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SUMMARY

Performance enhancing proxies (PEPs) are widely used to improve the performance of TCP over high delay-
bandwidth product links and links with high error probability. In this paper we analyze the performance of using
TCP connection splitting in combination with web caching via traces obtained from a commercial satellite system.
We examine the resulting performance gain under different scenarios, including the effect of caching, congestion,
random loss and file sizes. We show, via analyzing our measurements, that the performance gain from using
splitting is highly sensitive to random losses and the number of simultaneous connections, and that such sensitivity
is alleviated by caching. On the other hand, the use of a splitting proxy enhances the value of web caching in that
cache hits result in much more significant performance improvement over cache misses when TCP splitting is
used. We also compare the performance of using different versions of HTTP in such a system.
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1. INTRODUCTION

The performance of TCP over heterogeneous connections such as those including satellite and wireless
links has been extensively studied for the past few years. Proposed performance enhancing techniques
can roughly be categorized into link layer solutions (see for example [1, 2]), end-to-end solutions
where the end-to-end semantic of TCP is maintained (see for example [3, 4, 5, 6, 7, 8, 9, 10]) and non
end-to-end solutions where the end-to-end semantic is violated (see for example [11, 12, 13]). Various
link layer and end-to-end approaches can be quite effective for connections over wireless links through
better error correction schemes, local retransmission schemes and schemes that distinguish congestion
losses from link failure losses for TCP. In a connection that incorporates a satellite link on the other
hand, the main bottleneck in TCP performance is due to the large delay-bandwidth product of the
satellite link (for an overview of research on TCP over satellite see for example [14]). Over such a link
the normal TCP window dynamics result in significantly increased latency before the channel is fully
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utilized. This problem cannot be effectively solved simply by improving the satellite channel quality,
or by using large initial window size. This is because a connection using the satellite link typically also
has a terrestrial part, thus using large window end-to-end could affect the performance and fairness of
the terrestrial part of the connection.
One typical non end-to-end solution that has been adopted by many satellite data communication
service providers is the TCP connection splitting technique. The idea behind this technique is to
segregate the end-to-end connection into segments so that each can be optimized separately, and in
particular so that the TCP window over the satellite segment can be opened up faster. This involves
placing at the Network Operating Center (NOC) a splitting proxy that acknowledges end user packets
on behalf of the remote server and acknowledges the remote server on behalf of the end user (assuming
the end user is directly connected to the satellite down link). This proxy operates at the TCP level and
therefore breaks the end-to-end semantic of TCP. It is also not compatible with IPSec [15]. The benefit
however, is that (1) splitting a connection results in shortened TCP feedback control loop, so that the
remote server receives ACKs much sooner from the NOC (proxy) than from the end user, and therefore
its window can quickly ramp up; and (2) by segregating an end-to-end connection into segments, each
segment is enhanced separately. The proxy can use large initial window over the satellite link, which
can either be the last hop or somewhere in the middle of the end-to-end connection.
The performance gain of using a splitting proxy has been reported in [16] as a result of simulation study
and in [11] from experimental study. In [17] and [18] some analysis was presented to quantitatively
study the benefit of such a proxy. We observe that in a typical satellite system TCP connection splitting
is not the only performance enhancing technique that is commonly used. Web caching is also widely
implemented to reduce latency by pushing contents closer to the end users. Moreover, whenever there
is a cache miss, the cache in effect “breaks” the server-client transfer into two separate connections.
This is because the cache opens up a connection to the remote server and starts downloading the
file to the cache (for cacheable objects) while forwarding packets to the client at the same time.
Although this happens at the application layer, it results in a server-cache connection and a cache-client
connection, and thus has a very similar effect on the end-to-end performance as that of a TCP splitting
proxy, as will be shown more clearly in the next section. Our focus in this study is the the combined
performance implication of using both types of enhancements - TCP splitting and web caching. By
taking measurements from a live Internet over satellite system, we hope to gain more insights into the
use of proxy as a general solution to such systems, and more importantly to apply such understanding
to system level design issues. Our measurements are obtained via repeated downloads of selected files
(both pure text and with embedded objects).

Our main observations are as follows:
(1) Connection splitting enhances the value of caching. When splitting is not used, whether there is

a cache hit or cache miss generates almost identical performance (in terms of delay and throughput).
When splitting is used, a hit at the cache results in much higher throughput.

(2) The throughput of a split connection is more sensitive to increased congestion delay than an
end-to-end connection. Having simultaneous connections will cause the performance of splitting to
decrease much faster than the end-to-end case.

(3) The throughput of a split connection is highly sensitive to packet losses for small file transfers.
Split connection provides much better guarantee of performance improvement for a large file than for
a small file. Guarantee of performance improvement refers to the probability that the split connection
results in higher throughput than the end-to-end connection. This probability is defined as the relative
frequency of such events in our measurements. This guarantee is improved when there is a cache hit.

