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Energy-Efficient Transmission Scheduling With Strict
Underflow Constraints
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Abstract—This paper considers a single source transmitting
data to one or more receivers/users over a shared wireless channel.
Due to random fading, the wireless channel conditions vary
with time and from user to user. Each user has a buffer to store
received packets before they are drained. At each time step, the
source determines how much power to use for transmission to
each user. The source’s objective is to dynamically allocate power
in a manner that minimizes total power consumption and packet
holding costs, while satisfying strict buffer underflow constraints
and a joint power constraint in each slot. The primary application
motivating this problem is wireless media streaming. For this
application, the buffer underflow constraints prevent the user
buffers from emptying, so as to maintain playout quality. In
the case of a single user, a state-dependent modified base-stock
policy is shown to be optimal with linear power-rate curves, and
a state-dependent finite generalized base-stock policy is shown to
be optimal with piecewise-linear convex power-rate curves. When
certain technical conditions are satisfied, efficient methods to
compute the critical numbers that complete the characterizations
of the optimal control laws in each of these cases are presented.
The structure of the optimal policy for the case of two users is then
analyzed.

Index Terms—Base-stock policy, dynamic programming, en-
ergy-delay tradeoff, opportunistic scheduling, resource allocation,
stochastic inventory theory, underflow constraints, wireless media
streaming.

I. INTRODUCTION

I N this paper, we examine the problem of energy-efficient
transmission scheduling over a wireless channel, subject

to strict underflow constraints. We consider a single source
wirelessly transmitting data to one or more receivers/users.
Each user has a buffer to store received packets before they are
drained at a known rate. Due to random fading, the condition
of the wireless channel, which determines how much power
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is required to reliably transmit a given amount of data, varies
with time and from user to user. The transmitter’s goal is to
minimize total power consumption, while preventing any user’s
buffer from emptying (we refer to the latter as strict underflow
constraints).

A. Opportunistic Scheduling and Related Work

This problem falls into the general class of opportunistic
scheduling problems, where the common theme is to exploit the
temporal and spatial variation of the channel.1 At a high level,
the idea of exploiting the temporal diversity of the channel via
opportunistic scheduling can be explained as follows. Consider
the case of a single sender transmitting to a single receiver with
different linear power-rate curves for each possible channel
condition. Consider one scheduling policy that transmits data
in a just-in-time fashion, without regard to the condition of
the time-varying channel. Over the long run, the total power
consumption tends toward the power consumption per data
packet under the average channel condition times the number
of packets sent. If instead, the scheduler aims to send more data
when the channel is in a “good” state (requiring less power per
data packet), and less data when the channel is in a “bad”
state, the total power consumption should be lower. Much of
the challenge for the scheduler lies in determining how good
or bad a channel condition is, and how much data to send
accordingly.

Similarly, in the case of multiple receivers, the scheduler can
exploit the spatial diversity of the channel by transmitting only
to those receivers who have the best channel conditions in each
time slot. The benefit of increasing system throughput and re-
ducing total power consumption through such a joint resource
allocation policy is commonly referred to as the multiuser di-
versity gain [2]. It was introduced in the context of the analo-
gous uplink problem, where multiple sources transmit to a single
destination (e.g., the base station) [3]. Since, there has been a
wide range of literature on opportunistic scheduling problems
in wireless networks.

Sending more data when the channel is in a good state can in-
crease system throughput and/or reduce total energy consump-
tion; however, in opportunistic scheduling problems, it is often
the case that the transmission scheduler has competing quality
of service (QoS) interests. For instance, one QoS interest com-
monly considered is fairness. If, when a singe source is trans-
mitting to multiple receivers, the scheduler only considers total
throughput and energy consumption across all users, it may end
up transmitting to a single user or the same small group of users

1Opportunistic scheduling problems are also referred to as multi-user
variable channel scheduling problems [1].

0018-9448/$26.00 © 2011 IEEE



SHUMAN et al.: ENERGY-EFFICIENT TRANSMISSION SCHEDULING WITH STRICT UNDERFLOW CONSTRAINTS 1345

in every slot. This can happen, for instance, if a base station re-
quires less power to send data to a nearby receiver, even when
the nearby receiver’s channel is in its worst possible condition
and a farther away receiver’s channel is in its best possible con-
dition. Thus, fairness constraints are often imposed to ensure
that the transmitter sends packets to all receivers.

A number of different fairness conditions have been exam-
ined in the literature. For example, [4] and [5] consider temporal
fairness, where the scheduler must transmit to each receiver for
some minimum fraction of the time over the long run. Under the
proportional fairness considered by [2] and [6], the scheduler
considers the current channel conditions relative to the average
channel condition of each receiver. Reference [5] considers a
more general utilitarian fairness, where the focus is on system
performance from the receiver’s perspective, rather than on re-
sources consumed by each user. The authors of [7] incorporate
fairness directly into the objective function by setting relative
throughput target values for each receiver and maximizing the
minimum relative long-run average throughput.

Another QoS consideration that is important in many applica-
tions is delay. Different notions of delay have been incorporated
into opportunistic scheduling problems. One proxy for delay is
the stability of all of the sender’s queues for arriving packets
awaiting transmission. The motivation for this criterion is that
if none of these queues blows up, then the delay is not “too bad.”
With stability as an objective, it is common to restrict attention
to throughput optimal policies, which are scheduling policies
that ensure the sender’s queues are stable, as long as this is pos-
sible for the given arrival process and channel model. Refer-
ences [8]–[11] present such throughput optimal scheduling al-
gorithms, and examine conditions guaranteeing stabilizability
in different settings.

When an arriving packet model is used for the data, one can
also define end-to-end delay as the time between a packet’s ar-
rival at the sender’s buffer and its decoding by the receiver. A
number of opportunistic scheduling studies have considered the
average end-to-end delay of all packets over a long horizon. For
instance, [12]–[23] all consider average delay, either as a con-
straint or by incorporating it directly into the objective function
to be minimized. However, the average delay criterion allows
for the possibility of long delays (albeit with small probability);
thus, for many delay-sensitive applications, strict end-to-end
delay is often a more appropriate consideration for studies with
arriving packet models. In [24] and [25], Chen et al. place strict
constraints on the end-to-end delay of each packet in a point-to-
point system, examine the optimal scheduling policy assuming
all future channel conditions are known, and suggest heuristics
based on this optimal offline scheduling policy for the more re-
alistic online case where the scheduler only learns the channel
conditions in a causal fashion. Rajan, Sabharwal, and Aazhang
also consider strict constraints on the end-to-end delay in an ar-
riving packet model in [16, Section IV].

A strict constraint on the end-to-end delay of each packet
is one particular form of a deadline constraint, as each packet
has a deadline by which it must be transmitted. This notion
can be generalized to impose individual deadlines on each
packet, whether the packets are arriving over time or are all in
the sender’s buffer from the beginning. References [26]–[31]

consider point-to-point communication when a fixed amount
of data is in the sender’s buffer at the start of the time horizon
and the individual deadlines coincide, so that all packets must
be transmitted and received by a common deadline, the end
of the time horizon under consideration. In [26, Section III-D]
and [27, Section III-D], Fu et al. specify the optimal transmis-
sion policy when the power-rate curves under each channel
condition are linear and the transmitter is subject to a per slot
peak power constraint. In [28]–[31], Lee and Jindal model the
power-rate curve under each channel condition as convex, first
of the form of the so-called Shannon cost function based on the
capacity of the additive white Gaussian noise channel, and then
as a convex monomial function.2

References [32] and [33] consider opportunistic scheduling
problems with multiple receivers and a single deadline con-
straint at the end of a finite horizon. Packets arrive over time and
the emphasis is on offline scheduling policies in [32], whereas
[33] considers a fixed amount of data destined for each receiver,
and assumes the data is already in the sender’s buffers at the be-
ginning of the horizon. The model of [33] is perhaps the closest
to our general model for receivers; however, two key differ-
ences are (i) the transmitter is not subject to a power constraint
in [33] and (ii) the transmitter can transmit to at most one re-
ceiver in each time slot in [33].

