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Abstract—This paper introduces a novel use of concepts from
combinatorial group testing and Kalman filtering in detecting
faulty sensors in a network when faults are relatively rare. By
assigning sensors to specific groups and performing Kalman filter-
based fault detection over these groups, we can obtain a small
binary detection outcome, which can be decoded to reveal the fault
state of all sensors in the network. Compared to existing methods,
our algorithm achieves similar or better detection accuracy with
fewer tests and thus lower computational complexity. We perform
extensive numerical analysis using a set of real vibration data
collected from the New Carquinez Bridge in California using an
18-sensor network mounted on the bridge.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been successfully

used in many applications such as structural health monitoring

[1], environmental monitoring [2] and vehicle tracking [3]. With

the increasing use of small, low power and low cost sensors,

it has also become increasingly critical to ensure the accuracy

and integrity of the measured data as low cost sensors are often

error prone while the environment in which they are deployed

may be harsh. Timely detection of malfunctioning sensors in a

system allows it to correct affected sensor readings and arrange

for replacement, both of which can prevent further deterioration

of the network, and thus should be an essential function to a

WSN.

Over the past decade, malfunctioning sensor detection has

been studied extensively in many different application contexts.

Malfunctioning can be classified into two levels. The first is

sensor failure, whereby sensors become irresponsive or ceases

to provide data, see e.g., [4]–[6]. The second level of mal-

function is sensor faulting, whereby sensors continue to report

measurements but the data are intermittently or permanently

corrupted. Sensor fault detection is generally more difficult than

sensor failure detection because it is typically harder to judge

the accuracy of data than it is to determine the absence of data.

Sensor fault detection methods can be further classified

into model-based and model-free methods. Model-based fault

detection methods are based on the knowledge of the dy-

namics of the system being monitored. This knowledge can

be obtained either from the physical properties of the system

(e.g., state-space model) or from learning the parameters of

a designated model (e.g., a Markov or autoregressive model).

Both Kobayashi et al. [7] and Da et al. [8] proposed centralized

detection algorithms which assume a state-space model of the

system is available, and a bank of Kalman filters is used to

detect faulty sensors. Both methods assume there is at most

one faulty sensor at any given time and make use of the

remaining sensors as detection references. A more detailed

and quantitative comparison is given in Section IV. Li et

al. [9] proposed an algorithm that requires fault-free sensors

designated a priori as reference sensors, and the number of

reference sensors is required to be more than the number of

uncertain sensors (i.e., those in unknown fault state). Their

algorithm constructs analytical relationships between the output

of each uncertain sensor and that of all reference sensors, which

is then used for detection. Ricquebourg et al. [10] captured the

sensor dynamics by a Markov chain under a transferable belief

framework when the whole system is healthy. Once the model is

established, any sensor outputs inconsistent with the model are

further analyzed using predefined decision rules. Lo et al. [11]

proposed a decentralized algorithm which is able to identify

spike faults in addition to detecting general faults. Under this

method pairs of sensors cross-validate each other using solely

their measurements and an autoregressive with exogenous input

model (ARX) trained a priori. This method does not require

reference sensors or a priori knowledge of the system model.

Model-less fault detection methods do not require a dynam-

ical model and usually rely on the assumption that sensors

in close proximity observe similar dynamics. As a result, the

density of the sensors needs to be high relative to the fluctuation

of the signals being monitored. For instance, Ding et al. [12]

and Chen et al. [13] suggested similar model-less sensor fault

detection methods, where each sensor’s output is compared

with its neighbors’ output. A sensor that deviates significantly

from its neighbors is identified as faulty. Koushanfar et al. [14]

proposed a cross-validation based fault detection algorithm that

focuses on the impact of a particular sensor’s measurement

on the consistency of the entire network’s measurement, on

the assumption that an incorrect measurement will degrade

the consistency. The algorithm removes one sensor at a time

and evaluates how much the consistency of the system im-

proves. The sensor whose removal improves the system most

significantly is regarded as faulty and eliminated and the

process repeats until the system consistency cannot be improved

anymore.