(4) The performance gain of using connection splitting is reduced as the number of embedded objects



in a file increases. In addition, connection splitting is no substitute for persistent connection. If a
splitting proxy is used, it is important that persistent connection is also used between the client and
the proxy. Non-persistent connection even when connection splitting is used can result in much worse
performance than an end-to-end persistent connection.

It’s worth pointing out that TCP connection splitting is also often called TCP spoofing. Strictly
speaking splitting refers to breaking up a connection and spoofing refers to faking an address. They
are often related because in splitting a connection a transparent proxy typically spoofs the end points’
addresses. Since our interest is in the end-to-end performance as a result of split connections (either at
the transport layer or at the application layer), we will limit ourselves to the term connection splitting
in this paper.

The rest of the paper is organized as follows. We describe the system configuration and
our experiment methodology in the next section. We then present the measurements and our
observation/explanation in Section 3. These results are organized into six subsections, where we
examine the effect of file size, caching, number of simultaneous connections, congestion and random
losses, number of embedded objects, and persistent connection, respectively. Conclusions are given in
Section 4.

2. SYSTEM DESCRIPTION

Our measurements are taken from a commercial satellite system that uses a geo-stationary (GEO)
satellite (Ku band) for forward data transfer (from the NOC to the client/end host) and a regular phone
line as the return channel (from the client/end host to the NOC via an ISP), as shown in Figure 1.
Available bandwidth on the forward channel is up to 24 Mbps and the one way propagation delay of
the satellite link is roughly 250 ms (however due to NOC configuration the maximum throughput we
were able to achieve per client was 300-400 Kbits/sec). The return channel has a speed of up to 56
Kbps.

NOC

ISP

Satellite

Server

Internet

Client

Figure 1. Main components of the satellite system

The TCP connection splitting proxy (which we will simply call proxy in the following) is
implemented on a Hybrid Gateway (HGW) located in the NOC. The end host can choose to either
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enable or disable the proxy. When the proxy is disabled, a packet from the server to the end host passes
through the HGW as if passing through a normal router, and goes directly to a Satellite Gateway (SGW)
connected to the satellite uplink. When the proxy is enabled , it breaks up the server-client end-to-end
connection in two, and pre-acknowledges one on behalf of the other in the following way, as illustrated
in Figure 2(a).

During the connection establishment, the proxy simply forwards the SYN and SYNACK packets.
Then the server starts sending data to the client upon receipt of the file request. Upon receiving a data
packet from the server, the proxy sends an ACK back to the server. Since the proxy is transparent by
spoofing the client’s address, the server takes the ACK as an indication that the data being ACKed
has been received successfully by the client, and therefore moves on to the next window and so on.
Since the proxy is located closer to the server (than the client), because of the large satellite delay, this
results in a much shorter round-trip time (RTT) seen by the server and thus enables the server to reach
a much higher sending rate. At the same time the proxy is maintaining a separate connection with
the client by forwarding data packets to the client, waiting for ACKs to come back from the client,
and then releasing more data packets to the client. All packets received from the server are stored at
the proxy. When an ACK is received from the client, data being ACKed is purged from the buffer.
Otherwise the proxy retransmits upon duplicate ACKs or timeouts (local retransmission) in contrast
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Figure 3. Experiment scenarios (a) Cache miss, proxy enabled; (b) Cache hit, proxy enabled; (c) Cache miss,
proxy disabled; (d) Cache hit, proxy disabled; (e) No cache, proxy enabled; (f) No cache, proxy disabled

with the end-to-end case where each retransmission comes from the server.
The web caches are also located in the NOC. Regardless of whether the splitting proxy is enabled

or disabled, when an HTTP request is received at the NOC, it first goes through the cache before
being sent to the server. For cacheable content, if a fresh copy of the requested file is located in the
cache (a hit), the file is delivered to the client directly from the cache without going to the remote
server. If the requested file is not found in the cache (a miss), the cache will open up a connection to the
remote server to fetch the file, as shown in Figure 2(b). This server-cache connection is concurrent with
the cache-client connection in that as soon as the cache starts receiving data from the server (via the
server-cache connection), it will transfer it to the client (via the cache-client connection). Thus in the
case of a miss, the cache effectively handles two connections that constitute the end-to-end connection
between the server and the client. In terms of data transfer, this is very similar to a splitting proxy.
(However, with a cache this takes place at the application layer so the server sees a connection with
the cache rather than being pre-acknowledged by the cache.) Figure 2 compares the packet flow in
the case of a splitting proxy and in the case of a cache miss. Except for the connection establishment
process, the data transfer essentially proceeds in an identical manner (note that this figure does not
show processing delay). Consequently the splitting proxy together with the cache results in an end-
to-end connection split twice upon a cache miss and once upon a cache hit, as shown in Figures 3(a)
and 3(b), respectively. Figures 3(c) and 3(d) illustrates cache hit and cache miss, respectively, when the
proxy is disabled. Figures 3(e) and 3(f) illustrates the cases where connections bypass the cache with
the splitting proxy enabled and disabled, respectively.

