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Abstract— We consider opportunistic communications over
multiple channels where the state (“good” or “bad”) of each chan-
nel evolves as independent and identically distributed Markov
processes. A user, with limited sensing and access capability,
chooses one channel to sense and subsequently access (based
on the sensed channel state) in each time slot. A reward is
obtained when the user senses and accesses a “good” channel.
The objective is to design the optimal channel selection policy
that maximizes the expected reward accrued over time. This
problem can be generally formulated as a Partially Observable
Markov Decision Process (POMDP) or a restless multi-armed
bandit process, to which optimal solutions are often intractable.
We show in this paper that the myopic policy, with a simple and
robust structure, achieves optimality under certain conditions.
This result finds applications in opportunistic communications
in fading environment, cognitive radio networks for spectrum
overlay, and resource-constrained jamming and anti-jamming.

Opportunistic access, cognitive radio, POMDP, restless
multi-armed bandit process, myopic policy.

I. I NTRODUCTION

We consider a fundamental communication context in which
a sender has the ability to access many channels, but is limited
to sensing and transmitting only on one at a given time. We
explore how a smart sender should exploit past observations
and the knowledge of the stochastic state evolution of these
channels to maximize its transmission rate by switching op-
portunistically across channels.

We model this problem in the following manner. As shown
in Figure 1, there aren channels, each of which evolves as
an independent, identically-distributed, two-state discrete-time
Markov chain. The two states for each channel — “good” (1)
and “bad” (0) — indicate the desirability of transmitting ata
given time slot. In each time period the sender picks one of the
channels to sense based on its prior observations, and obtains
some fixed reward if it is in the good state. The basic objective
of the sender is to maximize the reward that it can gain over a
given finite time horizon. This problem can be described as a
partially observable Markov decision process (POMDP) [4]
or a restless multi-armed bandit process [8]. We discuss
the implications of each formulation and the relationship of
our work to the relevant bodies of literature in Section V.
Generalizations of this problem, such as considering non-i.i.d.

channels, imperfect sensing, and more than two states, are also
of interest, but we do not treat them in this work.
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Fig. 1. The Markov channel model.

This formulation is broadly applicable to several domains.
It arises naturally in opportunistic spectrum access (OSA)[1],
[2], [3], where the sender is a secondary user, and the channel
states describe the occupancy by primary users. In the OSA
problem, the secondary sender may send on a given channel
only when there is no primary user occupying it. It pertains
to communication over parallel fading channels as well, if
a two-state Markovian fading model is employed. Another
interesting application of this formulation is in the domain of
communication security, where it can be used to developing
bounds on the performance of resource-constrained Jamming.
A jammer that has access to only one channel at a time could
also use the same stochastic dynamic decision making process
to maximize the number of times that it can successfully
jam communications that occur on these channels. In this
application, the “good” state for the jammer is precisely when
the channel is being utilized by other senders (in contrast with
the OSA problem).

In prior work [2], it has been shown that when there are two
channels, a simple myopic policy offers optimal performance.
It has been conjectured (based on simulation results) that this
result holds generally for alln. It has also been shown in [2]
that for alln the myopic policy also has an elegant and robust
structure that obviates the need to know the channel state
transition probabilities exactly. Specifically, it suffices to know
the sign of the auto-correlation of the channel process overone
unit of time, or equivalently, whetherp01 > p11 or vice versa.
We make progress towards solving the conjecture in this work:
we show that the simple myopic policy is optimal for alln,
under certain conditions onp01, p11. We also generalize the



result to related formulations involving discounted rewards and
infinite horizons.

II. PROBLEM FORMULATION

We consider the scenario where a user is trying to access the
wireless spectrum to maximize its throughput or data rate. The
spectrum consists ofn independent and statistically identical
channels. The state of a channel is given by a two-state discrete
time Markov chain shown in Figure 1.

