus  E[R(C)]

z; << k) K K
This monotonicity condition (MC) says that the amount a = zlgwgm Zdh‘(ﬂ'(bi —¢) = (bit1 — bi) Z rj)

buyer willing to buy is strictly increasing in the quality dgiets T =l j=it+1



Firstly, we observe that the above expression is linear énev (b;, z}) to a buyer of typei. Under a resource constraint, it
z;. Thus differentiating with respect to; we get a constant: will select a set of contract§' to maximize), g bz} s.t.
% > icg bi does not exceed the limit. Because the seller can offer
IE[R(C)] _ ra(bi — ¢) — Z v (bist — by) any0 < z < x (whenp is set tob;), this becomes a form
Ox; o Pared 7 ‘ of the continuous (fractional) knapsack problem. This jeob
is solvable by a greedy algorithm [14]. When the seller does
Secondly, because the terﬁfw does not depend on anynot know the buyers’ types, the resulting problem is a simila

z;, the optimizer can be easily éetermined. Wﬁ?e%w > (0 constrained optimization using type distribution infotroa.
we want to makez; as large as possible<( z); when b) Comparing to auction:Auction has been used ex-
aEéfi(C)l < 0 we want to maker; as small as possible. Thistensively for the allocation of spectrum on the traditignal
leads us to the following algorithm which finds the optimal savholesale market, and has been proposed for the secondary
of (x1,...,xx). The variableLD (Last Determined) below is market as well, see e.g., [3]-[5]. Auction is a mechanism

used to keep track of the last type for which we have alrea@ymed at extracting profit from the sale of rare goods for

determined its value. which potential buyers’ valuation is unknown and can be very

hard to obtain. The contract mechanism studied in this paper
Algorithm 1 Optimal contract under monotonicity condition may be view as a form of sale jyosted price Compared to

Let 15 « zpck, LD « K > becaus EBEa[R((C)] >0 auction, posted price is more often used in the sale of nieltip
for i— K —1 — 1 do K (and potentially large quantity of) similar goods, the \aian
T (bi— &) P (b — by) ZIELD r; of which is obtained through market research [15]. Since the
if = > 0 then J= = cost spent on market research can be amortized over multiple
Vi< j< LD, z; + 1 goods, posted price sale can be more efficient than auction
LD < i which incurs cost in conducting each single auction [16has$
else ifi — 1 then been shown that under ideal conditions the two are equitzalen
V1< j< LD,z « 0 in profit generation [17]. As more and more license holders
end if ' may be interested in the secondary market, we believe gricin
end for schemes like the contracts studied in this paper offers id val

alternative to spectrum auction.
_ i o ¢) Learning buyer types and continuous type distribution:
This algorithm works as follows: We start from determiningye have assumed in our analysis that the seller knows a priori
the value ofzx, then we determinex_, and so on all the yhe pyyer distribution and that this distribution is digereThis
way toz;. At stepi we take the derivative with respectio. ynopledge can be obtained through online learning, where a
If it is better to maximize it, we assign it to bej. If it is  gyream of buyers arrive and the seller offer contracts desig
better to minimize it, we push the value 19, (which we ¢ only to make profit (exploit) but also to learn the buyer
have not determined). However, we have to add the probabilif e §istribution (explore) by observing whether the caatiis
of occurrencer; to the value(z;—,) we pushed to so that it 5ecented or rejected. This can be cast as a multi-armedtbandi
reflects the weight of occurrence when determining the Va'H?obIem with an independent reward process (assuming uyer
z;—1. Once we determined the value for somg everyz; e independently drawn from a distribution), and potdigtia
previously pushed to it will be assigned the same value.  cqntingum of arms (each contract is an arm under this model)
Together with Theorem 8 the above algorithm produces a $efne puyer types follow a continuous distribution. Algibiins
of (z;,p;)'s that's optimal under the monotonicity condition.gyist in the literature that produce sublinear regret (eefias
This algorithm takes exactlyx’ steps to find the optimal e profit difference between the best single contract aed th

contract set. While calculating thg_r; might also takeK  giqorithm) in time [18], and logarithmic regret in time when
steps, with careful calculation the method can still be cetegl e number of arms is finite [19].

in O(K) time. By comparison, an exhaustive search method
will take O((X P)X) time to find the optimal contract even VIl. NUMERICAL EVALUATION

if we discretize the search space ofand p with X and P ) )
possible values. When and p are continuos, an exhaustive In this section we compare the performance of contracts

search might not even be possible. generated by the following methods:

1) The optimal set of\/ contracts (denoted OPT(M) in the

VI. DisCUSSION figures) : Finding this set is done by an exhaustive search
a) A seller with limited resourceOur analysis so far has over a set of discretized valuesandp as an approxi-

been based on the assumption that the seller has sufficient mation of the uncountable choices (the step sizerfis
bandwidth to fulfill all accepted contracts. We now discuss 0.5 and the step size fgy is 0.1). As discussed earlier
what happens when the seller's resources are limited. In the in Section V-B, the complexity increases exponentially
full information case when the seller knows the type of eafch o in M. This restricts us to run at most/ = 2 in our
a group of potential buyers, it will extract the most by oiffier evaluation.
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2) The algorithm we introduced in the previous sectiory
(denoted ALG in the figures): As previously shown, ALG
is optimal when the monotonicity condition holds. Since,
the complexity of this algorithm increases only linearly in
M, M can be on the order of thousands in our numericab]

evaluation.
3)
ures): This

{mazy, maxg, - -+, maxg}: maxjmizt;:{ E[U(max;)].

ax;,i=1..

This is done by checking alb;, z}) pairs; the complexity

increases linearly inV/.
The experiments are run by increasiig= 1...7. For each

A K-choose-1 method (denoted MAX in the fig- 7
is the method that selects the con-
tract with the highest expected profit over the se}s]

Recall that MAX is the optimal contract when the seller knows
exactly the type; thus, MAX is optimal whek = 1 and
outperforms exhaustive search because it does not sudfier fr
discretization error. In the general case when the moncitgni
does not necessarily hold, although ALG is not always ogdtima
it still outperforms both OPT(1) and OPT(2). Finally, whérmet
buyer type is harder to predict (d§ increases), the maximum
expected profit decreases.

VIII. CONCLUSION

We considered a contract design problem where a primary
license holder wishes to profit from its excess spectrumaigpa
by selling it to potential secondary users/buyers via desiy
a set of profitable contracts. We completely characterize th
optimal solution in the cases where there is a single buyer
type, and when multiple types of buyers share a common,
known channel condition. In the case when each type of buyers
have different channel conditions we construct an algorith
that generates a set of contracts in a computationally efici
manner, and show that this set is optimal when the buyer types
satisfy a monotonicity condition.
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