In our model, the strict underflow constraints serve as a notion
of both fairness and delay. The notion of fairness is that none
of the receivers’ buffers are allowed to empty, guaranteeing the
required level of service to all users. The underflow constraints
also serve as a notion of delay, and can be seen as multiple dead-
line constraints—certain packets must arrive by the end of the
first slot, another group by the end of the second slot, and so
forth. Therefore, Sections III and IV of this paper generalize
the works of [26], [27] and [28]–[31], respectively, by consid-
ering multiple deadlines in the point-to-point communication
problem, rather than a single deadline at the end of the horizon.
In addition to better representing some delay-sensitive appli-
cations, this extension of the model also allows us to consider
infinite horizon problems. We compare related work in oppor-
tunistic scheduling problems with deadline constraints further
in [34]. For more complete surveys of opportunistic scheduling
studies in wireless networks, see [35] and [36].

B. Wireless Media Streaming and Related Work

The primary application we have in mind to motivate this
problem is wireless media streaming. For this application, the
data are audio/video sequences, and the packets are drained
from the receivers’ buffers in order to be decoded and played.
Enforcing the underflow constraints reduces playout interrup-
tions to the end users. In order to make the presentation con-
crete, we use the above wireless media streaming terminology
throughout the paper.

Transporting multimedia over wireless networks is a
promising application that has seen recent advances [37].
At the same time, certain resource allocation issues need to

2In our notation of Section II-A, these two cases correspond to power-rate
curves of the form ���� �� � and ���� �� � , respectively, where
���� �� is the power required to transmit � bits under channel condition �� � � � �
and � � � � are known functions, and � is a fixed parameter.
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be addressed in order to provide high quality and efficient
media over wireless. First, streaming applications tend to have
stringent QoS requirements (e.g., they can be delay and jitter in-
tolerant). Second, because streaming is bandwidth-demanding,
it is especially desirable to operate the wireless system in an
energy-efficient manner. This is obvious when the source of
the media streaming (the sender) is a mobile. When the media
comes from a base station that is not power-constrained, it is
still desirable to conserve power in order to: (i) limit potential
interference to other base stations and their associated mobiles;
(ii) maximize the number of receivers the sender can support;
and (iii) reduce the energy costs incurred by operators.

Of the related work in wireless media streaming, [38] has
the closest setup to our model. The main differences are that
[38] features a loose constraint on underflow (i.e., it is allowed,
but at a cost), as opposed to our tight constraint, and the two
studies adopt different wireless channel models. In the exten-
sion [39], the receiver may slow down its playout rate (at some
cost) to avoid underflow. In this setting, the authors investigate
the tradeoffs between power consumption and playout quality,
and examine joint power/playout rate control policies. In our
model, the receiver does not have the option to adjust the playout
speeds. Our model also bears resemblance to [40]. The first dif-
ference here is that [40] aims to minimize transmission energy
subject to a constant end-to-end delay constraint on each video
frame. A second difference is that the controller in [40] must as-
sign various source coding parameters such as quantization step
size and coding mode, whereas our model assumes a fixed en-
coding/decoding scheme.

C. Summary of Contribution

We formulate the task of energy-efficient transmission
scheduling subject to strict underflow constraints as three
different Markov decision problems (MDPs), with the finite
horizon discounted expected cost, infinite horizon discounted
expected cost, and infinite horizon average expected cost
criteria, respectively. These three MDPs feature a continuous
component of the state space and a continuous action space
at each state. Therefore, unlike finite MDPs, they cannot in
general be solved exactly via dynamic programming, and suffer
from the well-known curse of dimensionality [41], [42]. Our
aim is to analyze the dynamic programming equations in order
to (i) determine if there are circumstances under which we can
analytically derive optimal solutions to the three problems;
and (ii) leverage our mathematical analysis and results on the
structures of the optimal scheduling policies to improve our
intuitive understanding of the problems.

We begin by showing that in the case of a single receiver
under linear power-rate curves, the optimal policy is an easily-
implementable modified base-stock policy. In each time slot, it
is optimal for the sender to transmit so as to bring the number
of packets in the receiver’s buffer level after transmission as
close as possible to a target level or critical number.3 The target
level depends on the current channel condition, with a better
channel condition corresponding to a higher target level. We

3We use the terms target level and critical number interchangeably throughout
the paper.

also show that the strict underflow constraints may cause the
scheduler to be less opportunistic than it otherwise would be,
and transmit more packets under “medium” channel conditions
in anticipation of deadline constraints in future time slots.

We then generalize this result in two different directions.
First, we relax the assumption that the power-rate curves under
each channel condition are linear, and model them as piece-
wise-linear convex to better approximate more realistic convex
power-rate curves. Under piecewise-linear power-rate curves,
we show the optimal policy is a finite generalized base-stock
policy, and provide an intuitive explanation of this structure
in terms of multiple target levels in each time slot. In addition
to the structural results on the optimal policy for the case of a
single receiver under either linear or piecewise-linear convex
power-rate curves, we provide an efficient method to calculate
the critical numbers that complete the characterization of the
optimal policy when certain technical conditions are satisfied.

The second generalization of the single receiver model under
linear power-rate curves is to a single user transmitting to two
receivers over a shared wireless channel. In this case, we state
and prove the structure of the optimal policy, and show how the
peak power constraint in each slot couples the optimal sched-
uling of the two receivers’ packet streams.

In all three setups, the structure of the optimal policy in the
finite horizon discounted expected cost problem extends to the
infinite horizon discounted and average expected cost problems.

Throughout the analysis, we make a novel connection with in-
ventory models that may prove useful in other wireless transmis-
sion scheduling problems. Because the inventory models corre-
sponding to our wireless communication models have not been
previously examined, our results also represent a contribution to
the inventory control literature.

The remainder of this paper is organized as follows. In the
next section, we describe the system model, formulate finite and
infinite horizon MDPs, and relate our model to inventory con-
trol models. In Section III, we consider the case of a single re-
ceiver under linear power-rate curves. While this case can be
considered a special case of the models of Sections IV and V,
we present it first in order to: (i) state additional structural prop-
erties of the optimal transmission policy to a single user under
linear power-rate curves that are not true in general for the cases
discussed in Sections IV and V; (ii) highlight some intuitive
takeaways that carry over to the generalized models, but are
more transparent in the simpler model; and (iii) compare it to
related problems in the wireless communications literature. We
analyze the structure of the optimal scheduling policy for the
finite horizon problem, provide a method to compute the crit-
ical numbers that complete the characterization of the optimal
policy when some additional technical conditions are met, and
provide sufficient conditions for this problem to be equivalent to
a previously-studied single deadline problem. Section IV gener-
alizes the analysis of Section III to the case of a single receiver
under piecewise-linear convex power-rate curves. In Section V,
we analyze the structure of the optimal policy when there are
two receivers with linear power-rate curves. We discuss the in-
finite horizon problems, relaxation of the strict underflow con-
straints, and the extension to the general case of receivers in
Section VI. Section VII concludes the paper.
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Fig. 1. System model.

II. PROBLEM DESCRIPTION

In this section, we present an abstraction of the transmission
scheduling problem outlined in the previous section and formu-
late three optimization problems. While most of this paper fo-
cuses on the cases of one and two users, the formulation in this
section is for the general multi-user (multi-receiver) case, so that
we can discuss this most general case in Section VI-C.

A. System Model and Assumptions

We consider a single source transmitting media sequences to
users/receivers over a shared wireless channel. The sender

maintains a separate buffer for each receiver, and is assumed
to always have data to transmit to each receiver.4 We consider
a fluid packet model that allows packets to be split, with the
receiver reassembling fractional packets. Each receiver has a
playout buffer at the receiving end, assumed to be infinite. While
in reality this cannot be the case, it is nevertheless a reasonable
assumption considering the decreasing cost and size of memory,
and the fact that our system model allows holding costs to be
assessed on packets in the receiver buffers. See Fig. 1 for a di-
agram of the system.

We consider time evolution in discrete steps, indexed back-
wards by , with representing the number
of slots remaining in the time horizon. is the length of the
time horizon, and slot refers to the time interval .