Important parameters of our system are as follows. The client is running Windows ME that uses TCP
SACK [19] with delayed acknowledgments (one ACK for every two received packets). Our web server
is running Linux Redhat 7.1. Because of the high asymmetry in link speeds between the forward and
return paths, we also use ACK filtering [20] at the client and send one out of every four ACKs. Thus
each ACK received at the server (assuming no loss) in general represents eight packets. Byte counting
instead of ACK counting is used at the server as well as the proxy, so that the lower rate of ACKs does
not reduce the data sending rate. The splitting proxy uses an initial window size of 64 Kbytes for the
proxy-client connection over the satellite whenever enabled.

Our study consists of six main scenarios: splitting enabled or disabled with cache hit or cache miss
and the option of whether to bypass the cache or not, as shown in Figure 3. Whether to use the file in



the cache or not is controlled by a no-cache pragma [21, 22] set in the request header. When set, this
parameter tells the cache not to use the cached copy even if there is one and to get the most updated
version from the server. Whether the connection splitting proxy is used or not is controlled by the
end hosts. We have two end hosts, one of which has the proxy option enabled and the other one has
the option disabled. This option is then encapsulated in the header of packets sent to the NOC. For
comparison purposes, we always run experiments on these two hosts simultaneously. We download
files from a dedicated web server onto both hosts repeatedly for durations of 1-2 hours per data/point
(measurements over this period are averaged into one data point).

All measurements are taken from a live commercial system with varying amounts of customer traffic.
Our connections and experiment traffic go through a dedicated HGW and therefore a dedicated splitting
proxy that is not shared by other traffic. However our connections does share the cache access, the
satellite gateway and the satellite transponder with other through traffic. Such a setup results in both
controllable and uncontrollable factors as we will point out when we discuss our results in the next
section.

The performance metrics we use in this study are the file transfer latency (using HTTP) and
throughput. We define latency seen by the client as the time between when the SYN request is sent
and the time when FINACK is sent by the client. For files with multiple embedded objects, this is
defined as the time between when the first SYN request is sent and the time when the last FINACK
is sent. Throughput is defined as file size divided by latency. Files used in this study contain a set of
text files of varying sizes and a set of HTML files with varying number of embedded objects. Often for
comparison purposes we keep the total file transfer size (base page plus embedded objects) the same
while changing the number of embedded objects and thus the size of each object. The list of files with
file types and file sizes are provided in Table VII in the appendix.

3. RESULTS AND ANALYSIS

For comparison purposes and better illustration of our results, we define the Gain Of Splitting (GoS) as

GoS �

Throughputsplitting
� Throughputend-to-end

Throughputend-to-end
�

Thus larger GoS means higher throughput gain from using the splitting proxy. A negative GoS means
that the end-to-end connection has a higher throughput (or smaller latency) than the split connection.
We will frequently use this metric in subsequent discussions.

3.1. Effect of Varying File Sizes

We first compare the file transfer throughput with the splitting proxy enabled and disabled under
scenarios described in Figures 3(e) and (f). We download files onto both the splitting enabled and
the splitting disabled hosts repeatedly over a one-hour period and average the measured throughput
over this period. The corresponding GoS for files ranging from 10 Kbytes to 1 Mbytes are shown in
Fig. 4.

This result essentially confirms some earlier reports, see for example [16, 18], that splitting provides
better performance gain for larger files. This is due to the fact that the time spent in TCP connection
establishment has a bigger portion in the overall latency for smaller files and this time is not reducible
by using splitting. At the same time larger files benefit more from the large initial window size (for
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Figure 4. GoS for varying file sizes.

example a 1 Kbyte file and a 64 Kbyte file can both be transmitted in the first window and experience
almost the same latency, if file transfer from the source to the proxy is fast enough). However, this gain
saturates around 80K. This is because when the satellite link is fully utilized (as in the case of a very
large file), the difference in throughput between the two scenarios becomes smaller and smaller. The
main benefit of using a split connection comes from sending faster over the satellite link. When the
capacity of the satellite link is fully utilized this benefit starts decreasing. The larger the file size, the
more diluted this benefit gets. Therefore we see the gain decreases as the file becomes bigger.

