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Abstract—We consider opportunistic communications over channels, imperfect sensing, and more than two states|sare a
multiple channels where the state (*good” or “bad”) of each han-  of interest, but we do not treat them in this work.
nel evolves as independent and identically distributed Makov
processes. A user, with limited sensing and access capatyili Do1
chooses one channel to sense and subsequently access (based
on the sensed channel state) in each time slot. A reward is
obtained when the user senses and accesses a “good” channel.
The objective is to design the optimal channel selection pialy Doo
that maximizes the expected reward accrued over time. This
problem can be generally formulated as a Partially Observate

Markov Decision Process (POMDP) or a restless multi-armed P10
bandit process, to which optimal solutions are often intratable.
We show in this paper that the myopic policy, with a simple and Fig. 1. The Markov channel model.

robust structure, achieves optimality under certain condtions.
This result finds applications in opportunistic communicaions  Thjs formulation is broadly applicable to several domains.
in fading environment, cognitive radlo r_letworks fo!r_specwm It arises naturally in opportunistic spectrum access (OfGA)
overlay, and resource-constrained jamming and anti-jammng. .
[2], [3], where the sender is a secondary user, and the channe
Opportunistic access, cognitive radio, POMDP, restle§ites describe the occupancy by primary users. In the OSA
multi-armed bandit process, myopic policy. problem, the secondary sender may send on a given channel
only when there is no primary user occupying it. It pertains
to communication over parallel fading channels as well, if
a two-state Markovian fading model is employed. Another
We consider a fundamental communication context in whighteresting application of this formulation is in the domaif
a sender has the ability to access many channels, but igtimitommunication security, where it can be used to developing
to sensing and transmitting only on one at a given time. Wmunds on the performance of resource-constrained Jamming
explore how a smart sender should exploit past observatioh§gammer that has access to only one channel at a time could
and the knowledge of the stochastic state evolution of thesiso use the same stochastic dynamic decision making @oces
channels to maximize its transmission rate by switching ope maximize the number of times that it can successfully
portunistically across channels. jam communications that occur on these channels. In this
We model this problem in the following manner. As showapplication, the “good” state for the jammer is preciselyewh
in Figure 1, there are channels, each of which evolves ashe channel is being utilized by other senders (in contrést w
an independent, identically-distributed, two-state @itetime the OSA problem).
Markov chain. The two states for each channel — “good” (1) In prior work [2], it has been shown that when there are two
and “bad” (0) — indicate the desirability of transmittingat channels, a simple myopic policy offers optimal performanc
given time slot. In each time period the sender picks oneef th has been conjectured (based on simulation results) lit t
channels to sense based on its prior observations, andebtagsult holds generally for alb. It has also been shown in [2]
some fixed reward if it is in the good state. The basic objectithat for alln the myopic policy also has an elegant and robust
of the sender is to maximize the reward that it can gain ovesstaucture that obviates the need to know the channel state
given finite time horizon. This problem can be described astransition probabilities exactly. Specifically, it sufficey know
partially observable Markov decision process (POMDP) [4he sign of the auto-correlation of the channel process aner
or a restless multi-armed bandit process [8]. We discusait of time, or equivalently, whethery; > p;; or vice versa
the implications of each formulation and the relationship dVe make progress towards solving the conjecture in this work
our work to the relevant bodies of literature in Section Mwve show that the simple myopic policy is optimal for all
Generalizations of this problem, such as considering riah-i under certain conditions opy1, p11. We also generalize the

I. INTRODUCTION



result to related formulations involving discounted redgaand with the understanding that the above notation implies the
infinite horizons. operation given in (1) applied t@(¢) element-by-element.
The user's policy # is given by the vectorr =
Il. PROBLEM FORMULATION [r(1),7(2),---,7(T)], where 7(t) = i € {1,2,---,n}
g%glotes the decision to select chanmeht time ¢. Such
e

We consider the scenario where a user is trying to access tjie," . . .
cisions are based on the current information stéte.

wireless spectrum to maximize its throughput or data rdte. T The obiecti fth . Lo | (discod
spectrum consists of independent and statistically identical e objective of the user is to maximize Its t.Ota.l ( ISCO _nte
channels. The state of a channel is given by a two-stateatéscr> average) expected reward over a finite (or_ infinite) harizo
time Markov chain shown in Figure 1. Let J7(w), Jj (w), andJZ,(w) denote, respectively, these cost