The system operates in discrete time steps indexed byt,
t = 1, 2, · · · , T , whereT is the time horizon of interest. At
time t−, the channels (i.e., the Markov chains representing
them) go through state transitions, and at timet the user makes
the channel sensing and access decision. Specifically, at time t

the user selects one of then channels to sense, say channeli.
If the channel is sensed to be in the “good” state (state1), the
user transmits and collects one unit of reward. Otherwise the
user does not transmit (or transmits at a lower rate), collects no
reward, and waits tillt+1 to make another choice. This process
repeats sequentially till the time horizon expires. Here wehave
assumed that sensing errors are negligible. The optimalityof
the myopic policy in the presence of sensing errors has been
shown forn = 2 in [3].

The state of the above system at timet (or more precisely
at t−) is given by the vectors(t) = [s1(t), s2(t), · · · , sn(t)] ∈
{0, 1}n. Note thats(t) is not directly observable to the user.
However, it can be shown (see e.g., [4], [5], [10]) that a
sufficient statistics of the system for optimal decision making,
or the information stateof the system [10], [5], is given by
the conditional probabilities that each channel is in state1
given all past observations. We denote this information state
or belief vector byω̄(t) = [ω1(t), · · · , ωn(t)] ∈ [0, 1]n, where
ωi(t) is the conditional probability that channeli is in state1
at time t−.

The user’s action space is given by the finite set
{1, 2, · · · , n}, and we will usea(t) = i to denote that
the user selects channeli to sense at timet. It follows
that the information state of the system is governed by the
following transition upon an actiona in the statēω(t) with an
observation outcomesa(t):

ωi(t + 1) =







p11 if a = i, sa(t) = 1
p01 if a = i, sa(t) = 0
τ(ωi(t)) if a 6= i

. (1)

In Equation (1) the first case denotes the conditional proba-
bility when the channel is observed to be in the “good” state;
the second case when the channel is observed to be ”bad”;
and the last case when the channel is not observed, where we
have used the operatorτ : [0, 1] → [0, 1] defined as

τ(ω) := ωp11 + (1 − ω)p01, 0 ≤ ω ≤ 1. (2)

We will further use the operatorT to denote the above state
transition. More precisely, we have

ω̄(t + 1) = T (ω̄(t)|a, sa(t)), (3)

with the understanding that the above notation implies the
operation given in (1) applied tōω(t) element-by-element.

The user’s policy π is given by the vectorπ =
[π(1), π(2), · · · , π(T )], where π(t) = i ∈ {1, 2, · · · , n}
denotes the decision to select channeli at time t. Such
decisions are based on the current information stateω̄(t).

The objective of the user is to maximize its total (discounted
or average) expected reward over a finite (or infinite) horizon.
Let Jπ

T (ω̄), Jπ
β (ω̄), andJπ

∞(ω̄) denote, respectively, these cost
criteria (namely, finite horizon, infinite horizon with discount,
and infinite horizon average reward) under policyπ starting in
stateω̄ = [ω1, · · · , ωn]. The associated optimization problems
((P1)-(P3)) are formally defined as follows.

(P1): max
π

Jπ
T (ω̄) = max

π
Eπ[

T
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

(P2): max
π

Jπ
β (ω̄) = max

π
Eπ[

∞
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

(P3): max
π

Jπ
∞(ω̄) = max

π
Eπ[ lim

T→∞

1

T

T
∑

t=1

Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

whereβ (0 ≤ β ≤ 1 for (P1) and0 ≤ β < 1 for (P2)) is
the discount factor, the maximizations are over all admissible
policies π, and Rπ(t)(ω̄(t)) is the reward collected under
state ω̄(t) when channelπ(t) is selected, and is given by
Rπ(t)(ω̄(t)) = sπ(t)(t).

In subsequent sections we will first focus on problem (P1),
and then extend the results to (P2) and (P3).