In general, wireless channel conditions are time varying.
Adopting a block fading model, we assume that the slot dura-
tion is within the channel coherence time such that the channel
conditions within a single time slot are constant. User ’s
channel condition in slot is modeled as a random variable,

. We assume that the evolution of a given user’s channel
condition is independent of all other users’ channel conditions
and the transmitter’s scheduling decisions.

We begin by modeling the evolution of each user’s channel
condition as a finite-state ergodic homogeneous Markov
process, with state space .5 Conditioned
on the channel state, , at time , user ’s channel states at
future times are independent of the channel
states at past times . Note the somewhat
unconventional notation that future times are indexed by lower
epoch numbers, as represents the number of slots remaining
in the time horizon. Modeling time backwards facilitates the

4This assumption is commonly referred to as the infinite backlog assumption.
5Theorems 1, 3, 5, 6, and their proofs remain valid as stated when each user’s

channel condition is given by a more general homogeneous Markov process that
is not necessarily finite-state and ergodic.

analysis of the infinite horizon problems. We also consider
the case that each user’s channel condition is independent and
identically distributed (IID) over time. In this case, we can say
more about the optimal transmission policy, as will be seen in
Sections III-B and IV-B.

Associated with each channel condition for a given user is a
power-rate function. If user ’s channel is in condition , then
the transmission of units of data to user incurs a power con-
sumption cost of . This power-rate function
is commonly assumed to be linear (in the low SNR regime) or
convex (in the high SNR regime). In this paper, we consider
power-rate functions that are linear or piecewise-linear convex,
the latter of which can be used to approximate more general
convex power-rate functions. We assume that sending data con-
sumes a strictly positive amount of power, and therefore take the
power-rate functions to be strictly increasing under all channel
conditions.

At the beginning of each time slot, the scheduler learns all
the channel states through a feedback channel. It then allocates
some amount of power (possibly zero) for transmission to each
user, which is equivalent to deciding how many packets to send
to each user. The total power consumed in any one slot must not
exceed the fixed power constraint, . Following transmission
and reception in each slot, a certain number of packets are re-
moved/purged from each receiver buffer for playing. The trans-
mitter (or scheduler) knows precisely the packet requirements
of each receiver (i.e., the number of packets removed from the
buffer) in each time slot. This is justified by the fact that the
transmitter knows the encoding and decoding schemes used. We
assume that packets transmitted in slot arrive in time to be used
for playing in slot , and that the users’ consumption of packets
in each slot is constant, denoted by . This
latter assumption is less realistic, but may be justified if the re-
ceiving buffers are drained at a constant rate at the media acces
control (MAC) layer, before packets are decoded at the applica-
tion layer by the media player. It is also worth noting that the
same techniques we use to analyze the constant drainage rate
case can be used to examine the case of time-varying drainage
rates, which we discuss further in Section III-A. We assume the
receiver buffers are empty at the beginning of the time horizon,
and that even when the channels are in their worst possible con-
dition, the maximum power constraint is sufficient to transmit
enough packets to satisfy one time slot’s packet requirements
for every user. We discuss the relaxation of this assumption in
Section VI-B.

The goal of this study is to characterize the control laws that
minimize the transmission power and packet holding costs over
a finite or infinite time horizon, subject to strict underflow con-
straints and a maximum power constraint in each time slot.

B. Notation

Before proceeding, we introduce some notation. We define
and . A single dot, as in , rep-

resents scalar multiplication. We use bold font to denote column
vectors, such as . We include a trans-
pose superscript whenever a vector is meant to be a row vector,
such as . The notations and denote compo-
nent-wise inequalities; i.e., .



1348 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

Finally, we use the standard definitions of the meet and join of
two vectors:

C. Problem Formulation

We consider three MDPs. Problem (P1) is the finite horizon
discounted expected cost problem; Problem (P2) is the infi-
nite horizon discounted expected cost problem; and Problem
(P3) is the infinite horizon average expected cost problem. The
three problems feature the same information state, action space,
system dynamics, and cost structure, but different optimization
criteria.

The information state at time is the pair ,
where the random vector de-
notes the receiver buffer queue lengths at time , and

denotes the channel conditions
in slot (recall that is the number of steps remaining until the
end of the horizon). The dynamics for the receivers’ queues are
governed by the simple equation at all
times , where is a controlled random
vector chosen by the scheduler at each time that represents
the number of packets transmitted to each user in the th slot.
At each time must be chosen to meet the peak power
constraint

and the underflow constraints

Clearly, the scheduler cannot transmit a negative number of
packets to any user, so it must also be true that for
all .

We now present the optimization criterion for each problem.
In addition to the cost associated with power consumption from
transmission, we introduce holding costs on packets stored in
each user’s playout buffer at the end of a time slot. The holding
costs associated with user in each slot are described by a
convex, nonnegative, nondecreasing function, , of the
packets remaining in user ’s buffer following playout, with

. We assume without loss of generality
that . Possible holding cost models include a linear
model, for some positive constant , or a
barrier-type function such as:

which could represent a finite receiver buffer of length .6

6Taking � to be greater than the time horizon� in the finite horizon expected
cost problem is equivalent to not assessing any holding costs in Problem (P1).

In Problem (P1), we wish to find a transmission policy
that minimizes , the finite horizon discounted expected cost
under policy , defined as

where is the discount factor and denotes all
information available at the beginning of the time horizon. For
Problem (P2), the discount factor must satisfy ,
and the infinite horizon discounted expected cost function for
minimization is defined as

For Problem (P3), the average expected cost function for mini-
mization is defined as

In all three cases, we allow the transmission policy to be
chosen from the set of all history-dependent randomized and
deterministic control laws, (see, e.g., [43, Definition 2.2.3,
p. 15]).

Combining the constraints and criteria, we present the opti-
mization formulations for Problem (P1) (or (P2) or (P3))

Problem (P1) may be solved using standard dynamic pro-
gramming (see, e.g., [43], [44]). The recursive dynamic pro-
gramming equations are given by7

(1)

7As shown in Appendix C of [45] and [46], our model satisfies the measurable
selection condition 3.3.3 of [43, p. 28], justifying the use of min rather than ���

in the dynamic programming equations.
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where is the value function or expected cost-to-go, and
the action space is defined as

(2)

The maximum in (2) is taken element-by-element (i.e.,
). Note that our as-

sumption that the maximum power constraint is always suffi-
cient to transmit enough packets to satisfy one time slot’s packet
requirements for every user (i.e.,

) ensures that the action space is always nonempty.

D. Relation to Inventory Theory

The model outlined in Section II-A corresponds closely
to models used in inventory theory. Borrowing that field’s
terminology, our abstraction is a multi-period, single-ech-
elon, multi-item, discrete-time inventory model with random
(linear or piecewise-linear convex) ordering costs, a budget
constraint, and deterministic demands. The items correspond
to the streams of data packets, the random ordering costs to the
random channel conditions, the budget constraint to the power
available in each time slot, and the deterministic demands to
the packet requirements for playout.

This particular problem has not been studied in the context of
inventory management, but similar problems have been exam-
ined, and some of the techniques from the inventory control lit-
erature are useful in analyzing our model. References [47]–[54]
all consider single-item inventory models with linear ordering
costs and random prices. The key result for the case of a single
item with no resource constraint is that the optimal policy is
a base-stock policy with different target stock levels for each
price. Specifically, for each possible ordering price (translates
into channel condition in our context), there exists a critical
number such that the optimal policy is to fill the inventory (re-
ceiver buffer) up to that critical number if the current level is
lower than the critical number, and not to order (transmit) any-
thing if the current level is above the critical number. Of the prior
works, Kingsman [49], [50] is the only author to consider a re-
source constraint, and he imposes a maximum on the number of
items that may be ordered in each slot. The resource constraint
we consider is of a different nature in that we limit the amount of
power available in each slot. This is equivalent to a limit on the
per slot budget (regardless of the stochastic price realization),
rather than a limit on the number of items that can be ordered.