The system operates in discrete time steps indexed, by criteria (namely finite horlzon infinite horizon with diment,
t—192-... T whereT is the time horizon of interest. At and infinite horizon average reward) under policgtarting in

time ¢—, the channels (i.e., the Markov chains representlrf ptew = [wi, - -+ ,wn]. The associated optimization problems
them) go through state transitions, and at tintiee user makes 1)-(P3)) are formally defined as follows.

the channel sensing and access decision. Specificallynat ti

the user selects one of thechannels to sense, say channel (P1): max J7(w) = max EW[Z B Ry (@(1)) |0 (1) = @]
If the channel is sensed to be in the “good” state (stat¢he t=1

user transmits and collects one unit of reward. Otherwise tEI:’Z)' max J7 (&) = max E,,[Z BIR, o (@(1) |3 (1) = @]
user does not transmit (or transmits at a lower rate), dsliec B ™ — m(®)

reward, and waits tilt+1 to make another choice. This process

repeats sequentially till the time horizon expires. Herenaee (P3): maxJ™ () = max E™[ lim — ZR (@ (1) =
assumed that sensing errors are negligible. The optimafity m % m Tﬂoo

the myopic policy in the presence of sensing errors has beeﬁereﬂ 0 < B <1for (PL)ando < 3 < 1 for (P2)) is

shown forn = 2 in [3].
The state of the above svstem at timér more precisel the discount factor, the maximizations are over all adrhissi
Y © P y policies m, and R, )(w(t)) is the reward collected under

at¢™) is given by the vectos(t) = [s1(t), s2(t), -+ , sn(t)] € . o
{0,1}™. Note thats(¢) is not directly observable to the user;}a(tiéd(()))\’vhin((;?Snneh(t) 's selected, and is given by
(t — on(t .

HO%’YG.W;’ Itt t‘?"i’? bef tsr:lown t(seef e.g.,t_[4],| 55]’ . [.101). that In subsequent sections we will first focus on problem (P1),
sufficient statistics of the system for optimal decision mgk and then extend the results to (P2) and (P3).

or the information stateof the system [10], [5], is given by
the conditional probabilities that each channel is in state [1l. OPTIMAL PoLicy
given all past observations. We denote this informatiotestay  preliminaries

or belief vector byw(t) = [wi(t),- - ,wy(t)] € [0,1]", where
w;(t) is the conditional probability that channkels in statel

@]

Consider (P1). An optimal policy obviously exists since the
number of admissible policies are finite. In theory, such a

at time ¢~ olicy may be found by using dynamic programmin
The user's action space is given by the finite sg y may y 9 dy brog g
Fact 1: Define recursively the functions
{1,2,---,n}, and we will usea(t) = ¢ to denote that
the user selects channeélto sense at timet. It follows  Vp(w) = max FE[R,(w)]
. . . a=1,2,--,n
that the information state of the system is governed by the B B
following transition upon an action in the stateo(f) with an V(&) = a1 8% E[Ra(@) + Vi1 (T (@]a, sa (1))
observation outcome, (¢): = max (wi + wiVig1 (T (@)]i,1)))
p11 if a =1, Sa(t) =1 +(1 - wi)V}_H (T (((D)|Z, 0)) (4)
wi(t+1) =4 po1 if a=1i,s.(t) =0 . 1)

T(wit)) if a#i Then,
. : o ) Vi(w) = maxy J7_, (@)
In Equation (1) the first case denotes the conditional proba- = more, V; (@) = max, JZ(@

)-
bility when the channel is observed to be in the “good” state; /i) A Markov policy 7* { 1,
the second case when the channel is observed to be "bad”; and only if fort = 1,...,T,
and the last case when the channel is not observed, where we  maximum in (4) .

have used the operator: [0,1] — [0, 1] defined as Note thatV;(w) is the value function, or the maximum
expected remaining reward that can be accrued starting from
time ¢t when the current information state és It has two
We will further use the operatdF to denote the above stateParts: () the immediate reward?,(w) obtained in slott
transition. More precisely, we have when the user senses channgl and (ii) the maximum
expected remaining reward starting from time- 1, given
wt+1)=T(@(t)|a,sq(t)), (3) by Vit1(7T (®|a, sa(t))) where the new state represents the