III. O PTIMAL POLICY

A. Preliminaries

Consider (P1). An optimal policy obviously exists since the
number of admissible policies are finite. In theory, such a
policy may be found by using dynamic programming:

Fact 1: Define recursively the functions

VT (ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄)]

Vt(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + βVt+1(T (ω̄|a, sa(t)))]

= max
a=1,··· ,n

(ωi + ωiVt+1 (T ((ω̄)|i, 1)))

+(1 − ωi)Vt+1 (T ((ω̄)|i, 0)) . (4)

Then,
i) Vt(ω̄) = maxπ Jπ

T−t+1(ω̄) with probability 1. Further-
more,V1(ω̄) = maxπ Jπ

T (ω̄).
ii) A Markov policy π∗ = {π∗

1 , π∗
2 , . . . , π∗

T } is optimal if
and only if for t = 1, . . . , T , a = π∗

t (ω̄) achieves the
maximum in (4) .

Note that Vt(ω̄) is the value function, or the maximum
expected remaining reward that can be accrued starting from
time t when the current information state is̄ω. It has two
parts: (i) the immediate rewardRa(ω̄) obtained in slott
when the user senses channela; and (ii) the maximum
expected remaining reward starting from timet + 1, given
by Vt+1(T (ω̄|a, sa(t))) where the new state represents the



updated knowledge of the system state after incorporating the
actiona and the observationsa(t).

Similarly, the dynamic programming principle holds for
(P2) and (P3) as given below. The existence of optimal station-
ary Markov policies in (P2) and (P3) is a consequence of i)
finiteness of action space, ii) countability of the (unobservable)
state space, and iii) the bounded condition on the immediate
reward (see [5]).

Fact 2: Consider (P2). There exists a unique functionVβ(·)
satisfying the following equation:

Vβ(ω̄) = max
a=1,··· ,n

E[Ra(ω̄) + βVβ(T (ω̄|a, sa(t)))]

= max
a=1,··· ,n

(ωi + βωiVβ (T ((ω̄)|i, 1)))

+β(1 − ωi)Vβ (T ((ω̄)|i, 0)) .(5)

Furthermore,
i) Vβ(ω̄) = maxπ Jπ

β (ω̄) with probability 1.
ii) A Markov stationary policyπ∗ is optimal if and only if

a = π∗(ω̄) achieves the maximum in (5).
Fact 3: Consider (P3). There exist functionh∞(·) and

constant scalarJ satisfying the following equation:

J + h∞(ω̄) = max
a=1,2,··· ,n

E[Ra(ω̄) + h∞(T (ω̄|a, sa(t)))]

= max
a=1,··· ,n

(ωi + ωih∞ (T ((ω̄)|i, 1)))

+(1 − ωi)h∞ (T ((ω̄)|i, 0)) .(6)

Furthermore,
i) J = maxπ Jπ

∞(ω̄) with probability 1.
ii) A Markov stationary policyπ∗ is optimal if and only if

a = π∗(ω̄) achieves the minimum in (6).
Unfortunately, due to the impact of the current action on

the future reward, the uncountable space of the information
stateω(t), and the non-stationary nature of the optimal policy
(owing to the finiteness of the horizon), obtaining the optimal
solution using the above equations directly is in general
computationally prohibitive.

For the remainder of this paper, we will focus on obtaining
structural properties of the optimal policy. Specifically,we
will consider a myopic policy that aims at maximizing the
immediate reward at each time step, and show its optimality
under certain conditions.

B. The Myopic Policy

A myopic policy ignores the impact of the current action on
the future reward, focusing solely on maximizing the expected
immediate reward. Myopic policies are thus stationary. For
(P1), the myopic policy under statēω = [ω1, ω2, · · · , ωn] is
simply given by

a∗(ω̄) = arg max
a=1,··· ,n

E[Ra(ω̄)] = arg max
a=1,··· ,n

ωa. (7)

In general, obtaining the myopic action in each time slot
requires the recursive update of the information state as
given in (1), which requires the knowledge of the transition
probabilities{pij}. Interestingly, it has been shown in [2], [3]
that for this problem at hand, the myopic policy has a simple

structure that does not need the update of the information
state or the precise knowledge of the transition probabilities.
Specifically, whenp11 ≥ p01, the myopic action is to stay in
the same channel in the next slot if the channel in the current
slot is sensed to be “good”. Otherwise, the user switches to
the channel visited the longest time ago. Whenp11 < p01,
the myopic action is to stay after observing a “bad” channel
and switch otherwise. When a channel switch is needed, the
user chooses, among those channels to which the last visit
occurred an even number of slots ago, the one most recently
visited. If there are no such channels, the user chooses the
channel that has not been visited for the longest time, which
can be any of the channels that have never been visited if such
channels exist. Note that this simple structure of the myopic
policy reveal that other than the order ofp11 and p01, the
knowledge of the transition probabilities are unnecessary.