3.2. Effect of Caching

In this subsection we compare the performance under scenarios described in Figures 3(a)-3(d). Again
files are downloaded onto both the splitting enabled and the splitting disabled hosts repeatedly over a
one-hour period. Figure 5 shows the GoS of five files ranging from 10 Kbytes to 120 Kbytes in the
cache hit and the cache miss cases. Each point is an average over the one-hour download period.

An interesting observation from this comparison is that when a file is in the cache, the splitting gain
is higher. This can be more clearly seen in Figures 6 (a) and (b), where we compare the file transfer
throughput separately for the cache hit and cache miss cases.

It becomes obvious, by comparing the two, that the use of splitting enhances the value of caching,
i.e., when splitting is used, having the file in the cache provides significant increase in throughput over
the case where the file has to be retrieved remotely from the server. In addition, this improvement
increases as the file size increases. On the other hand, when splitting is disabled, whether the file is in
the cache or not makes very little difference.

The reason lies in the following. Consider the case where the connection is not split by the proxy.
Assuming there is a cache miss (Figure 3(c)), since the cache-client connection is much slower (as
a result of higher propagation delay) than the server-cache connection, by the time the cache-client
connection gets to the first few windows, the entire file could be available in the cache (i.e. the server-
cache connection is completed). As an example consider 1 Kbyte packet size and a 7 Kbyte file.
Assume that the round trip time of the server-cache connection is 50msec and the round trip time of the
cache-client connection to be 500msec. As the first packet arrives at the cache it is immediately sent to
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Figure 5. Comparing GoS in the case of cache hit and cache miss
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Figure 6. Comparing throughput for cache hit and cache miss with (a) splitting enabled and (b) splitting disabled

the client. It takes 2 more round trip times for the whole file to be available in the cache (100 msec), but
by this time the first packet has not even reached the client yet. By the time the first acknowledgment
arrives at the cache from the client, the file will be completely available in the cache. So a cache hit
and a cache miss have about the same latency and throughput.

Therefore having the file locally in the cache provides very limited benefit. Intuitively when an
end-to-end connection is split in two, the slower segment (as a result of higher propagation delay,
smaller initial window size, or higher losses) will dominate the end-to-end performance. A more precise
analytical explanation is out of the scope of this paper, but can be found in [18]. In this case the cache-
client segment is much slower than the server-cache segment, and clearly dominates the end-to-end
performance. Having the file locally in the cache has the effect of “speeding up” the server-cache
connection, i.e. this connection is completely eliminated. However since the overall performance is
governed by the cache-client connection, whether the server-cache connection is a bit faster or not



does not matter much, as shown in Figure 5(b).
Now consider the case where the connection splitting proxy is enabled. Splitting the connection

at the gateway results in either three or two segments of an end-to-end connection (Figures 3(a) and
3(b), respectively). As we have just discussed, if the proxy only splits the connection, then the server-
cache connection and the cache-proxy connection would still be much faster than the satellite link
and therefore the proxy-client connection would again dominate the overall performance. However, in
addition to splitting the connection, the proxy also opens up the window size over the satellite link
much faster by using an initial window size of 64 Kbytes and thus bypassing the slow-start stage of
normal TCP window evolution. This means that the satellite link is now comparable to or even faster
than the server-cache and cache-proxy connections in terms of throughput. For instance, for a file
smaller than 64 Kbytes, the entire file fits into the very first window. Therefore the transfer of the file
is constrained by how fast the proxy receives rather than how fast the proxy can send since the window
size would be perceived as “unlimited” for such a file. Thus having the file in the cache (much closer
to the proxy) would enable the proxy to receive much faster than having to fetch the file remotely,
and results in higher throughput and lower latency. This result highlights the importance of optimizing
different segments of a split connection. More importantly, such optimization has to be done in a way
to reduce asymmetry between the segments, e.g., to bring the slower link faster, which in this case
corresponds to using a large initial window size over the satellite link.

3.3. Effect of simultaneous connections

Results from the previous subsection were obtained by having 10 simultaneous connections to the
HGW from each client. We showed that receiving faster at the proxy results in higher throughput.
However, the proxy’s sending rate can be constrained by the number of connections it is handling.
That is, although each connection has a large initial window size, this large window does not get fully
utilized fast enough due to the number of simultaneous connections. In this subsection we compare the
performance as a result of different number of simultaneous connections from the same host.

Our measurements are taken as follows. First we simultaneously download 6 files, Files 1, 3, 6, 10,
13 and 16, repeatedly over a period of one hour from each host. Then we repeat this process with 9
simultaneous downloads, for Files 1, 3, 4, 6, 8, 10, 13, 15 and 16, and 14 simultaneous downloads, for
Files 1, 3-4, 6-8, 10-13, 15-17, and 19. In this experiment, connections do not go through the cache
and files are directly originated from the remote server. The same experiment is run on both the proxy-
enabled host and the proxy-disabled host (corresponding to Figures 3(e) and 3(f)). Figure 7 shows the
throughput of split connection and end-to-end connection under these three scenarios and Figure 8
compares their GoS.