Of the related work on single-item discrete-time inventory
models with deterministic linear ordering costs and stochastic
demand, [55] and [56] are the most relevant; in those studies,
however, the resource constraint also amounts to a limit on the
number of items that can be ordered in each slot, and is con-
stant over time. References [57]–[59] consider single-item in-
ventory models with deterministic piecewise-linear convex or-
dering costs and stochastic demand. The key result in this setup
is that the optimal inventory level after ordering is a piecewise-
linear nondecreasing function of the current inventory level (i.e.,

Fig. 2. Family of linear power-rate functions. Due to the power constraint, the
effective power-rate function, shown above for each of the three channel con-
ditions, is a two-segment piecewise-linear convex function. When the channel
condition is �, the slope of the first segment is � .

there are a finite number of target stock levels), and the optimal
ordering quantity is a piecewise-linear nonincreasing function
of the current inventory level. Porteus [60] refers to policies
of this form as finite generalized base-stock policies, to distin-
guish them from the superclass of generalized base-stock poli-
cies, which are optimal when the deterministic ordering costs
are convex (but not necessarily piecewise-linear), as first studied
in [61]. Under a generalized base-stock policy, the optimal in-
ventory level after ordering is a nondecreasing function of the
current inventory level, and the optimal ordering quantity is a
nonincreasing function of the current inventory level. Refer-
ences [62]–[65] consider multi-item inventory systems under
deterministic ordering costs, stochastic demand, and joint re-
source constraints.

We are not aware of any prior work on: (i) single-item in-
ventory models with random piecewise-linear convex ordering
costs; (ii) exact computation of the critical numbers in any sort
of finite generalized base-stock policy; or (iii) multi-item inven-
tory models with random ordering costs and joint resource con-
straints. Therefore, not only is this connection between wireless
transmission scheduling problems and inventory models novel,
but the results we present in this paper also represent a contri-
bution to inventory theory.

III. SINGLE RECEIVER WITH LINEAR POWER-RATE CURVES

In this section, we analyze the finite horizon discounted ex-
pected cost problem when there is only a single receiver

, and the power-rate functions under different channel con-
ditions are linear. One such family of power-rate functions is
shown in Fig. 2, where there are three possible channel condi-
tions, and a different linear power-rate function associated with
each channel condition. Note that due to the power constraint
in each slot, the effective power-rate function is a two-segment
piecewise-linear convex function under all channel conditions.
We subsequently simplify our notation and use to denote
the power consumption per unit of data transmitted when the
channel condition is in state . Because there is just a single re-
ceiver, we also drop the dependence of the functions and random
variables on .
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We denote the “best” and “worst” channel conditions by
and , respectively, and denote the slopes of the power-rate
functions under these respective conditions by and .
That is

With these notations in place, the dynamic program (1) for
Problem (P1) becomes as shown in (3)–(4), found at the bottom
of the page, where

. Here, the transition from (3) to (4) is done
by a change of variable in the action space from to , where

. The controlled random variable represents
the queue length of the receiver buffer after transmission takes
place in the th slot, but before playout takes place (i.e., before

packets are removed from the buffer). The restrictions on the
action space, , ensure: (i) a nonneg-
ative number of packets is transmitted; (ii) there are at least
packets in the receiver buffer following transmission, in order to
satisfy the underflow constraint; and (iii) the power constraint is
satisfied.

A. Structure of the Optimal Policy

With the above change of variable in the action space, the
expected cost-to-go at time , depends on the current
buffer level, , only through the fixed term and the action
space; i.e., the function does not depend on . This separa-
tion allows us to leverage the inventory management techniques
of showing “single critical number” or “base-stock” policies,
which date as far back as [66]. The following theorem gives the
structure of the optimal transmission policy for the finite horizon
discounted expected cost problem.

Theorem 1: For every and , define
the critical number

Then, for Problem (P1) in the case of a single receiver with
linear power-rate curves, the optimal buffer level after transmis-
sion with slots remaining is given by

(5)

or, equivalently, the optimal number of packets to transmit in
slot is given by

Furthermore, for a fixed is nondecreasing in :

(6)

If, in addition, the channel condition is independent and iden-
tically distributed from slot to slot, then for a fixed is
nonincreasing in ; i.e., for arbitrary with ,
we have:

(7)

The optimal transmission policy in Theorem 1 is a state-de-
pendent modified base-stock policy. At time , for each possible
channel condition realization , the critical number de-
scribes the target number of packets to have in the user’s buffer
after transmission in the th slot. If that number of packets is
already in the buffer, it is optimal to not transmit any packets; if
there are fewer than the target and the available power is enough
to transmit the difference, it is optimal to do so; and if there
are fewer than the target and the available power is not enough
to transmit the difference, the sender should use the maximum
power to transmit. See Fig. 3 for diagrams of the optimal policy.

Details of the proof of Theorem 1 are included in Appendix
A of [45] and [46]. The key realization is that for all and
all is a convex function in ,
with . Thus, for all and all
has a global minimum , the target number of packets to
have in the buffer following transmission in the th slot. To
prove (6) we fix , view as a function of and

, say , and show that the function is submod-
ular. From the proof, one can also see that if we relax the sta-
tionary (time-invariant) deterministic demand assumption to a
nonstationary (time-varying) deterministic demand sequence,

(with for all ), then the struc-
ture of the optimal policy is still as stated in (5). If the channel
is IID, then the following statement, analogous to (7), is true for
arbitrary with :

(8)

(3)

(4)
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However, (6), the monotonicity of critical numbers over time for
a fixed channel condition, is not true in general under nonsta-
tionary deterministic demand. As one counterexample, (8) says
that under an IID channel, the critical numbers for the worst
possible channel condition are equal to the single period de-
mands. Therefore, if the demand sequence is not monotonic,
the sequence of critical numbers, , is not
monotonic.

B. Computation of the Critical Numbers

In this section, we consider the special case where the channel
condition is independent and identically distributed from slot to
slot, the holding cost function is linear (i.e., for
some ), and the following technical condition is satisfied:
for each possible channel condition for some ;
i.e., the maximum number of packets that can be transmitted in
any slot covers exactly the playout requirements of some integer
number of slots. Under these three assumptions, we can com-
pletely characterize the optimal transmission policy.

Theorem 2: Define the threshold for
and recursively, as follows:

i) If ;
ii) If , ;

iii) If , let be as shown in (9), found at the
bottom of the page,

where is the probability of the channel being in state in
a time slot, and . For each
and , if , define .
The optimal control strategy for Problem (P1) is then given by

, where is defined in (5).8

Compared to using standard numerical techniques to approx-
imately solve the dynamic program and find a near-optimal
policy, the above result not only sheds more insight on the
structural properties of the problem and its exactly-optimal
solution, but also offers a computationally simpler method.
In particular, the optimal policy is completely characterized
by the thresholds . Calculating these
thresholds recursively, as described in Theorem 2, requires

operations, which is considerably simpler from
a computational standpoint than approximately solving the
dynamic program [41], [42].

To prove Theorem 2, we show by backwards induction that
it is worse to transmit either fewer or more packets than the
number suggested by the policy . Theorem 2 is a special case
of Theorem 2, the detailed proof of which can be found in [45]

8With � slots remaining, � � � � � � � � � � � � � �

� � �, so � ��� is well defined.

and [46]. We discuss some intuition behind the proof and the
recursion (9) in the Appendix of this paper.

C. Sufficient Conditions for Equivalence With the Single
Deadline Problem

In [27, Section III-D], Fu et al. consider the related single
user problem of transmitting a given amount of data with min-
imum energy by a fixed deadline. They also represent the fading
channel by a linear power-rate function with a different slope in
each channel condition, and consider a power constraint in
each slot. There is just a single explicit underflow constraint (the
deadline) in their problem; however, because the terminal cost
is set to if all the data is not transmitted by the deadline, the
scheduler must transmit enough data in each slot so that it can
still complete the job if the channel is in the worst possible con-
dition in all subsequent slots. Thus, if is the total amount
of data that must be sent by the deadline and is the amount
that can be sent in a slot under the worst channel condition, the
transmitter must have sent at least packets by the
beginning of the last slot, at least packets by
the beginning of the second to last slot, and so forth.9 So there
are in fact implicit constraints on how much data must be trans-
mitted by the end of slots

. With this interpretation, we believe that
our Theorem 2 is equivalent to Theorem 3 and its corollary in
[27] in the special case that, in addition to the hypotheses of our
Theorem 2, , and . For, when these
conditions are met, the implicit constraints in [27] coincide ex-
actly with the explicit underflow constraints in our problem. Of
course, when these three conditions are not satisfied, the two
problems are quite different. For a more detailed comparison of
these two problems, see [34].