IV. T HE OPTIMALITY OF MYOPIC POLICY

In this section, we show that the myopic policy, with a sim-
ple and robust structure, is optimal under certain conditions.
For convenience, we adopt the following notation.

Vt(ω̄; a = i) := E[Ri(ω̄) + βVt+1(T (ω̄|i, si(t)))]

= ωi + βωiVt+1 (T (ω̄|i, 1))

+β(1 − ωi)Vt+1 (T (ω̄|i, 0)) .

Note thatVt(ω̄) = maxa Vt(ω̄; a).
We first prove the optimality of the myopic policy for (P1)

under the following assumption/condition, and then extendthe
result to (P2) and (P3).

Assumption 1:The transition probabilitiesp01 andp11 are
such that

p11 − p01 ≥ 0

1 + p01(x − x2) − 2x ≥ 0

wherex = β(p11 − p01).
The first inequality in (8) ensures thatτ(ω −ω′) is increasing
in ω − ω′. In particular,

τ(ω − ω′) = (ω − ω′)(p11 − p01) ≥ (ω − ω′) (8)

We also note that whenβ ≤ 0.5, the second inequality in (8)
always holds.

A. Finite Horizon

Our main results are summarized in the following theorem.
Theorem 1:Consider Problem (P1). Under Assumption 1,

the myopic policy is optimal, i.e. for∀t, 0 ≤ t < T , and
∀ω̄ = [ω1, · · · , ωN ] ∈ [0, 1]N ,

Vt(ω̄; u(t) = 1) − Vt(ω̄; u(t) = i) ≥ 0, (9)

if ω1 ≥ ωi for i = 1, · · · , n.
Proof: The proof is inductive and follows the following

steps: assuming the optimality of myopic policy at times
t, t + 1, . . . , T , we prove a set of inequalities, given by
Lemmas 1-2. Using these inequalities, we then prove the
optimality of myopic policy at timet−1 in Lemma 4. Note that



the optimality of myopic policy at timeT is straightforward.
The proofs of Lemmas 1-4 are given in the Appendix.

Lemma 1 (Monotonicity of Value Function:):Assume that
the value function is monotone at timest + 1, t + 2, . . . , T .
Considerω̄ and ω̄′ such thatω1 ≥ ω′ and ωj = ω

′

j , ∀j 6= 1.
We have

Vt(ω̄) = Vt(ω̄
′) ≥ 0. (10)

Lemma 2:Suppose the myopic policy is optimal at timet.
Considerω̄ and ω̄′ such thatω1 ≥ ω′ and ωj = ω

′

j , ∀j 6= 1.
We have

Vt(ω̄) − Vt(ω̄
′) ≤

ω1 − ω′
1

1 − β(p11 − p01)
. (11)

We also identify a tighter upper bound whenω2 = p11:
Lemma 3:Suppose the myopic policy is optimal at timet.

Considerω̄ and ω̄′ such thatω1 ≥ ω′ and ωj = ω
′

j , ∀j 6= 1,
andω2 = ω

′

2 = p11. We have

Vt(ω̄) − Vt(ω̄
′) ≤ β

(p11 − p01)(ω1 − ω′
1)

1 − β(p11 − p01)
. (12)

The next lemma provides a comparison between two actions
followed by optimal policies and establishes the advantageof
the myopic action.