All of the above mentioned fault detection methods require

the number of tests at least on the order of the size of the



Method type & Where Complexity Notes

Model-based:
Kobayashi et al. [7] O(N) At most one faulty sensor
Da et al.[8] O(N) At most one faulty sensor
Lo et al. [11] O(N)
Li et al. [9] O(N) Reference sensor required
Ricquebourg et al.[10] O(N)
Model-less:
Ding et al. [12] O(mN) m = # of neighbors
Chen et al. [13] O(mN) m = # of neighbors

Koushanfar et al. [14] O(N2)
Blough et al. [16] O(N logN)
Ruiz et al. [6] O(N) Focused on sensor failure

TABLE I: Summary of various methods’ complexity

network, i.e., O(N) tests are required, where N is the number

of sensors in the network. Some methods even need O(mN)
(where m is the number of neighbors of a sensor) or O(N2)
tests. A summary of the detection complexity is given in Table

I. For applications using an extremely large number of sensors

[15], running a fault detection algorithm can involve a large

amount of resources and cause significant delay.

We observe that while certain regional effects or disaster

events may result in a large number of faulty sensors at

the same time, in the absence of systemic problems, during

normal operation faults occur randomly and sporadically. This

motivates us to seek lower complexity fault detection methods

when faults may be rare and sparse.

Toward this end, we introduce a novel use of group testing

techniques and Kalman filtering in detecting faulty sensors in

a network, which monitors a linear dynamical system, when

faults are relatively rare, with the goal of reducing the number

of required tests. When the targets of a detection problem are

sparse (i.e., they are few), group testing is a potential and sound

framework to solve the problem. Usually, the main challenge

in applying group testing is to propose a compatible detection

method which can accurately evaluate whether a group of

arbitrary items contains any faulty sensors. There are a few

studies that adopted group testing to detect malfunctioning

sensors. Specifically, Goodrich and Hirschberg [17] proposed

a group testing based algorithm for detecting failure (dead)

sensors. This algorithm evaluates a group of sensors by count-

ing the number of responses from the group to a broadcast

query. Tošić et al. [18] proposed a distributive sensor fault

detection algorithm that measures a smooth phenomena (which

implies neighboring sensors have similar measurements), while

a group test is preformed using an unspecified dissimilarity

comparison of neighboring sensors’ measurements. Our work

is significantly different from these two studies because we

focus on detecting faulty, though live, sensors deployed on

linear dynamical systems, where neighboring sensors may not

have similar measurements. Moreover, as the group detection

method is problem specific, our main contributions lie in the

creative use of two known, though often unrelated, techniques:

combinatorial group testing and Kalman filtering on detecting

rare faulty sensors.

This paper is organized as follows: Section II reviews the

main concepts used in the proposed fault detection algorithm.

The detailed methodology of the detection algorithm is then

explained in Section III. The performance of the detection

algorithm on bridge vibration monitoring sensors is presented

in Section IV and the performance comparison between the

proposed method and other existing methods are presented in

Section V. Finally, Section VI is the conclusion and future work.

II. PRELIMINARIES

In this section we review two main concepts used in our fault

detection algorithm. The first is combinatorial group testing,

the goal of which is to identify sparse faulty items with a

number of tests less than the total number of items. The second

concept is Kalman filtering, which is able to produce optimal

state estimation for a linear dynamical system.

Consider a large number of items of which a few are

defective, and we wish to identify them. If all items are tested

individually to check for defectiveness, the cost can be high

(e.g., linear in the total number of items). However, if it is

possible to determine the existence of any defective item in

a group of items via a single group test, then performing a

sequence of group tests over different subsets of these items

can potentially lead to much fewer number of tests and thus

much lower cost. This is the main idea of combinatorial group

testing; it was first proposed by Dorfman [19] during World

War II for detecting syphilis amongst soldiers.