D. Intuitive Takeaways on the Role of the Strict Underflow
Constraints

As mentioned earlier, the main idea of energy-efficient com-
munication over a fading channel via opportunistic scheduling
is to minimize power consumption by transmitting more data
when the channel is in a “good” state, and less data when the
channel is in a “bad” state. However, in order to comply with
the underflow or deadline constraints, the transmitter may be
forced to send data under poor channel conditions.

One intuitive takeaway from the analysis is that it is better
to anticipate the need to comply with these constraints in fu-
ture slots by sending more packets (than one would without the
deadlines) under “medium” channel conditions in earlier slots.

9An unstated assumption in the formulation in [27, Section III-D] is that
� times the horizon length must be at least as large as � .

(9)
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Fig. 3. Structure of the optimal policy for Problem (P1) in the case of a single receiver with linear power-rate curves. When the state is ��� �� in slot �, (a) depicts
the optimal transmission quantity, and (b) depicts the resulting number of packets available for playout in slot �.

Doing so is a way to manage the risk of being stuck sending a
large amount of data over a poor channel to meet an imminent
deadline constraint. Another intuitive takeaway is that the closer
the deadlines and the more deadlines it faces, the less “oppor-
tunistic” the scheduler can afford to be. In summary, both the
underflow constraints and the power constraints shift the defini-
tion of what constitutes a “good” channel, and how much data to
send accordingly. For more detailed comparisons of single-re-
ceiver opportunistic scheduling problems highlighting the role
of the deadline constraints, see [34].

IV. SINGLE RECEIVER WITH PIECEWISE-LINEAR CONVEX

POWER-RATE CURVES

In this section, we analyze Problem (P1) when there is only
a single receiver , and the power-rate functions under
different channel conditions are piecewise-linear convex. Note
that this is a generalization of the case considered in Section III.

We assume without loss of generality that under each channel
condition , the power-rate function has segments, and
thus the power consumed in transmitting packets under
channel condition can be represented as follows:

The terms represent the slopes of the seg-
ments of , and the terms represent
the points at which the slopes of change. An example of a
family of such power-rate functions is shown in Fig. 4. For each
channel condition , we define the maximum number of
packets that can be transmitted without exceeding the per slot
power constraint as

Note that is well defined due to the strictly increasing
nature of . Recall that we assume

. We also assume without loss of generality that
.

Fig. 4. Family of piecewise-linear convex power-rate functions. Like Fig. 2, we
incorporate the power constraint into each curve to show the effective power-
rate curve. As an example, the power-rate function ���� � � is completely
characterized by the sequence of slopes ��� �� �� and the se-
quence of points where the slopes change ��� �� �� . The max-
imum number of packets that can be transmitted in a slot when the channel
condition is � is �� �� �.

In this case, the dynamic program (1) for Problem (P1)
becomes

where .

A. Structure of the Optimal Policy

We showed in Theorem 1 that the optimal transmission
policy to a single receiver in the case of linear power-rate
curves is a state-dependent modified base-stock policy charac-
terized by a single critical level for each channel condition. In
this section, we generalize this result to the case of piecewise-
linear power-rate curves, and show that the optimal receiver
buffer level after transmission (respectively, optimal number of
packets to transmit) is no longer a three-segment piecewise-
linear nondecreasing (respectively, nonincreasing) function
of the starting buffer level as in Fig. 3, but a more general
piecewise-linear nondecreasing (respectively, nonincreasing)
function.
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Fig. 5. Structure of the optimal transmission policy for Problem (P1) in the case of a single receiver with piecewise-linear convex power-rate curves. When the
state is ��� �� in slot �, (a) depicts the optimal transmission quantity, and (b) depicts the resulting number of packets available for playout in slot �.

Theorem 3: In Problem (P1) with a single receiver
under piecewise-linear convex power-rate curves, for every

and , there exists a nonincreasing se-
quence of critical numbers such that the
optimal number of packets to transmit with slots remaining
is given by (10), as shown at the bottom of the page, where

. The optimal receiver buffer level after
transmission is given by .

The optimal transmission policy in Theorem 3, which is
shown in Fig. 5, is a finite generalized base-stock policy. It
can be interpreted as follows. Under each channel condition ,
there is a target level or critical number associated with each
segment of the associated piecewise-linear convex power-rate
curve shown in Fig. 4. If the starting buffer level is below
the critical number associated with the first segment, ,
the scheduler should try to bring the buffer level as close as
possible to the target, . If the maximum number of
packets sent at this per packet power cost, , does not
suffice to reach the critical number , then those
packets are scheduled, and the next segment of the power-rate
curve is considered. This second segment has a slope of
and an associated critical number , which is no higher
than , the first critical number. If the starting buffer
level plus the already-scheduled packets brings the buffer
level above , then no more packets are scheduled for
transmission. Otherwise, it is optimal to transmit so as to bring
the buffer level as close as possible to , by transmitting
up to additional packets at a cost of power
units per packet. This process continues with the sequential
consideration of each segment of the power-rate curve. At each
successive iteration, the target level is lower and the starting
buffer level, updated to include already-scheduled packets,
is higher. Eventually, the buffer level reaches or exceeds a

critical number, or the full power is consumed. Note that
this sequential consideration is not actually done online, but
only meant to provide an intuitive explanation of the optimal
policy.

B. Computation of Critical Numbers

While finite generalized base-stock policies have been con-
sidered in the inventory literature for almost three decades, we
are not aware of any previous studies that explicitly compute
the critical numbers for any model where such a policy is op-
timal. In this section, we compute the critical numbers under
each channel condition when technical conditions similar to
those of Section III-B are satisfied. We consider the special case
when the channel condition is independent and identically dis-
tributed from slot to slot; the holding cost function is linear (i.e.,

); and the following technical condition on the
power-rate functions is satisfied for each possible channel con-
dition : for some , and for
every for some ;
i.e., the slopes of the effective power-rate functions only change
at integer multiples of the drainage rate . Under these condi-
tions, we can completely characterize the optimal transmission
policy.

As in Theorem 2, we recursively define a set of thresh-
olds, and use them to determine the critical numbers,

, for each channel condition, at each
time.

Theorem 4: Define the thresholds for
and recursively, as follows:

i) If ;
ii) If , ;

(10)
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iii) If , let be as shown in (11), at the bottom
of the page,

where is the probability of the channel being in state in a
time slot, for all and

, and for all . For each
and , define and for all

, if , define
. The optimal control strategy for Problem (P1) is then given

by , where for all
is given by (10).

It is straightforward to check that Theorem 4 is in fact a gen-
eralization of Theorem 2. To see this, set so that the
summation from to on the right-hand side
of (11) drops out. Then in (11) is the same as in (9),

corresponds to in (9), corresponds to
corresponds to corresponds to , and

. The resulting optimal transmission policies are
also the same.

In Theorem 4, the threshold may be interpreted as the
per packet power cost at which, with slots remaining in the
horizon, the expected cost-to-go of transmitting packets to cover
the user’s playout requirements for the next slots is the
same as the expected cost-to-go of transmitting packets to cover
the user’s requirements for the next slots. The intuition behind
the recursion (11) is similar to the detailed explanation of (9)
given in Section A of the Appendix. A detailed proof of The-
orem 4 is included in [45, Appendix A] and [46].

C. General Convex Power-Rate Curves

As mentioned in Section II-A, in general, the power-rate
curve under each possible channel condition is convex. It can
be shown that under convex power-rate curves at each time,
the optimal number of packets to send is a nonincreasing func-
tion of the starting buffer level. However, without any further
structure on the power-rate curves, it is not computationally
tractable to compute such optimal policies, known as general-
ized base-stock policies (a superclass of the finite generalized
base-stock policies discussed above). This is why we have
chosen to analyze piecewise-linear convex power-rate curves,

which can be used to approximate general convex power-rate
curves. More specifically, our analysis suggests approximating
the general convex power-rate curves by piecewise-linear
convex power-rate curves where the slopes change at integer
multiples of the demand , in order to be able to apply Theorem
4 to compute the critical numbers in an extremely efficient
manner. Doing so represents an approximation at the modeling
stage followed by an exact solution, as compared to modeling
the power-rate curves as more general convex functions and
having to approximate the solution.