Lemma 4:Considerω̄ whereω1 ≥ ωi, i = 1, · · · , n. If the
myopic policy is optimal at timest, t + 1, . . . , T , then

Vt−1(ω̄; a(t) = 1) − Vt−1(ω̄; a(t) = 2) ≥ 0. (13)

B. Infinite Horizon

Now we consider extensions of the above result to (P2) and
(P3), i.e., to show that the myopic policy is also optimal for
(P2) and (P3) under the same condition. Intuitively, this holds
due to the fact that the stationary optimal policy of the finite
horizon problem is independent of the horizon as well as the
discount factor. The theorems below concretely establish this.

We point out that the proofs of Theorems 2 and 3 do
not rely on Assumption 1, but rather the optimality of the
myopic policy for (P1). Indeed if the optimality of the myopic
policy for (P1) can be established under weaker conditions,the
proofs of Theorems 2 and 3 can be easily modified/extended
to established its optimality under the same weaker condition
for (P2) and (P3), respectively.

Theorem 2:Consider (P2) for0 ≤ β < 1. Under Assump-
tion 1 the myopic policy is optimal. Furthermore, its optimal
policy value is the limiting optimal policy value of (P1) as
the time horizon goes to infinity, i.e., we havemaxπ Jπ

β (ω̄) =
limT→∞ maxπ Jπ

T (ω̄).
Proof: We first use the Bounded Convergence Theorem

to establish the fact that under any deterministic stationary
Markov policy π, we haveJπ

β (ω̄) = limT→∞ Jπ
T (ω̄). We

prove this by noting

Jπ
β (ω̄) = Eπ[ lim

T→∞

T
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

= lim
T→∞

Eπ[

T
∑

t=1

βt−1Rπ(t)(ω̄(t))|ω̄(1) = ω̄]

= lim
T→∞

Jπ
T (ω̄) (14)

where the second equality is due to the bounded convergence
theorem. This proves the second part of the theorem by noting
that we can interchange maximization and limit since the
action space is finite.

Denote the myopic policy byπ∗. We now establish the
optimality of π∗ for (P2). From Theorem 1, we know:

Jπ∗

T (ω̄) = max
a=i

(ωi + βωiJ
π∗

T−1 (T (ω̄|i, 1))

+β(1 − ωi)J
π∗

T−1 (T (ω̄|i, 0)) .

Taking limit of both sides, we have

Jπ∗

β (ω̄) = max
a=i

(ωi + βωiJ
π∗

β (T (ω̄|i, 1))

+β(1 − ωi)J
π∗

β (T (ω̄|i, 0)) . (15)

Note that (15) is nothing but the dynamic programming equa-
tion for the infinite horizon discounted reward problem given
in (5). From the uniqueness of the dynamic programming
solution, then, we have

Jπ∗

β (ω̄) = Vβ(ω̄) = max
π

Jπ
β (ω̄)

hence, the optimality of the myopic policy.

Theorem 3:Consider (P3) with the expected average re-
ward and under the ergodicity assumption|p11 − p00| < 1.
Myopic policy is optimal for problem (P3).

Proof: We consider the infinite horizon discounted cost
for β < 1:

Jπ∗

β (ω̄) = max
a=i

{

ωi + βωiJ
π∗

β (T ((ω̄)|i, 1))

+β(1 − ωi)J
π∗

β (T ((ω̄)|i, 0))
}

. (16)

This can be written as

(1 − β)Jπ∗

β (ω̄)

= max
a=i

(ωi + βωi

[

Jπ∗

β (T ((ω̄)|i, 1)) − Jπ∗

β (ω̄)
]

+β(1 − ωi)
[

Jπ∗

β (T ((ω̄)|i, 0)) − Jπ∗

β (ω̄)
]

.