with probability 1. Further-

5, ..., T} is optimal if
a = w;‘ (@) achieves the

T(w) :=wpi1 + (1 —w)pe1, 0<w<. 2



updated knowledge of the system state after incorporatiag tstructure that does not need the update of the information
actiona and the observatios,(t). state or the precise knowledge of the transition probadslit
Similarly, the dynamic programming principle holds foiSpecifically, whemnpi1 > po1, the myopic action is to stay in
(P2) and (P3) as given below. The existence of optimal statiche same channel in the next slot if the channel in the current
ary Markov policies in (P2) and (P3) is a consequence of gJot is sensed to be “good”. Otherwise, the user switches to
finiteness of action space, ii) countability of the (unobable) the channel visited the longest time ago. Whan < po1,
state space, and iii) the bounded condition on the immedidl® myopic action is to stay after observing a “bad” channel

reward (see [5]). and switch otherwise. When a channel switch is needed, the
Fact 2: Consider (P2). There exists a unique functigs{-) user chooses, among those channels to which the last visit
satisfying the following equation: occurred an even number of slots ago, the one most recently
_ _ _ visited. If there are no such channels, the user chooses the
Va(@) = a:Hll,EP(,nE[Ra(w) +BVs(T (@la sa(t)))] channel that has not been visited for the longest time, which
=  max (w;+ fw;Vs (T ((@)]i,1))) can be any of the channels that have never been visited if such
a=1,n o channels exist. Note that this simple structure of the myopi
O = wi)V5 (T (@)]4,0)) -(5) policy reveal that other than the order pf; and po;, the
Furthermore, knowledge of the transition probabilities are unnecessary
i) Vs(w) = max, Jf(w) with probability 1. IV. THE OPTIMALITY OF MYOPIC POLICY

i) A Markov stationary policyr™* is optimal if and only if
a = 7*(w) achieves the maximum in (5).
Fact 3: Consider (P3). There exist functioh.,(-) and
constant scalay satisfying the following equation:

In this section, we show that the myopic policy, with a sim-
ple and robust structure, is optimal under certain conaltio
For convenience, we adopt the following notation.

J+hao@) = max  E[Ry(@) + hoo(T(@]a, 54(1)))] Vi(@a =) = E[iig&) ;ﬁ‘/(t;l((_ﬁ («ull)i;sz-(t)))]
Lt ) = Ws Wi Vi41 wit,
= max (@i +wihe (T (@)]i,1))) A= oo Vi (T (310,0).

(A = wihoo (T ((©)2,0)) (6)  Note thatV;(w) = max, Vi(@; a).
Furthermore, We first prove the optimality of the myopic policy for (P1)
i) J = max, JZ (@) with probability 1. under the following assumption/condition, and then extired
result to (P2) and (P3).

i) A Markov stationary policyr™* is optimal if and only if : . -
Assumption 1:The transition probabilitiepy; andp,; are

a = 7*(w) achieves the minimum in (6).
Unfortunately, due to the impact of the current action opuch that
the future reward, the uncountable space of the information
statew(t), and the non-stationary nature of the optimal policy
(owing to the finiteness of the horizon), obtaining the optim
solution using the above equations directly is in generaherez = 5(p11 — po1)-
computationally prohibitive. The first inequality in (8) ensures thatw — w’) is increasing
For the remainder of this paper, we will focus on obtainingh w — «’. In particular,
structural properties of the optimal policy. Specificallye

P11 — po1
1 +p01(ar - x2) — 2x

ARV

AN / /
will consider a myopic policy that aims at maximizing the T(w—w) = (w=w)pn —por) 2 (W - o) ®)
immediate reward at each time step, and show its optimalifye also note that whefi < 0.5, the second inequality in (8)
under certain conditions. always holds.

B. The Myopic Policy A. Finite Horizon

A myopic policy ignores the impact of the current action on our main results are summarized in the following theorem.
the future reward, focusing solely on maximizing the expéct  Theorem 1:Consider Problem (P1). Under Assumption 1,
immediate reward. Myopic policies are thus stationary. F@fie myopic policy is optimal, i.e. fokt,0 < ¢ < T, and
(P1), the myopic policy under state = [wi,wz, -+ ,wn] IS g = [wy, - ,wn] € [0,1]V,
simply given by

Vi(@u(t) = 1) = Vi(@;u(t) =) > 0, )
a*(0) = arg max E[R,(®)] =arg max wg. (7)
a=L,n a=l,-,n if w >w; fori=1,---,n.