V. TWO RECEIVERS WITH LINEAR POWER-RATE CURVES

In this section, we analyze the finite horizon discounted
expected cost problem when there are two receivers ,
and the power-rate functions under different channel con-
ditions are linear for each user. Each user ’s channel
condition evolves as a homogeneous Markov process,

. As discussed in Sections I and II, the
time-varying channel conditions of the two users are indepen-
dent of each other, and the transmission scheduler can exploit
this spatial diversity. Like Section III, we denote the power
consumption per unit of data transmitted to receiver under
channel condition by . The row vector of these per unit
power consumptions is given by , so that the total power con-
sumption in slot is given by .
We denote the total holding costs
by .

With these notations, the dynamic program (1) for Problem
(P1) becomes

(12)

(13)

(11)
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where

The transition from (12) to (13) follows again from a change
of variable in the action space from to , where

. The controlled random vector represents the
queue lengths of the receiver buffers after transmission takes
place in the th slot, but before playout takes place (i.e., before

packets are removed from user ’s buffer).
Without the per slot peak power constraint, this two-dimen-

sional problem could be separated into two instances of the one-
dimensional problem of Section III; however, the joint power
constraint couples the queues.10 As a result, the optimal trans-
mission quantity to one receiver depends on the other receivers’
queue length, as the following example shows.

Example 1: Assume receiver 1’s channel is currently in
a “poor” condition, receiver 2’s channel is currently in a
“medium” condition, and receiver 2’s buffer contains enough
packets to satisfy the demand for the next few slots. We con-
sider two different scenarios for receiver 1’s buffer level to
show how the optimal transmission quantity to receiver 2 de-
pends on receiver 1’s buffer level. In Scenario 1, receiver 1’s
buffer already contains many packets. In this scenario, it may
be beneficial for the scheduler to wait for receiver 2 to have a
better channel condition, because it will be able to take full ad-
vantage of an “excellent” condition when it comes. In Scenario
2, receiver 1’s queue only contains enough packets to satisfy
the demand in the current slot. It may be optimal to transmit
some packets to receiver 2 in the current slot in this scenario.
To see this, note that even if receiver 2 experiences the best
possible channel condition in the next slot, the scheduler will
need to allocate some power to receiver 1 in order to prevent
receiver 1’s buffer from emptying. Therefore, the scheduler an-
ticipates not being able to take full advantage of receiver 2’s
“excellent” condition in the next slot, and may compensate by
sending some packets in the current slot under the “medium”
condition.

A. Structure of the Optimal Policy

Before proceeding to the structure of the optimal transmission
policy, we state some key properties of the value functions in the
following theorem, a detailed proof of which is included in the
Appendix.

Theorem 5: With two receivers and linear power-rate curves,
the following statements are true for , and for
all :

i) is convex in .
ii) is supermodular in ; i.e., for all ,

10This problem therefore falls into the class of weakly coupled stochastic dy-
namic programs [67], [68].

iii) is convex in .
iv) is supermodular in ; i.e., for all

,

v) implies

and implies

The following theorem on the structure of the optimal trans-
mission policy for the finite horizon discounted expected cost
problem leverages the functional properties of Theorem 5.

Theorem 6: For every and ,
define the nonempty set of global minimizers of :

Define also

Then the vector is a global
minimizer of . Define also the functions

Note that by construction, and
. Partition into the following seven

regions:
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Fig. 6. Structure of the optimal transmission policy for the case of two receivers with linear power-rate curves. The state in slot � is ��� ��. The seven regions
described in Theorem 6 are labeled. The tails of the arrows represent the vectors of the receiver buffer levels at the beginning of slot �, and the heads of the arrows
represent the vectors of the receiver buffer levels after transmission but before playout in slot � under the optimal transmission policy. In region� ��� ��, a single
dot represents that it is optimal to not transmit any packets to either user. The and represent possible starting buffer levels for Scenarios 1 and 2, respectively,
in Example 1.

and define
.

Then for Problem (P1) in the case of two receivers with linear
power-rate curves, for all , an optimal control
action with slots remaining is given by

(14)

Furthermore, for all , there exists an optimal
control action with slots remaining, , which satisfies

(15)

A detailed proof is included in the Appendix. Equation (15)
says that it is optimal for the transmitter to allocate the full power
budget for transmission when the vector of receiver buffer levels
at the beginning of slot falls in region . We cannot
say anything in general about the optimal allocation (split) of the
full power budget between the two receivers when the starting
buffer levels lie in region . Fig. 6 shows the partition
of into the seven regions, and a diagram of the structure of
the optimal transmission policy. Note that the figure shows the
seven regions of the optimal policy for a fixed realization of the
pair of channel conditions. Under different pairs of channel re-
alizations, the seven regions have the same general form, but the
targets are shifted and the boundary functions
and are different.

In some sense, the structure of the optimal policy outlined in
Theorem 6 can be interpreted as an extension of the modified
base-stock policy for the case of a single receiver outlined in
Theorem 1. Namely, under each channel condition at each time,
there is a critical number for each receiver such that it
is optimal to bring both receivers’ buffer levels up to those crit-
ical numbers if it is possible to do so , and it
is optimal to not transmit any packets if both receivers’ buffer
levels start beyond their critical numbers .
However, this extended notion of the modified base-stock policy
only captures the optimal behavior in two of the seven regions,
and does not account for the coupling behavior between users
that arises through the joint power constraint. For instance, pos-
sible starting buffer levels for Scenario 1 and Scenario 2 in Ex-
ample 1 are illustrated in Fig. 6 by the and , respectively.
Even though the buffer level of receiver 2 before transmission is
the same under both scenarios, the optimal transmission quan-
tity to receiver 2 is different under the two scenarios due to the
different starting buffer levels of receiver 1.

VI. EXTENSIONS

In this section, we discuss the infinite horizon problems, the
relaxation of the strict underflow constraints, and the extension
to the general case of receivers.
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A. The Infinite Horizon Problems

The structure of the optimal stationary (or time-invariant)
policy for the infinite horizon discounted expected cost
problem, Problem (P2), is the same as the structure of the
optimal policy for the finite horizon discounted expected
cost problem. Namely, for the case of a single receiver under
linear power-rate curves, it is a modified base-stock policy;
for the case of a single receiver under piecewise-linear convex
power-rate curves, it is a finite generalized base-stock policy;
and for the case of two receivers under linear power-rate curves,
it is of the seven-region form shown in Fig. 6. Moreover, with a
single receiver, the time-invariant sequences of critical numbers
that complete the characterizations of the modified base-stock
and finite generalized base-stock policies are equal to the limits
of the sequences of critical numbers that characterize the finite
horizon optimal policies as the time horizon goes to infinity.
Similarly, with two receivers, the boundaries of the seven
regions of the finite horizon optimal policy shown in Fig. 6
converge to the boundaries of the seven regions of the infinite
horizon discounted expected cost optimal policy as the time
horizon goes to infinity.

For all three cases, optimal policies for the infinite horizon
average expected cost problem, Problem (P3), exist and can be
represented as the limit of optimal policies for Problem (P2) as
the discount factor increases to one. This technique is called the
vanishing discount approach (see, e.g., [43]). Thus, the modi-
fied base-stock, finite generalized base-stock, and seven-region
structures are also average cost optimal for the three cases, re-
spectively. For precise statements and proofs of the structures
of the optimal policies for Problems (P2) and (P3), see Theo-
rems 5, 6, 9, and 10 of [45] or Theorems 5.5, 5.6, 5.10, and 5.11
of [46].