Notice that the boundedness of the reward function and
compactness of information state implies that the sequence
of (1 − β)Jπ∗

β (ω̄) is bounded. In other words, there exist a
converging sequenceβk → 1 such that

lim
k→∞

(1 − βk)Jπ∗

βk
(ω̄∗) := J∗, (17)



whereω∗
i := p01

1−p11+p01

is the stationary belief (the limiting
belief when channeli is not sensed for a long time). Also
define

hπ∗

(ω̄) := lim
k→∞

[

Jπ∗

βk
(ω̄) − Jπ∗

βk
(ω̄∗)

]

. (18)

Note that applying Lemma 2 (in the limit ofT → ∞)
together with the assumption that−1 < p11−p00 < 1 implies
that there existsK := n|p11−p01|

1−|p11−p01|
such that

∣

∣

∣
Jπ∗

β (T ((ω̄)|i, 0)) − Jπ∗

β (ω̄)
∣

∣

∣
≤ K. (19)

This implies that

J∗ = lim
k→∞

(1 − βk)Jπ∗

βk
(ω̄)

= lim
k→∞

(1 − βk)Jπ∗

βk
(ω̄∗) + (1 − βk)

[

Jπ∗

βk
(ω̄) − Jπ∗

βk
(ω̄∗)

]

.

In other words,

J∗ = lim
k→∞

(1 − βk)Jπ∗

βk
(ω̄)

= lim
k→∞

max
a=i

(ωi + βkωi

[

Jπ∗

β (T (ω̄|i, 1)) − Jπ∗

βk
(ω̄)

]

+βk(1 − ωi)
[

Jπ∗

βk
(T (ω̄|i, 0)) − Jπ∗

βk
(ω̄)

]

= max
a=i

[

ωi + ωih
π∗

(T (ω̄|i, 1)) + (1 − ωi)h
π∗

(T (ω̄|i, 0))
]

−hπ∗

(ω̄). (20)

It thus follows that

J∗ + hπ∗

(ω̄) = max
a=i

[

ωi + ωih
π∗

(T (ω̄|i, 1))+

(1 − ωi)h
π∗

(T (ω̄|i, 0))
]

(21)

Note that (21) is nothing but the DP equation as given by
(6). This implies thatJ∗ is the maximum average reward, i.e.
J∗ = maxπ Jπ

∞(ω̄(t)).
Replacing (16) with

Jπ∗

β (ω̄) = ωπ(ω̄) + βωπ(ω̄)J
π∗

β (T ((ω̄)|π(ω̄), 1))

+β(1 − ωπ(ω̄))J
π∗

β (T ((ω̄)|π(ω̄), 0)) ,

we repeat (17)-(20) to arrive at the following:

J∗ + hπ∗

(ω̄) = ωπ(ω̄) + ωπ(ω̄)h
π∗

(T (ω̄|π(ω̄), 1))+

(1 − ωπ(ω̄))h
π∗

(T (ω̄|π(ω̄), 0)) . (22)

From part (ii) of Fact 3, we now have the optimality of myopic
policy.

V. D ISCUSSION ANDFUTURE WORK

The general problem of opportunistic sensing and access
arises in many multi-channel communication contexts. For
cases where the stochastic evolution of channels can be
modelled as i.i.d. two-state Markov chains, we have shown
that a simple and robust myopic policy is optimal for several
related problem formulations, under some assumptions on the
channel state transition probabilities. The main open problem
pertaining to our work is whether these assumptions can be
further relaxed to prove the general conjecture that the myopic
policy is optimal for all 2-state transition matrices.

The studied problem lies at the intersection of two well
studied problems in stochastic control, namely, POMDP [4]
and the restless bandit problems [8]. Viewing the problem as
a POMDP was key in allowing us to establish many important
structural properties of the solution. For instance, the finiteness
of the underlying (unobservable) state space was key in estab-
lishing the existence of an optimal stationary Markov policy
(P2) and (P3): a very useful fact whose validity can be difficult
to establish in a general restless bandit context. Similarly,
identifying belief as an information state is a consequenceof
the POMDP formulation.