As can be seen from these results, connection splitting suffers more from higher number of
simultaneous connections than end-to-end connections (although the gain is still positive). This is
mostly due to the fact that with more simultaneous connections, the large initial window size of the
split connections becomes less effective.

As mentioned earlier, the maximum overall throughput achieved per client was observed to be
between 300-400 Kbytes/sec. Although each of the split connections has an initial window size of
64 Kbytes, when there are multiple simultaneous connections, this 64 Kbytes cannot be fully utilized
all at once. The effective share of window size each connection actually realizes decreases with the
increase in the number of simultaneous connections. For connections with the proxy disabled, the
initial window size is much smaller than 64 Kbytes, and therefore the impact of increased number of
simultaneous connections is also much smaller.
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Figure 7. Throughput for different number of simultaneous connections (a) Splitting enabled; (b) Splitting disabled
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Another reason for this could be due to the higher round trip time in end-to-end. Both end-to-end and
split-connection packets experience the same queuing delay at the Satellite Gateway. It’s well-known
that the steady-state throughput of TCP is inversely proportional to RTT (see for example [23, 24]). For
the split-connection case the round trip time (

�
) is obviously smaller than the end-to-end case (

���
).

Now we are adding a constant � (queuing delay) to the round trip time in both cases. Since
����� �

we
expect this constant to have a larger impact on the steady-state throughput of split connections.

We note that the results shown in Figures 7 and 8 are obtained over different time periods, and
therefore could reflect different traffic load and congestion levels in the network. However, the same
experiments were repeated several times and each time the results show the same trend with similar
measurements. Therefore although random fluctuations in traffic load do exist in the network, the
results we show here is typical and representative of the performance and change in performance under



the given scenarios.

3.4. Effect of congestion and packet losses

By examining the traces of each file download, we can determine the exact number of losses
and retransmissions occurred per connection. However, such losses could involve both random and
congestion losses, the distinction of which not directly available to us by only taking measurements
at the end point. On the other hand, congestion and losses are highly correlated with increased end-
to-end delay, which is observable. In this section we illustrate the relationship between increased file
transfer delay and the gain from using connection splitting. In doing so we attempt to understand the
relationship between the splitting gain and congestion/losses.

First we repeatedly download a file directly from the server for 2 hours so that the resulting trace
may reflect a reasonable range of work load and congestion conditions in the network. We then sort the
latency trace of the proxy-enabled connection in descending order, and reorder the proxy-disabled trace
accordingly. These two cases corresponds to that illustrated in Figures 3(a) and 3(c). Figure 9 shows the
reordered traces for Files 3 (11 Kbytes) and 16 (120 Kbytes). Figure 10 shows the GoS for these two
files. It can be seen that the gain decreases as the latency of the proxy-enabled connection increases.
This decrease is much steeper for the 11 Kbyte file and there is a sizable portion of samples showing
the proxy-enabled connections under-performing the proxy-disabled connections. This however is not
observed in the case of the 120 Kbyte file. We define the guarantee of performance improvement as
number of samples with ���������

total number of samples .
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Figure 9. Sorted latency traces in case of a cache miss for (a) File 12 (120K) and (b) File 2 (11K)

We then repeat the same experiment with the same files, but this time files are directly from the cache
(corresponding to Figures 3(b) and 3(d)). Figures 11 and 12 show the latency and GoS in this case.
Note that the correlation between the slowdowns of proxy-enabled and proxy disabled connections is
not very obvious. This is due to the fact that the slowdowns are mostly caused by random packet losses
rather than persistent congestion.

There are two main observations from these results. (1) The splitting gain decreases as the file
transfer latency increases due to higher loss and/or congestion; (2) Whether the file is directly from
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Figure 11. Sorted latency traces in case of a cache hit for (a) File 12 (120K) and (b) File 2 (11K)

the cache or from the remote server, the proxy-enabled connections experience worse performance
(higher latency) than the proxy-disabled connections for small file transfers (e.g. 11 Kbyte), for a small
portion of the samples. This portion is reduced in the case of a cache hit. The same phenomenon was
not observed for large file transfers (e.g., 120 Kbyte). The percentages of negative GoS for different
files are listed in Table I (guarantee of performance improvement for a given file size is one minus the
corresponding term in the table). Note that the average performance of using the splitting proxy is still
above that of disabling the proxy.