B. Relaxation of the Strict Underflow Constraints

In some applications, it may not be the case that the peak
power per slot is always sufficient to transmit one slot’s worth
of packets to each receiver, even under the worst channel condi-
tions. In this case, a more appropriate model is to relax the strict
underflow constraints, and allow underflow at a cost. One way
to model this situation is to allow the receivers’ queues to be
negative, with a negative buffer level representing the number
of packets that the playout process is behind. Then, in addition
to the holding costs assessed on positive buffer levels, shortage
costs are assessed on negative buffer levels. With some minor al-
terations to the proofs, it is straightforward to show that as long
as the shortage cost function is a convex function of the nega-
tive buffer level, the structural results of Theorems 1, 3, and 6
are essentially unchanged by the relaxation of the strict under-
flow constraints to loose underflow constraints with penalties on
underflow. This is not too surprising as the strict underflow con-
straint case we consider can be thought of as the limiting case
as the penalties on underflow go to infinity.11

11Tracking the number of packets that the playout process is behind in this
manner corresponds to the complete backlogging assumption in inventory
theory. An alternate model is to say that a packet is of no use once it misses its
deadline, penalize missed packets, and keep the receiver queue length at zero.
This model corresponds to the lost sales assumption in inventory theory.

C. Extension to the General Case of Receivers

Our ongoing work includes examining the extension to the
most general case of receivers. It is unlikely that the struc-
ture of the optimal policy in this case has a simple, intuitive, and
implementable form. Therefore, our approach is to find lower
bounds on the value function and a feasible policy whose ex-
pected cost is as close as possible to these bounds. See [45,
Section VI-B] or [46, Section 8.1.3] for a discussion of lower
bounding methods, some of which call for approximating the

-dimensional problem by lower dimensional subproblems.
These same numerical techniques are most likely also the best
way to approximate the boundaries of the seven regions of the
two receiver optimal policy, and determine a near-optimal split
of the power between the two receivers when the vector of
starting receiver buffer levels is in the power-constrained region

.
The results we have presented in this paper are useful not

only in terms of the intuition they provide, but also in generating
feasible policies for the most general case of receivers and
solving the subproblems that are used to find lower bounds for
the -dimensional problem.

VII. CONCLUSION

In this paper, we considered the problem of transmitting
data to one or more receivers over a shared wireless channel
in a manner that minimizes power consumption and prevents
the receivers’ buffers from emptying. We presented a novel
connection between this wireless communications model and
an inventory model with stochastic ordering costs. We showed
that the optimal transmission policy to a single receiver has an
easily implementable modified base-stock structure when the
power-rate curves are linear, and a finite generalized base-stock
structure when they are piecewise-linear convex. When addi-
tional technical conditions are satisfied, we presented efficient
methods to compute the critical numbers that fully charac-
terize the optimal modified base-stock and finite generalized
base-stock policies.

We also analyzed the structure of the optimal transmission
policy for the case of two receivers. In some sense, the struc-
ture of the optimal policy is an extension of the modified base-
stock policy; however, the peak power constraint couples the op-
timal scheduling of the two data streams, and the time-varying
channel conditions may result in counterintuitive optimal sched-
uling decisions.

The extension to the most general case of receivers is quite
complex, and it is likely that numerical approximation tech-
niques need to be used to develop further insights on the nature
of the optimal policy. Many of the numerical approaches to the

receiver case relax the higher dimensional problem, so as to
decouple it into multiple instances of a lower dimensional sub-
problem. Therefore, the results presented in this paper for the
cases of one and two receivers may also indirectly improve the
quality of approximate numerical solutions to related higher di-
mensional problems.
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APPENDIX

A. Discussion of Theorem 2

The reason for the technical condition regarding the max-
imum number of packets that can be transmitted in any slot is
as follows. The optimal action at all times (in general, without
the technical condition) is either to transmit enough packets to
fill the buffer up to a level satisfying the playout requirements
of some number of future slots, or to transmit at maximum
power. When the technical condition is satisfied, transmitting
at maximum power also results in filling the buffer up to a level
satisfying the playout requirements of some number of future
slots. Thus, under the optimal policy, all realizations result in
the buffer level at the end of every time slot being some integer
multiple of the demand, . This fact makes it easier to compute
the thresholds .

An intuitive explanation of the recursion (9) is as follows. The
threshold may be interpreted as the per packet power cost
at which, with slots remaining in the horizon, the expected
cost-to-go of transmitting packets to cover the user’s playout
requirements for the next slots is the same as the expected
cost-to-go of transmitting packets to cover the user’s require-
ments for the next slots. That is, should satisfy

which is equivalent to (16)–(19), as shown at the bottom of the
page. Here, (17) follows from the structure of the optimal con-
trol action (5). If the channel condition in the st slot is

such that , then no packets are transmitted
when the starting buffer level is either or ,
and the respective buffer levels at the beginning of slot
are and . The instantaneous costs re-
sulting from the two starting buffer levels differ by . When

, the power constraint
is not tight starting from , so the buffer level after trans-
mission is the same starting from or . The
instantaneous costs resulting from the two starting buffer levels
differ by , as an extra packets are transmitted if the starting
buffer is . Finally, when ,
the power constraint is tight starting from both and

. Therefore, the instantaneous cost difference is ,
and the respective buffer levels at the beginning of slot are

and . Equation (18) follows
from (16), with substituted for , and (19) follows
from the definition that if .

Comparing the threshold defined in (9) to the corre-
sponding threshold in the uncapacitated (no power constraint)
single user problem [49], [54], the only difference is the third
term of the right-hand side of (9)

which is absent in the uncapacitated case. For all
and , this term is nonnegative. Thus, for a

fixed and , the threshold in the capacitated case is at least as
high as the corresponding threshold in the uncapacitated case.
It follows that the optimal stock-up level is also at least

(16)

(17)

(18)

(19)
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as high in the capacitated case for all and
. The intuition behind this difference is that the sender

should transmit more packets under the same (medium) condi-
tions, because it is not able to take advantage of the best channel
conditions to the same extent due to the power constraint.

B. Proof of Theorem 3

While the proof is similar in spirit to the proof of a finite
generalized base-stock policy in [58, pp. 324–334], some key
differences include the introduction of: (i) stochastic channel
conditions (ordering costs); (ii) the underflow constraint

; and (iii) the power constraint .
We show by induction on that the following two statements

are true for every and :
i) is convex in on .

ii) There exists a nonincreasing sequence of critical numbers
such that the optimal control ac-

tion with slots remaining is given by (20), as shown
below.

Base Case:

(21)

which is convex because and are both convex and
nondecreasing functions, and and
are both convex functions (see, e.g., [69, Section 3.2] for the
relevant results on convexity-preserving operations). Further, let

and for all . Then

(20) is equivalent to , which clearly
achieves the minimum in (21).

Induction Step: We now assume (i)–(ii) are true for
and all , and show they hold for and

an arbitrary . Let and be ar-
bitrary, and define . Then we have
the series of equations (22)–(23) shown at the bottom of the
page, where (23) follows from the convexity of , and

, the last of which follows from
the induction hypothesis. Equation (22) follows from the fact
that for every and

, there exists a
(namely, ) such that

This concludes the induction step for (i) and we now proceed
to (ii).

Note first that
is convex in , as is convex, and

is convex in for every by the induction
hypothesis. Let and

(20)

(22)

(23)
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where represents the right derivative:

which is nondecreasing and continuous from the right,
by the convexity of [70, Section 24]. Note that

is a nonincreasing sequence, because
the sequence is nondecreasing. We show
the optimal control action is then given by (20), by
considering four exhaustive cases.

Case 1:

In order to show is given by (20), it suffices to show

(24)

(25)

First, let be arbitrary, and let
be such that .

If , then , as
. Yet, implies

, which is vacuous. There-
fore, we need only consider

. By the construction of the piecewise-linear func-
tion implies

(26)

We also have

which implies

(27)

Summing (26) and (27) yields (24).
Next, let be arbitrary, so that by con-

struction of

(28)

We also have

which, in combination with the nondecreasing nature of
, implies

(29)

Because is continuous from the right

(30)

Combining (29) and (30), and summing with (28) yields (25).

Case 2:

In order to show is given by (20), it suffices to show:

(31)

(32)

First, let be arbitrary. This
case is vacuous if , so

. Thus, we have

which implies

(33)

Furthermore, from and the construc-
tion of the piecewise-linear function

(34)

Summing (33) and (34) yields (31).
Next, let be arbitrary, so that

, which by the construction of the
piecewise-linear function implies:

(35)

We also have .
Therefore, because is nondecreasing and continuous
from the right

(36)

Summing (35) and (36) yields (32).
Case 3:

This case is the same as Case 2, with in place of , and
in place of .