Consider a length N signal s which is d sparse: this means s

has at most d non-zero entries that correspond to the defective

items and d ≪ N . As the “true” signal dimension (i.e., d)

is smaller than N , it is reasonable to believe signal s can

be acquired with M < N measurements. In group testing

paradigm, signal s is measured M times in the form of z = Φs,

where Φ is the measurement matrix of size M ×N . The goal

is to design Φ such that s can be reconstructed correctly from

z, that is, we can find the d defective items. The arithmetic is

boolean which means multiplication is the logical AND and

addition is the logical OR.

We describe this in the context of a network of sensors.

Consider a network of N sensors, of which at most d are

faulty. Let vector s represent the fault state of the sensors in

the network, where si = 0 if sensor i is normal and si = 1 if

sensor i is faulty. Each row of the matrix Φ, which has {0, 1}
entries, represents the set of sensors involved in a test, while

the number of rows equals the number of tests. Finally, the

vector z represents the result of the group test. Below is a toy

example of Φs = z:
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In this example, there are 6 sensors; sensor 2 is faulty. A total

of 3 group tests are performed: sensors {2, 5, 6} are included

in the first test (first row of Φ), and so on. The test result shows



that the first group contains at least one faulty sensor, while the

other two groups have none. In a fault detection setting, note

that the actual value of s is unknown, while Φ is known and is

used to set up the tests. The vector z is obtained after the tests,

and is then used to reconstruct s using recovery algorithms.

However, it must be noted that group-testing a set of sensors

is far more complicated than a simple boolean operator as in

the above equation. In other words, to use this group testing

framework in practice, we must specify what a “group test”

entails, and how to actually obtain values in the z vector from

such a test if the test output is not naturally boolean. This is

addressed by a novel use of Kalman filtering detailed next.

The Kalman filter [20] is an algorithm which takes a series

of noisy inputs and iteratively calculates a statistically optimal

estimate of the state of an underlying linear dynamical system.

More specifically, consider a linear dynamical system given by

the following state-space model [20]:

Xk+1 = AXk + BUk + Wk (1)

Yk = CXk + Vk . (2)

The Kalman filter can be separated into two steps, a predic-

tion step and an update step. In the prediction step, the predicted

state (of time k based on the value at time k− 1), X̂k|k−1 and

the corresponding uncertainty measure of the prediction, Pk|k−1

are calculated:

X̂k|k−1 = AX̂k−1|k−1 + BUk (3)

Pk|k−1 = APk−1|k−1AT + RW , (4)

Upon a measurement, Yk is observed, and the estimated state

and uncertainty measure are updated as follows:

Kk = Pk|k−1CT(CPk|k−1CT + R)−1 (5)

X̂k|k = X̂k|k−1 + Kk(Yk − CX̂k|k−1) (6)

Pk|k = (I − KkC)Pk|k−1 . (7)

To summarize, we can use the Kalman filter to estimate the

state of a system. In the next section we show how it can be

used to perform a group test over a set of sensors.

III. A GROUP TESTING AND FAULT DETECTION METHOD

Consider a network of N sensors monitoring an underlying

physical system that can be modeled as a linear dynamical

system. Assume any sensor in the network can be faulty and

that at most d of them are faulty at any given time. The dynamic

evolution of the underlying system as well as observations by

the sensors can be expressed similarly as in (2):

Yk = CXk + Vk + Ek , (8)

where the additional vector Ek is an unknown sensor fault

vector. If there is no fault on sensor i, the ith component of

Ek is zero.

The rest of this section details how to perform group selec-

tion (i.e., how to design Φ and how many rows in Φ), fault

detection within a group and fault state reconstruction.

A. Group Selection and number of group tests

Recall the fault detection problem represented as z = Φs,

where s represents the fault state of sensors (“1” means faulty).

One important question in group testing is how to decide the

entries of Φ, i.e., which sensors to be included in a particular

test. The performance of the detection method largely depends

on the form of Φ. This study only focuses on non-adaptive

testing, i.e., the entire matrix Φ is decided before performing

the first test. One way to ensure the group testing’s ability to

identify the faulty sensors is to design a disjunct measurement

matrix. A d-disjunct matrix has the property that for any d+1
columns, there is always a row with entry 1 in a column and

zeros in all the other d columns. For instance, the measurement

matrix in Example 1 is 1-disjunct (since any two columns

differ in at least one row) but is not 2-disjunct. One simple

method to generate a d-disjunct measurement matrix Φ with

high probability is to generate each entry randomly such that

Φ(i, j) = 1 has probability 1/2.