Since our connections go through a dedicated proxy, the fluctuation in file transfer latency as seen
from these traces is mainly due to the fluctuation in work load, congestion and loss situations elsewhere
along the path of the connection, i.e., from the server to the cache (in the case of a cache miss), from
the cache to the proxy, and from the proxy to the end host. (Note that in general, connection splitting
leading to worse performance can be caused by excessive congestion and delay at the proxy, which is
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Figure 12. GoS in case of a cache hit for (a) File 12 (120K) and (b) File 2 (11K)

Table I. Percentage of samples where disabling the proxy outperforms enabling the proxy
File No. Size (bytes) % of GoS

�
0 (cache hit) % of GoS

�
0 (cache miss)

3 11033 2.2 3.49
4 16565 0.79 1.26
6 21027 0.0 0.48

12 65331 0.16 0.0
16 120579 0.0 0.0

only experienced by split traffic, but not by end-to-end traffic. This can happen if the proxy handles
many split connections at the TCP layer, while the end-to-end traffic simply goes through the IP queue
and is unaffected. However, since we use a dedicated proxy the increase in delay and loss incurred
by splitting is minimal.) The reason that connection splitting can result in higher latency for small
files lies within the relationship between the reduction in latency due to splitting and the increase in
latency due to losses in general, both as a function of file size. The reduction in latency by using the
proxy is largely due to the fact that the end-to-end TCP is broken down into shorter feedback loops
and that a large initial window size is used over the satellite. When the file is small, one more or one
less lost packet during the transfer, and whether the loss occurs sooner or later can result in significant
difference in latency. This difference may not be compensated by the benefit from using the splitting
proxy when the file is relatively small since the transfer completes soon afterwards. However, as the
file size increases, the benefit of splitting becomes more prominent. In other words, it would take more
packet losses for a split connection to perform at a similar level as a non-split connection, which can
have very small probability considering the fact that a long connection tends to reflect more average
loss rate. When the file is located in the cache, one segment (server-cache) is eliminated from the
path, thus reducing the probability of packet losses and consequently reducing the probability that a
particular split connection experiences longer latency than a non-split connection due to different loss
occurrences.

In summary, when the file size is large split connections can sustain more losses than non-



Table II. Throughput of files with different number of embedded objects (in the case of a cache miss)
No. of embedded objects Proxy-enabled (bytes/sec) Proxy-disabled (bytes/sec) GoS

0 32124 12544 � �����
7 6027 3663 � �����

19 2701 2026 � �����

Table III. Throughput of files with different number of embedded objects (in the case of a cache hit)
No. of embedded objects Proxy-enabled (bytes/sec) Proxy-disabled (bytes/sec) GoS

0 31451 15899 � ��	�

7 6006 3845 � �����

19 2772 2110 � ��� �

split connections and still yield shorter latency, thus provide higher probability of performance
improvement. When the file is small, the split connection is more affected by packet losses and
therefore the probability of performance improvement is lower.

3.5. Effect of embedded objects

So far all our measurements are taken from full text files transferred using HTTP. In this and the next
subsection we examine the effect of embedded objects in a file/page, and the effect of using persistent
connection.

We first compare the latency for files with same size but different numbers of embedded objects.
We repeatedly download Files 12, 39 and 43 over a two-hour period. File 12 is a text file, and Files 39
and 43 contains 7 and 19 equal-sized embedded objects, respectively. The total size of each of these
three files is about 65 Kbytes. In downloading these files, HTTP/1.0 [21] is used between the end hosts
and the proxy or the cache. No parallel connections are used. The throughput of proxy-enabled and
proxy-disabled transfers is shown for both the cache miss (corresponds to Figures 3(a) and 3(c)) and
cache hit (corresponds to Figures 3(b) and 3(d)) cases, in Tables II and III, respectively.

We see that when a file contains a larger number of embedded objects the GoS decreases. This result
is expected considering our observations in Sections 3.A that the gain from using the splitting proxy
decreases as the file size decreases (before the satellite channel is fully utilized). This is because the
time spent in handshake has a bigger portion in the overall latency for smaller files. Thus if we break
a large file into many small objects and open a new connection for each of these objects, we expect to
see a lower performance gain.

It should be noted that the measurements in Tables II and III are taken over different time periods
and thus numbers from different tables are not directly comparable.