Case 4:
Let be arbitrary.

by assumption, so this case is vacuous if . Thus,
we have , which, in
combination with , implies

(37)

Additionally, implies

(38)

Summing (37) and (38) yields for
all , which implies

.
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C. Proof of Theorem 5

We prove statements (i)–(v) by joint induction on the time
remaining, .

Base Case:
, for all , so (i) and (ii) hold trivially. Let

be arbitrary. , which is convex
and supermodular. Thus, (iii) and (iv) are true. Additionally

so is independent of
, and vice versa.
Induction Step:

Assume statements (i)–(v) are true for . We
want to show they are true for . We let be arbitrary,
and proceed in order.

Statement (i): Consider two arbitrary points, . Let
be arbitrary, and define . Let

, , and be optimal buffer levels after
transmission in slot , for each of the respective starting
points. We have

(39)

where the first inequality follows from the convexity of
from the induction hypothesis. The second inequality

follows from the following argument.
implies:

(40)

Similarly, implies

(41)

Multiplying the equations in (40) by and the equations in (41)
by , and summing, we have

(42)

(43)

From (42) and (43), we conclude
, as shown in Fig. 7. Thus, the value of at

this point is greater than or equal to the minimum of
over the region . From (39), we conclude is
convex. This argument is similar to the one used by Evans to
show convexity in [62].

Fig. 7. Diagram showing �� ���� �� � �� � ��� ���� �� � �� ���� �� in the
proof of the convexity of � ��� ��.

Statement (ii): Recall that
. The first term, , is clearly

supermodular in , so it suffices to show that the second term,
, is also supermodular in . Let

be arbitrary. We want to show

(44)

If and are comparable (i.e., and or
and ), then (44) is trivial. So we assume they

are not comparable, and also assume without loss of generality
that and . The main idea going forward is
to cleverly construct–depending on the relative locations of

, and –points and
such that

(45)

Then, and imply

(46)

Combining (45) and (46) yields the desired result, (44). We
proceed with a lemma on the relative locations of the points

and , and then construct and to
satisfy (45) for two exhaustive cases.

Lemma 1: There exist optimal buffer levels after transmission
in slot and , such that

; i.e., such that
or .
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Proof of Lemma 1: Fix a choice of such that

Assume that for all optimal choices of , we have
, where we define to mean

and . Fix one such choice of , and
we have:

(47)

Further, implies
, and thus

(48)

Equations (47) and (48) imply ,
and thus

(49)

However, we also have

(50)

(51)

Equations (50) and (51) imply ,
which, in combination with (49), implies it is optimal to move
from to , contradicting the assumption that

for all possible choices of
.

Now let and be arbitrary optimal
actions such that . We show (44) by
considering two exhaustive cases.

Case 1:
We start with another lemma.

Lemma 2: Let be convex and su-
permodular, let be arbitrary, and let

. Define

Then

(52)

Proof of Lemma 2: Step 1: Assume . Assume
without loss of generality that . By the convexity of ,
we have

(53)

(54)

Fig. 8. Diagram of the points referred to in Step 1 of the proof of Lemma 2.

Fig. 9. Construction of feasible points �� and �� in Case 1 of the proof of super-
modularity of � ��� ��.

By the supermodularity of , we have

(55)

Fig. 8 shows these relationships. Combining (53)–(55), we have

Step 2: Now let , and define
and . Then , so by Step 1, we have

(56)

Note that , and
, so by the supermodularity of , we have

(57)

Combining (56) and (57) yields the desired result, (52).
Next, define the following points, shown in Fig. 9:
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Note that and . Furthermore, we have
the equations shown at the bottom of the page. By a similar
argument, , and thus , and

. So (46) is true.
Now define12

Rearranging the definitions of and yields

It is also straightforward to check that

We also have

and thus, . Similarly,
, and thus, . Since is convex and super-

modular, we can now apply Lemma 2, with playing
the role of the role of the role of ; and

the role of , to get (45), which, in combination with
(46), implies (44).

Case 2:
There are two possibilities for this case. The first possibility is
that and

. The second possibility is that
and . We show (44) under the first
possibility, and a symmetric argument can be used to show (44)
under the second possibility. We have

(58)

12If � ������� ���� ������� �� � �, let � be arbitrary in [0, 1]. Similarly,
if � ��� � ��� ��� � ��� � ��� �� � �, let � be arbitrary in [0,1].

Fig. 10. Construction of feasible points �� and �� in Case 2 of the proof of su-
permodularity of � ��� ��.

(59)

(60)

Equations (58), (59), and (60) imply .
If it also happens that , then we have

Otherwise, define

From and ,
we know

(61)
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It is clear from (61) that the numerator and denominator of are
positive, and . Now define

It is somewhat tedious but straightforward to show that
and , implying (46). In Fig. 10, is

the point where the line segment connecting and
intersects the budget constraint (hypotenuse) of

, and is a point along this line segment the same dis-
tance from as is from . Equation (45)
follows from the convexity of along this line segment.
Combining (45) and (46) again yields the desired result, (44).

Statement (iii):
. By (i), for all , is convex in ; thus,

is convex in as it is the composition of a convex function
with an affine function. is also convex as it
is the nonnegative weighted sum/integral of convex functions.
It follows that , the sum of convex functions, is convex
in .

Statement (iv): Supermodularity of follows from the
same series of arguments as (iii), because, like convexity, su-
permodularity is preserved under addition and scalar multipli-
cation.13

Statement (v): This step basically follows from Topkis’ The-
orem 2.8.1 [72, p. 76], but, for the reader’s benefit, we reproduce
the proof here with our notation. Let be arbi-
trary with . Let
and be arbitrary. We
want to show

If , this is trivial, so we check that it is true for .
Since is a minimizer of , we have

(62)

and since is a minimizer of , we have

(63)

By the supermodularity of , we have

or, rearranging terms

(64)

Combining (62), (63), and (64) yields

(65)

13 Smith and McCardle [71] refer to these as closed convex cone properties.

So (65) holds with equality throughout, implying
, and we conclude

Since and were chosen arbitrarily, we have

The first implication in (v) follows from a symmetric argu-
ment.

D. Proof of Theorem 6

Let and be arbitrary. We start by
proving (14). First, let and be
arbitrary. We know from Theorem 5 that is convex on

, which implies that is also convex on
any line segment in (see, e.g., [70, Theorem
4.1]). Specifically, by the convexity of along the line

and the fact that , we have

(66)

Similarly, by the convexity of along the line
and the fact that , we have:

(67)

Combining (66) and (67) yields

and we conclude .
Second, let be arbitrary. Then

and is a global minimizer of , so it is
clearly optimal to transmit to bring the receivers’ buffer levels
up to .

Next, let and be arbitrary.
By definition of , we have

(68)

Furthermore, the function is
convex in since is a convex set (see, e.g., [69, pp.
101–102]). Thus, implies

(69)

Combining (68) and (69) yields

and implies .
Since was arbitrary, we conclude

is optimal.
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The optimality of for
follows from a symmetric argument,

using the convexity of along the curve .
Finally, we prove (15). Define

First, let and be arbitrary such
that . Define

Note that and imply
. Then define

By the convexity of along the line segment from to
, we have

Since was arbitrary, we conclude

Next, let and be arbitrary such
that . We consider two exhaustive cases, and for
each case, we construct a such that

.
Case 1: and

Let . Then, by the convexity of
along , the definition of , and

, we have

It is also straightforward to check that , as desired.
Case 2: All other such that

By the definition of , we have

(70)

Define

By the convexity of along , we have

(71)

Furthermore, we have

(72)

If , (72) is trivial. Otherwise, there is a disconti-
nuity in at , and we have

(73)

with at least one of the inequalities being strict. Nonetheless,
is a continuous function of , and there-

fore

(74)

The convexity of along the line and (74) imply

which, in combination with (73), implies (72). Combining
(70)–(72) yields the desired result: for a

.
The validity of (15) for follows from

a symmetric argument, completing the proof of (15) and
Theorem 6.
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