One direct question is how many group tests (the number of

rows in Φ) is required to gain enough information for correctly

revealing the faulty state, s. For noise-free detections (i.e., the

group test result is always correct) and fixed d, if it is reasonable

to assume that the faulty sensors in the network are distributed

uniformly at random, the necessary and sufficient number of

rows in Φ are O(d log(N/d)) and Ω(d log(N)), respectively

[21]. For the worse case distribution of faults (i.e., adversarial

fault model), the necessary and sufficient number of rows in Φ

are O(d
2 log(N)
log(d) ) and Ω(d2 log(N)), respectively [21].

B. Fault Detection of a Group

From the previous subsection, we can see that the fault

detection method should be able to identify whether an arbitrary

group of sensors contains any faulty member. The idea of using

Kalman filtering for group testing lies in its ability to estimate

the state of the underlying system from the observations of

almost arbitrary group of sensors. Specifically, after selecting

an arbitrary group of sensors φ, we will further split this set

into two subgroups A and B, and use the observations from

each subset to estimate the state of the underlying system (thus

it is required that a group contain at least two sensors). If

the estimated states do not agree with each other, the group

is regarded as containing at least one faulty sensor and the

corresponding entry of z is set to 1.

Denote the estimated states of the system, computed from

observations of the subgroups A and B, as X̂
A

k|k−1 and X̂
B

k|k−1,

respectively. The difference between the two estimated states

is given by:

ek = X̂
A

k|k−1 − X̂
B

k|k−1 . (9)

As all states estimated from the Kalman filter are unbiased

(i.e., E[X̂k|k−1] = Xk) [20], the expected difference E[ek] =

E[X̂
A

k|k−1] − E[X̂
B

k|k−1] = 0 if neither A nor B contains

any faulty sensor (i.e., the corresponding components in Ek

are zero). Otherwise this expectation is non-zero. Therefore, a

threshold can be used to decide whether a group of sensors,
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Fig. 1: State diagram of the proposed sensor fault detection method.

φ, contain any faulty sensors. If ‖E[ek]‖ is larger than this

threshold, the group, φ, will be regarded as having at least

one faulty sensor and the corresponding entry of z will be

set to 1. Otherwise, the corresponding entry of z will be set

to 0. Fig. 1 gives an overview of this approach. In all the

algorithm performs M group tests. When all M tests are done,

the algorithm reconstructs the fault state of the sensors from

the test results.

It should be mentioned that the system of a group test

needs to be detectable in order for Kalman filter to perform

properly. Whether a system is detectable depends on the sensors

chosen in the group and how the group is partitioned into two

sets. If Φ has a group test that cannot satisfy the detectable

property, a new group test can always be generated to replace

it. The detectability of the system within a group test can be

determined by checking whether all of its unobservable modes

are stable [20]. This verification process can be done before

performing any group test and thus does not affect the number

of tests.

Also, notice that the Kalman filter based group detection

method may make mistakes, i.e., the result zi can be equal

to 1 even when there is no faulty sensor in test i, and vice

versa. Therefore, our study is a noisy group testing problem,

instead of the well studied noise-free case. A recent study [22]

has been conducted to evaluate the number of tests required for

two noisy group testing scenarios: 1) Additive model: the group

result, 0, may change to 1 with probability p; and 2) Dilution

model: a faulty sensor may act like a normal sensor (diluted)

with probability q in a group test. The sufficient number of

tests for the additive model and dilution model, under worst

case distribution of faults, are O(d
2 log(N)
1−p

) and O(d
2 log(N)
(1−q)2 ),

respectively. However, for group tests that can have both false

alarm and miss detection, as in our proposed algorithm, the

requirement on the number of tests is still an open question.