At the same time, our problem can be viewed as a special
case of restless bandit problem. Differing from the classical
multi-armed bandit problem where only one project can be
activated at a time and the passive projects do not change
state, a restless multi-armed bandit process allows passive
projects to change states. While the classical bandit problems
can be solved optimally using the Gittin’s Index [6], restless
bandit problems are known to be PSPACE-hard in general
[7]. Whittle proposed a Gittin’s-like indexing heuristic for the
restless bandits problem [8] which is known to be asymp-
totically optimal under certain limiting regime [9]. Beyond
this asymptotic result, relatively little is known about the
structure of the optimal policies for the general restless bandit
problems (see [11] for near-optimal heuristics). In fact, even
the indexability of a bandit can be rather complicated to
establish [12]. The optimality of the myopic policy shown in
this paper not only suggests the indexability of certain special
cases of restless bandit processes, where the index is expected
to be closely related to the expected immediate reward, but also
identifies (non-asymptotic) conditions where an index policy
is, in fact, optimal.

In the future, we plan to explore further the connections
between the myopic policy and Whittle’s indexing heuristic,
and investigate whether the optimality of myopic policy can
be established for restless bandit problems under relaxed
conditions.
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APPENDIX

Before proceeding, we note that due to the fact that all channels are
identical, the information state vector is unordered. Thatis, Vt(ω̄) =
Vt(ω̄p) where ω̄p is any permutation of̄ω, for any t. Using this
result in the proofs below we frequently reorder the state vector for
convenience. We also frequently writeVt(ω̄) asVt(ω1, · · · , ωn).

Proof of Lemma 1

For convenience, define

τ
−j(ω̄) := (τ (ω1), . . . , τ (ωj−1), τ (ωj+1), . . . , τ (ωn)).

Using induction, the basis is obviously true. Assume the mono-
tonicity holds fort+1, t+2, · · · , T . Let j∗ be the optimal action for
the stateω̄′ at timet. Sincej∗ is in general not necessarily optimal
for the stateω̄, we have the following.

Vt(ω̄) − Vt(ω̄
′)

≥ Vt(ω̄; a(t) = j
∗) − Vt(ω̄

′; a(t) = j
∗)

= ωj∗ + βωj∗Vt+1

“

p11, τ
−j∗(ω̄)

”

+β(1 − ωj∗)Vt+1

“

p01, τ
−j∗(ω̄)

”

−ω
′
j∗ − βω

′
j∗Vt+1

“

p11, τ
−j∗(ω̄′)

”

−β(1 − ω
′
j∗)Vt+1

“

p01, τ
−j∗(ω̄′)

”

= ωj∗ − ω
′
j∗

+βω
′
j∗

h

Vt+1

“

p11, τ
−j∗(ω̄)

”

− Vt+1

“

p11, τ
−j∗(ω̄′)

”i

+β(1 − ω
′
j∗)

h

Vt+1

“

p01, τ
−j∗(ω̄)

”

−

Vt+1

“

p01, τ
−j∗(ω̄′)

”i

+ β(ωj∗ − ω
′
j∗)

h

Vt+1

“

p11, τ
−j∗(ω̄)

”

− Vt+1

“

p01, τ
−j∗(ω̄)

”i

≥ 0, (23)

where the last inequality holds due to monotonicity of operator τ and
the induction hypothesis.

Proof of Lemma 2

For t = T is true.
Induction hypothesis: The assertion of lemma is true fort+1, t+

2, . . . , T , we need to establish the upper bound fort.

Case 1:ω1 ≥ ωj , j = 2, . . . , n.

Vt(ω1, ω2, . . . , ωn) − Vt(ω
′
1, ω2, . . . , ωn)

≤ ω1 + βω1Vt+1 (p11, τ (ω2), . . . , τ (ωn))

+β(1 − ω1)Vt+1 (p01, τ (ω2), . . . , τ (ωn))

−βω
′
1Vt+1 (p11, τ (ω2), . . . , τ (ωn))

−β(1 − ω
′
1)Vt+1 (p01, τ (ω2), . . . , τ (ωn))

= ω1 − ω
′
1 + β(ω1 − ω

′
1) [Vt+1 (p11, τ (ω2), . . . , τ (ωn))−

Vt+1 (p01, τ (ω2), . . . , τ (ωn))]

≤ (ω1 − ω
′
1)

»

1 + β
p11 − p01

1 − βp11 + βp01

–

=
ω1 − ω′

1

1 − βp11 + βp01

.