3.6. Effect of persistent connection

In this subsection we explore the performance comparison between using HTTP/1.0 and HTTP/1.1
[22]. Web browsers are typically configured to use HTTP/1.0 in the proxy mode where a separate
connection is established for each embedded object on a page. HTTP/1.0 generally results in large delay
due to the time spent in hand-shaking and low throughput in the slow-start phase of TCP. HTTP/1.1



Table IV. Comparison between splitting enabled and disabled with non-persistent connection

No. of embedded objects 0 2 4 9 11 19 23
Throughput (Kbytes/sec) for non-persistent, 7.30 5.00 3.54 3.00 2.36 2.12 1.91

splitting-disabled
Throughput (Kbytes/sec) for non-persistent, 21.84 10.63 6.14 3.77 2.97 1.83 1.67

splitting-enabled
GoS 1.99 1.12 0.73 0.25 0.25 -0.13 -0.12

Table V. Comparison between splitting enabled and disabled with persistent connection
No. of embedded objects 0 2 4 9 11 19 23

Throughput (Kbytes/sec) for persistent, 6.99 5.95 4.23 3.95 4.09 3.95 3.44
splitting-disabled

Throughput (Kbytes/sec) for persistent, 21.38 15.99 10.29 6.68 5.56 3.62 3.19
splitting-enabled

GoS 2.05 1.68 1.43 0.69 0.35 -0.08 -0.07

on the other hand opens up a persistent connection which is used to deliver both the base page and
subsequent embedded objects. Latency is thus reduced since with a single connection, there is only
one handshake procedure and one slow-start stage of TCP. There has been extensive studies on the
performance of different versions of HTTP, see for example [25, 26].

Here we compare HTTP/1.0 vs. HTTP/1.1 with the option of enabling and disabling the splitting
proxy. The connection setup of this part of our measurements corresponds to Figures 3(e) and 3(f),
i.e., the connections do not go through the cache and that the connection is either end-to-end (proxy-
disabled) or split into two (proxy-enabled).

For comparison purposes we summarize the results obtained from different combination of splitting
enabled/disabled and persistent connection enabled/disabled in Tables IV and V. These results are
obtained with a total transfer size of 65 Kbytes.

The graphical representation of GoS for three transfer sizes (base page plus embedded objects) vs.
different number of embedded objects are shown in Fig. 13. This figure corresponds to 16, 65 and 180
Kbyte file transfer sizes.

From these results we see that overall the gain from using connection splitting decreases with
increased number of embedded objects in a file (of the same size). This is consistent with results from
the previous section. However when persistent connection is used, GoS decreases much faster than
the case for non-persistent connections as shown in Tables IV, V and Figure 13 (by ignoring the first
point with 0 embedded object since that is a text file). As the number of embedded objects increases,
the splitting gain under persistent connection and non-persistent connection starts to converge. The
decreasing gain is due to the fact that the client requests each object individually (although within the
same connection) after receiving the base page. Depending on the number of objects and the size of
these objects, using end-to-end connection could achieve very similar performance to that of a split
connection. Here pipelining is not used. Note that although we did not provide any measurement for
the case of persistent connection with pipelining, its effect can be predicted using Table V. When
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Figure 13. GoS with varying number of embedded objects.

pipelining is used, all the requests for embedded objects are sent at the same time after receiving the
base page. This is similar to having one large embedded object instead of many small ones. Using
Table V as well as Fig. 13 (moving toward the left) we would expect pipelining to result in higher GoS.

To better examine the effect of persistent connection we further define the Gain of Persistent
Connection (GoP) as follows:

GoP �

Throughputpersistent
� Throughputnon-persistent

Throughputnon-persistent
�

Figures 14, 15 and 16 show the GoP for three transfer sizes.
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Figure 14. GoP with total transfer size of 16 Kbytes.

The general observation from this set of figures is that using persistent connection provides higher
performance gain over non-persistent connection when the proxy is enabled. This can be explained
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Figure 15. GoS with total transfer size of 65 Kbytes.
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Figure 16. GoS with total transfer size of 180 Kbytes.

as follows. If we denote by ��� and ��� the total transfer delay when persistent connection is used and
non-persistent connection is used with the proxy enabled, then approximately

��� ����� �	��
 � �� �����

where 
 is the number of objects, and RTT is the round trip time between the proxy and the
client, denoted by

���
. This is because by using persistent connection we save one RTT per object

on connection establishment (without pipelining). This approximation also ignores the connection
between the server and the proxy. Therefore we have

����� �

���� �
������ � �

��
 � ��� � �
��� �



Table VI. Comparison between splitting enabled with persistent connection and disabled with non-persistent
connection

No. of embedded objects 0 2 4 9 11 19 23
Throughput (Kbyte/sec) for persistent, 6.99 5.95 4.23 3.95 4.09 3.95 3.44

splitting-disabled
Throughput (Kbyte/sec) for non-persistent, 21.84 10.63 6.14 3.77 2.97 1.83 1.67

splitting-enabled
GoS 2.03 0.94 0.54 -0.06 -0.47 -0.99 -0.93

Similarly for the proxy disabled case, we have

����� � �

��
 � �� � � ��� � � �
� ��

where
� � is the round trip time between the server and the proxy and � �� is the total transfer latency

when using persistent connection with the proxy disabled. Since � �� is much larger than � � for 
 not

too big, we have ����� � ����� � . As 
 increases however, this relationship can reverse. Note that the
above analysis is much simplified for the purpose of illustrating the relationship only and not intended
to be rigorous.