C. Fault State Recovery

After the group test results z are calculated, the sensor

fault state is recovered by a straightforward most-likely (ML)

decoding. The recovery algorithm evaluates all
(

N
d

)

possible

fault states and chooses the one such that the group testing

result z is most likely, i.e., choose ν⋆ if

p(z|L⋆
ν) > p(z|Lν) ∀ν 6= ν⋆ (10)

where Lν denotes any possible fault state and ν ∈
{1, 2, . . . ,

∑d

0

(

N
d

)

}. In some cases, and in particular in the

experiments shown in the next section, the probability measure

in Eq. (10) is difficult to obtain and depends on the threshold

used in group testing. This study simply assumes each group

test has the same faulty probability. For each possible fault state

Lν , the recovery algorithm calculates the Hamming distance,

defined as the number of distinct entries, between the predicted

output ΦLν and the detection outcome z. Fault states with

smaller Hamming distance is preferred. Among fault states

having the same Hamming distance from z, states with a smaller

support are preferred as the probability of a sensor being faulty

is < 1/2. If this still results in a tie, then the recovery algorithm

will choose randomly. The recovery algorithm as implemented

here does not scale with the number of sensors N but there

are faster algorithms [23] that do scale, (some sublinearly with

N). For our parameters used in simulation, the Kalman filter

dominates the complexity.

D. Practical Implementation

The method outlined above can be implemented in two ways.

The first is as a post processing of data already collected at a

cluster head or central location, which is rather straightforward.

The second is a form of real-time sequential detection process,

where a control center solicits input from a single group of

sensors at a time. A single group test is then performed over

this group of input. This is followed by soliciting input from the

next group, and so on. Note that as long as the fault state of the

underlying system remains unchanged, the fault state estimate

can be done over different segments of observations over time.

In other words, the data provided by each group need not be

synchronized and can be generated on demand.

IV. EXPERIMENTAL RESULT

In this section we evaluate our detection method by applying

it to a set of real bridge vibration sensing data collected from

the New Carquinez Bridge in California. In the next section

we further compare our method with a few existing methods.

We begin with a list of common sensor fault types considered

in our study. We then discuss the nature of our sensing data

followed by detection results.

A. Sensor Fault Types

We consider four different fault types: spike, non-linear trans-

duction, mean drift and excessive noise. These are illustrated

in Fig. 2 on a sinusoidal signal. More specifically, a spike fault

is an impulse superimposed on normal sensor measurements.

They are assumed to occur randomly in time with constant or

varying magnitudes (consistent with a random signal model).

Moreover, the occurrence of these spikes is assumed sparse. A

non-linearity fault represents an abnormal discrepancy between
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Fig. 2: Illustration of different faults on a sinusoidal signal: (a)

Spike, (b) Non-linearity, (c) mean-drift, (d) Excessive noise and

(e) non-linear fault model

the sensor input and output. This fault usually happens when

the measurement falls outside a certain dynamic range. In

this study, a simple non-linear fault model is used as shown

in Fig. 2(e): when the measurement is within the normal

region, the sensor output reflects the measurement; otherwise

the output follows the slope Sf . A mean drift fault preserves

the output dynamics but not its mean value. This type of fault

generates outputs whose mean drifts away from the true mean

of the signal slowly compared to the output dynamics. Finally,

excessive noise refers to a large amount of Gaussian noise in

the output of a sensor. Compare to regular measurement noise,

this fault has much higher amplitude such that the output signal

is highly corrupted. Note that only the non-linearity fault is a

function of the measured signal but the other fault types are

not.

B. Bridge Vibration Data and State Estimation

We evaluate our detection method using bridge vibration data

collected by a network of 18 vibration sensors deployed on

the New Carquinez Bridge in California. The New Carquinez

Bridge is a 1056 meter long suspension bridge which connects

Crockett and Vallejo. The locations of these 18 sensors are

shown in Fig. 3. They monitor the bridge vibration in the

direction perpendicular to the bridge surface. Fig. 4 shows an

example of the output of a sensor when vehicles pass through.

We took 18 data traces at the beginning of the deployment

and performed manual inspection. All tests, including frequency

spectrum analysis and the bridge mode-shapes calculation from

the data suggested the data traces are correct. Two experiments

are conducted to evaluate the performance of the proposed

algorithm. The first one is a control experiment, which allows

us to evaluate the performance under specific types of faults.