Case 2:maxk ωk = ωj > ω1 ≥ ω′
1.

Vt(ω1, ω2, . . . , ωn) − Vt(ω
′
1, ω2, . . . , ωn)

= ωj + βωjVt+1 (τ (ω1), . . . , p11, τ (ωj+1), . . . , τ (ωn))

+β(1 − ωj)Vt+1 (τ (ω1), . . . , p01, τ (ωj+1), . . . , τ (ωn))

−ωj − βωjVt+1

`

τ (ω′
1), . . . , p11, τ (ωj+1), . . . , τ (ωn)

´

−β(1 − ωj)Vt+1

`

τ (ω′
1), . . . , p01, τ (ωj+1), . . . , τ (ωn)

´

= βωj [Vt+1 (τ (ω1), . . . , p11, τ (ωj+1), . . . , τ (ωn))

−Vt+1

`

τ (ω′
1), . . . , p11, τ (ωj+1), . . . , τ (ωn)

´˜

+β(1 − ωj) [Vt+1 [τ (ω1), . . . , p01, τ (ωj+1), . . . , τ (ωn))

−Vt+1

`

τ (ω′
1), . . . , p01, τ (ωj+1), . . . , τ (ωn)

´˜

≤
βτ (ω1 − ω′

1)

1 − βp11 + βp01

= β(ω1 − ω
′
1)

p11 − p01

1 − βp11 + βp01

≤ (ω1 − ω
′
1)

p11 − p01

1 − βp11 + βp01

. (24)

Proof of Lemma 3

This lemma is a corollary of Lemma 2, as (12) is nothing but a
special case of (24) (we use here the tighter bound that includesβ
as the multiplicative factor).



Proof of Lemma 4
The myopic policy is optimal at timet. We appeal to Lemmas 1,

2, and 3 to establish inequalities at timet:

Vt−1(ω1, ω2, . . . , ωn; a(t) = 1) − Vt−1(ω1, ω2, . . . , ωn; a(t) = 2)

= ω1 − ω2 + βω1Vt (p11, τ (ω2), . . . , τ (ωn))

+β(1 − ω1)Vt (p01, τ (ω2), . . . , τ (ωn))

−βω2Vt (τ (ω1), p11, . . . , τ (ωn))

−β(1 − ω2)Vt (τ (ω1), p01, . . . , τ (ωn))

= ω1 − ω2

+β(ω1 − ω2) [Vt (p11, τ (ω2), . . . , τ (ωn))−

Vt (p01, τ (ω2), . . . , τ (ωn))]

+βω2 [Vt (p11, τ (ω2), . . . , τ (ωn))−

Vt (τ (ω1), p11, . . . , τ (ωn))]

+β(1 − ω2) [Vt (p01, τ (ω2), . . . , τ (ωn))−

Vt (τ (ω1), p01, . . . , τ (ωn))]

≥ ω1 − ω2

−β
2
ω2(ω1 − ω2)

(p11 − p01)
2

1 − βp11 + βp01

−β(1 − ω2)(ω1 − ω2)
p11 − p01

1 − βp11 + βp01

= (ω1 − ω2)

»

1 − β
2
ω2

(p11 − p01)
2

1 − βp11 + βp01

−β(1 − ω2)
p11 − p01

1 − βp11 + βp01

–

= (ω1 − ω2)

»

1 + ω2

„

β(p11 − p01) − β2(p11 − p01)
2

1 − βp11 + βp01

«

−β
p11 − p01

1 − βp11 + βp01

–

≥ (ω1 − ω2)

»

1 + p01

„

β(p11 − p01) − β2(p11 − p01)
2

1 − βp11 + βp01

«

−β
p11 − p01

1 − βp11 + βp01

–

Let x = β(p11−p01). It can be shown that the term in the brackets
is non-negative if and only if1 + p01(x − x2) − 2x ≥ 0, as per
Assumption 1.