In general, obtaining the myopic action in each time slot Proof: The proof is inductive and follows the following
requires the recursive update of the information state sfeps: assuming the optimality of myopic policy at times
given in (1), which requires the knowledge of the transitiont + 1,...,7, we prove a set of inequalities, given by
probabilities{p;;}. Interestingly, it has been shown in [2], [3]Lemmas 1-2. Using these inequalities, we then prove the
that for this problem at hand, the myopic policy has a simpteptimality of myopic policy at time—1 in Lemma 4. Note that



the optimality of myopic policy at timd" is straightforward. prove this by noting
The proofs of Lemmas 1-4 are given in the Appendix.

T
Lemma 1 (Monotonicity of Value Function:ssume that J(@) = ET[ L t-1p S(No(1) = @
the value function is monotone at times- 1,¢ + 2,...,T. 5 @) [Tﬂo;ﬁ ~(n (@)@ (1) =]
Considerw and&’ such thatw; > w’ andw; = w;,Vj # 1. T
We have = [Jim E7 D BT Ry (@(1) (1) = @]
V(@) = Vi(@') > 0. (10) o
= lim Jf(@) (14)

where the second equality is due to the bounded convergence
theorem. This proves the second part of the theorem by noting
that we can interchange maximization and limit since the
action space is finite.

- - w1 — W} Denote the myopic policy byr*. We now establish the
Vi(w) = Ve(@') < T B —por). (11)  optimality of 7* for (P2). From Theorem 1, we know:

We also identify a tighter upper bound when = p;;: o o L

Lemma 3:Suppose the myopic policy is optimal at time Ji (@) = I?g((wi + Pty (T (@16, 1))
Considerw and&’ such thatw; > w’ andw; = w;,Vj # 1, +48(1 — wi)Jf,:l (T (@,0)).
andw; = wy = p1;. We have

Lemma 2: Suppose the myopic policy is optimal at time
Considerw and&’ such thatw; > w’ andw; = w;,Vj # 1.
We have

Taking limit of both sides, we have

— por) (w1 — w}) J5 (@) = max(w; + fwi (T (@]i,1))

V(@) - V@) < ﬁ(plll— B(p11 — por) (42 J5 (T (@i 15
The next lemma provides a comparison between two actions O —wi)J5 (T (@]3,0)). (15)

followed by Optlmal pOliCies and establishes the advantrsfge Note that (15) is nothing but the dynamic programming equa-

the myopic action. tion for the infinite horizon discounted reward problem give
Lemma 4:Considerw wherew; > w;, i = 1,---,n. Ifthe in (5). From the uniqueness of the dynamic programming
myopic policy is optimal at times$, ¢+ 1,...,T, then solution, then, we have
Vii(@;a(t) =1) = Viea(@;a(t) =2) > 0. (13) J5 (@) = Vp(@) = max J3 (@)

hence, the optimality of the myopic policy.
[ ]
B. Infinite Horizon Theorem 3:Consider (P3) with the expected average re-

Now we consider extensions of the above result to (P2) alt@"d and under the ergodicity assumptipn; — poo| < 1.
(P3), i.e., to show that the myopic policy is also optimal foMyopic policy is optlmal for PrOP'_em (P?’)' )
(P2) and (P3) under the same condition. Intuitively, thilgo Proof: We consider the infinite horizon discounted cost
due to the fact that the stationary optimal policy of the @nit™" & < 1:
horizon problem is independent of the horizon as well as the o - .
discount factor. The theorems below concretely estabfiish t Jg (@) = max {“’i +Bwidg (T (@)I; 1))

We point out that_the proofs of Theorems_ 2 gnd 3 do +A(1 —wi)JE* (7—(@)“70))}_ (16)
not rely on Assumption 1, but rather the optimality of the
myopic policy for (P1). Indeed if the optimality of the myapi This can be written as
policy for (P1) can be established under weaker conditithres, X
proofs of Theorems 2 and 3 can be easily modified/extended (1 — 3)J5 (@)
to established its optimality under the same weaker canditi o~ N o
for (P2) and (P3), rF()espectK/er. = max(wi + fw; {JB (T (@) 1)) = J3 (w)}
_ Theorem 2:Consider (P2) fo0 < 3 < 1. Under Assump- 1601 - wy) [Jg* (T ()i, 0)) — Jg*(u—))} ,
tion 1 the myopic policy is optimal. Furthermore, its optima
policy value is the limiting optimal policy value of (P1) as Notice that the boundedness of the reward function and
the time horizon goes to infinity, i.e., we hanexx, J7(0) = compactness of information state implies that the sequence
limy_, oo max, J5(@). of (1 — ﬁ)Jg*(u‘;) is bounded. In other words, there exist a