Finally we compare non-persistent connection with proxy vs. persistent connection without proxy
for a total file transfer size of 65 Kbytes, as shown in Table VI. (we did not compare HTTP/1.0 when
proxy is disabled vs. HTTP/1.1 when proxy is enabled, as we do not see particular interest in this case.)

We see that the gain from using connection splitting quickly becomes negative, i.e. split connection
results in smaller throughput than end-to-end connection. This shows that using a persistent connection
is far more important than connection splitting for a file that contains multiple embedded objects (for
even a relatively small number) since the time spent in handshake in this case is significant over
the satellite link. In other words, the gain from using connection splitting cannot substitute for the
performance improvement achieved by having a persistent connection. Therefore in an Internet over
satellite system, configuring the browser to run the default HTTP/1.0 with a connection splitting proxy
would defeat the purpose of having a proxy, unless all the files are pure text. It is thus crucial that a
persistent connection be established between the client and the proxy in such a system.

4. DISCUSSIONS AND CONCLUSIONS

In this paper we examined the gain from using a TCP connection splitting proxy along with web
caching under various scenarios by taking measurements from a live commercial system. In these
experiments, not all parameters are controllable, e.g., the bit error rate over the satellite link, the
amounts of traffic and congestion in the network, etc. However, by properly isolating elements that
contribute to the result, not only does our measurement confirm earlier studies on connection splitting,
but it also revealed additional insights into the common performance enhancing techniques used for
Internet over satellite.

To summarize, connection splitting is a valid approach to improve TCP throughput and reduce
file transfer latency over the satellite. The performance gain increases as the file size increases, but



decreases as the number of embedded objects in the file increases. This gain is also very sensitive to
the number of simultaneous connections and to congestion and packet losses, especially for small files.
On the one hand having a cache hit will alleviate such sensitivity, on the other hand using connection
splitting proxy enhances the benefit of caching. We also showed that although connection splitting
improves throughput, it is no substitute for persistent connection. The best performance is achieved by
using both the splitting proxy and persistent connection (HTTP/1.1) between the proxy and the client.

By segregating an end-to-end connection into separate connection segments we have shortened
TCP feedback control loops. Thus for each of these connection segments we have a smaller RTT and
lower loss probability � comparing to the original end-to-end connection. Since the TCP throughput is
inversely proportional to RTT and � � (see for example [23, 24]), having smaller connection segments
naturally results in higher throughput. However, these segments are not completely un-coupled, and
the slowest segment will constrain the other segments and dominate the end-to-end performance.
The proxy cannot forward client data it has not received from the server. Therefore if the proxy is
constrained by slow receiving then increasing the rate at which proxy receives will improve the overall
performance. This is why cache hits improve the throughput when the splitting proxy is enabled. On
the other hand if we only use the cache, we will have a cache-client connection highly constrained by
slow sending due to the large propagation delay. This is why having a large initial window size over the
satellite link is so important. Overall this illustrates the importance of properly provisioning the proxy
and the NOC, and the importance of optimizing each split segment to reduce the asymmetry among
them so that one is not constrained by the other.

Our measurement and subsequent results are obtained from a live system, over which we have
limited control. These results therefore may reflect the combined effect of a range of factors. We have
considered the most prominent factor(s) and cause(s) for each of these results, but we strongly believe
that deriving a detailed quantitative analysis will help explain the exact role of each factor and serve as
good supplement to our measurement-based study. This is part of our current research.



APPENDIX

Table VII. Files used for measurements
File No. Type Size (Kbytes) File No. Type Size (Kbytes)

1 full text 2.5 26 full text 720
2 full text 10 27 full text 810
3 full text 11 28 full text 900
4 full text 16 29 full text 1000
5 full text 20 30 2 embedded objects 16
6 full text 21 31 4 embedded objects 16
7 full text 28 32 9 embedded objects 16
8 full text 37 33 11 embedded objects 16
9 full text 40 34 15 embedded objects 16
10 full text 42 35 18 embedded objects 16
11 full text 53 36 2 embedded objects 65
12 full text 65 37 3 embedded objects 65
13 full text 77 38 4 embedded objects 65
14 full text 80 39 7 embedded objects 65
15 full text 93 40 9 embedded objects 65
16 full text 120 41 11 embedded objects 65
17 full text 152 42 18 embedded objects 65
18 full text 160 43 19 embedded objects 65
19 full text 168 44 23 embedded objects 65
20 full text 180 45 2 embedded objects 180
21 full text 240 46 5 embedded objects 180
22 full text 320 47 16 embedded objects 180
23 full text 480 48 21 embedded objects 180
24 full text 560 49 23 embedded objects 180
25 full text 640
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