Proof: We first use the Bounded Convergence Theoreoonverging sequencg, — 1 such that

to establish the fact that under any deterministic statipna . I .
Markov policy 7, we haveJj(w) = limr_. J7(@). We kli{go(l = B) 5, (@) =T, (17)



Pbo1

wherew? oo is the stationary belief (the limiting The studied problem lies at the intersection of two well

belief when channel is not sensed for a long time). Alsostudied problems in stochastic control, namely, POMDP [4]

define . ) and the restless bandit problems [8]. Viewing the problem as
B (@) = lim [Jﬁk( )= ] (@*)}.

a POMDP was key in allowing us to establish many important
Note that applying Lemma 2 (in the limit df' — o0)

structural properties of the solution. For instance, thigdfimess
4 ' - © of the underlying (unobservable) state space was key itb-esta
together with the assumption thatl < p1; —pgo < 1 implies
that there existgs := -2n—rol gych that

lishing the existence of an optimal stationary Markov pplic
T—[p11—po1] (P2) and (P3): a very useful fact whose validity can be difficu
o . o to establish in a general restless bandit context. Singjlarl
J5 (T ((0)}5,0)) = J3 (w)‘ < K. identifying belief as an information state is a consequesfce
This implies that the POMDP formulation.
i . . At the same time, our problem can be viewed as a special
JT = klggo(l = Br)J5, (@) case of restless bandit problem. Differing from the claasic
lim (1= G0 I3, (@) + (1= Be) |5 @) — J5, @)
In other words,
J* = lim (1 )5, (@)

(18)

(19)

multi-armed bandit problem where only one project can be
activated at a time and the passive projects do not change
state, a restless multi-armed bandit process allows passiv
projects to change states. While the classical bandit pra$l
can be solved optimally using the Gittin’s Index [6], reste
bandit problems are known to be PSPACE-hard in general
[7]. Whittle proposed a Gittin’s-like indexing heuristiorfthe
restless bandits problem [8] which is known to be asymp-
totically optimal under certain limiting regime [9]. Beydn

lim max(w; + Brw;

k—oo a=t

+ k(1

75" (T (@li. 1)) - 75, @)]

w) | T3, (T (@13,0)) = J5. )]

— max {MJFWZ_M* (T @]3,1) + (1 — w)h™ (T (@|i70))}this asymptotic re_sult, relgt_ively little is known about(_eth
a=t structure of the optimal policies for the general restlemsdit
—h" (@) (20problems (see [11] for near-optimal heuristics). In facere

the indexability of a bandit can be rather complicated to
establish [12]. The optimality of the myopic policy shown in
(@i, 1)+ this paper not only suggests the indexability of certaircede
. cases of restless bandit processes, where the index istedpec
(1 —wy)h™ (T (w]i,0) )] (21) 1o be closely related to the expected immediate reward l5ot a

Note that (21) is nothing but the DP equation as given dgentlfles (non-asymptotic) conditions where an index goli

(6). This implies that/* is the maximum average reward, i.e'> in fact, optimal. _
J* = max, JT (@(t)) In the future, we plan to explore further the connections
T .

Replacing (16) with betwgen the myopic policy and.Whi.ttIe’s indexi.ng hguri,stic
X X and investigate whether the optimality of myopic policy can
Ji (@) = wa(@) + Bwr@)Js (T ((@)|7(@),1)) be established for restless bandit problems under relaxed
+B(1 = wr@)J5 (T (@)7(®),0)),

conditions.
we repeat (17)-(20) to arrive at the following:
T W (@) = wez) +wr@h" (T (@l7(@),1)) +
(1= wr@)h™ (T (@[7(©),0)). (22)

From part (ii) of Fact 3, we now have the optimality of myopic
policy. ]

It thus follows that

J 4B (@)

= max |w; + w;h™ (T
a=1
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Before proceeding, we note that due to the fact that all cblarare (w1 — w'1) 148 P11 — po1 _ w1 — Wi .
identical, the information state vector is unordered. TikaV; (@) = 1 = Bp11 + Bpor 1 = Bpu1 + Bpor
Vi(wp) where @, is any permutation ofv, for any ¢. Using this
result in the proofs below we frequently reorder the statetorefor
convenience. We also frequently writé(w) as Vi(w1, -+ ,wn).

IN

Proof of Lemma 1

For convenience, define
Case 2:max; wy = wj > w1 > wj.

(@) = (T(wr)y ey T(wim1), T(@jt1), e - T(wn)-

Using induction, the basis is obviously true. Assume the oron
tonicity holds fort+1,¢+2,--- ,T. Let j* be the optimal action for
the statev’ at timet. Sincej* is in general not necessarily optimal
for the statev, we have the following.

Vt(wl,wgw.‘,wn) (UJ y W2, . m?wn)
-\ _ = Wy +/6wj‘/t+1 (T(w1)7 "7p1177-(wj+1)7"'77-(w"))
e v‘?fa)(w = ) = V(@ a(t) = ) P i (oo )T )
- e -/ ! :j* B NS /awj‘/tJrl (T(w "7p1177—(wj+1)7“‘77—(w7l))
= Wi+ Vin (pn’T (@) —5(1 —wj)Vir1 (t(w1), .-, po1, T(wjs1), .., T(wn))
+B(1 — wj ) Vi1 (po1, 7 (@) = Bwj[Vig1 (T(@1), ..., p11, T(Wj41), -, T(wn))
, , v — —‘/;H’l (T(u}i),...,p11,T(Wj+1),...,T(Wn))}
—wjr By Ve (pll’T @ )) +6(1 = wj) [Viga [T(w1), - -, po1, T(Wit1), - - -, T(wn))
—ﬁ(l — w}* )‘/t+1 ([)017 Tﬁj* (U._J,)) _‘/tJrl (T(w;)7 .-+, po1, T(wj+1)7 ey T(w"))}
= Wi — W < s BTﬂ(M —wi) B(w; — w))— P = P01
, e e, — Bp11 + Bpor 1 — Bp11 + Bpor
+Bwi« [VtH (plhT J (w)) — Vit1 (pllﬂ' (@ ))] < (o w') P11 — po1 (24)
< W)
+(1 = wje) [V (por, 77 @) - 1~ Bps + Bpon

Vit1 (p01,7'7j*( ))] + Blwj+ — wj+)

[V}H (pu, 7" (@)) = Vipa (Pm, 7" (@))]
_ 23)

where the last inequality holds due to monotonicity of op@ra and

the induction hypothesis. Proof of Lemma 3

Proof of Lemma 2

Fort =T is true. This lemma is a corollary of Lemma 2, as (12) is nothing but a
Induction hypothesis: The assertion of lemma is truetforl,t+ special case of (24) (we use here the tighter bound thatdesld
2,...,T, we need to establish the upper bound for as the multiplicative factor).



Proof of Lemma 4
The myopic policy is optimal at timé. We appeal to Lemmas 1,
2, and 3 to establish inequalities at tirtie
Vici(wi,wa, .. ,wnsa(t) = 1) — Vici(wi,wa, ... ,wn;a(t) = 2)
= w1 — w2+ 5(.01‘/;5 (pll, T(u)z), . ,’T(u}n))
+68(1 = wi)Vi (po1, T(w2), - . ., T(wn))
—BwaVi (1(w1),p11, - .., 7(wn))
—B(1 — w2)Vi (T(w1),po1, - -, T(wn))
= w1 — W2
+B(w1 —w2) [Vi (p11, 7(w2), ..., T(wn)) —
Vi (po, T(w2), ..., T(wn))]
+Bwa [Vi (p11, 7(w2), ..., 7(wn)) —
Vi (r(w1),pa1, -, 7(wn))]
+B(L = w2) [Vi (por, 7(w2), ..., 7(wn)) —
Vi (T(W1)7p017 s 7T(w7l))]

w1 — w2

\Y]

(p11 — po1)®
1 — Bp11 + Bror

P11 — po1
_3(1 — _ _ pin—7pPor
A wa) (w1 WQ)l — Bp11 + Bpor

B 3 52 (m1——po1)2
= (w1 —w2) {1 5‘*’21_5p11+ﬁp01

P11 — Poi
—AL —w2) 1—Bp11 + ﬁpm]

_ _ B(p11 — po1) — B2 (P11 —p01)2)
= la—w) {1 e ( 1 — Bp11 + Bpor
_g_Pu—po ]

1 — Bp11 + Bpo1

B(p11 — por) — B*(p11 — por)?
(w1 — wa) {1 + po1 < [ —— )

—BPwa (w1 — ws)

Y

1 — Bp11 + Bror
Letz = B(p11—po1). It can be shown that the term in the brackets
is non-negative if and only ifl + poi(z — ) — 2z > 0, as per
Assumption 1.

P11 — po1
oyt ]