In this experiment, different fault types (described in Section

IV-A) are superimposed over a random subset of data traces.

The resulting data are then used for evaluation purposes. On

the other hand, the second experiment is a direct application of

the algorithm to detecting potential real faults within the traces.

As shown in Section III, to use Kalman filtering for a group

test requires a model representing the dynamics of the system

and of the sensors. In practice, it is difficult to obtain the

true dynamical model of a bridge. One solution is to learn

the model from measured data. One of the commonly used
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Fig. 3: Plan map of the deployed sensors. Credit: Yilan Zhang

0 10 20 30 40 50
0.47

0.48

0.49

0.5

0.51

0.52

0.53

Time (s)

s
e

n
s
o

r 
o

u
tp

u
t 

(g
 s

c
a

le
)

Fig. 4: Vibration measurement of a sensor

methods is the subspace method [24] which utilizes measured

output (and input, if available) to calculate model parameters

such as matrix A, (B if input data is available) and C in the

state-space model (8). Notice that the excitation input to the

bridge is in general not available. While input is not necessary

for learning the system model by the subspace method, prior

study suggests the input can be assumed to be a Gaussian

signal for large structures with complex excitations, and that

this leads to a better learned system model in terms of output

prediction [25]. For our study, we take 50 seconds of vibration

data sampled at 200Hz, from each of the 18 sensors. Half of

the vibration data is then used to learn the bridge dynamical

model, while the remaining half is used for evaluating the group

testing method. The order of the dynamical model is set to 162

(A study of the bridge, [26], indicates that a 162-order state

space model is sufficient to capture the bridge dynamics), i.e.,

the length of the state vector is 162. The excitation inputs are

assumed to be 18 degree-of-freedom Gaussian signals and each

degree-of-freedom input has zero mean and variance equal to

the variance of the output of the sensors. Moreover, a zero-mean

Gaussian noise with variance equals to 1% of the variance of

sensor measurement was added to each sensor to model the

measurement noise. This is in addition to what noise may have

already been embedded in the data we collected.

C. Performance of the Group-testing Based Detection Method

For the control experiment, we add different types of faults

to the bridge data by randomly selecting up to two sensors (a

number α is first chosen uniformly from {0, 1, 2}, and then α
number of intended faulty sensors are chosen uniformly among

the 18 sensors). According to our experience, a reasonable

assumption on the percentage of faulty sensors is about 10%
and thus we set d = 2. A total of 100 random runs are

conducted (over the choice of the number and identity of faulty

sensors, as well as over the random injection of faults and the

generation of the Φ matrix) for each number reported in the

figures shown in this section. We first examine the performance

as a function of the detection threshold used in each group

test and the number of tests performed. Fig. 5a shows the
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Fig. 5: Detection rate and false alarm on detecting (a) spike fault, (b) non-linearity fault and (c) mean drift fault.

detection rate (the number of detected faulty sensors over the

total number of faulty sensors) and false alarm in detecting

spike fault under different number of tests and threshold levels.

The spike fault was set to appear at 5% of the samples and have

mean amplitude equal to the variance of the sensor output,

which is common among spike fault in sensors. As can be

seen, when the number of tests increases, the detection rate

increases while false alarm decreases. When 14 tests are used,

the detection rate is above 85% and false alarm is below 1%,

with a threshold of 2 × 10−5. Similarly, when 16 tests are

used, the accuracy is over 93% and remains above 80% with a

threshold less than 2× 10−4.

In all cases we see a fairly wide region of threshold values

within which the method enjoys high detection rate (> 80%)

and low false alarm (< 2%). This is clearly a desired operating

regime for the detection method. In addition, the detection

rate first increases with the threshold and then drops slowly

with further increase in the threshold. When the threshold

increases beyond a certain value (e.g., 3× 10−4), the detection

rate quickly drops and eventually reaches zero. The false

alarm moves in exactly the opposite direction. To explain this

phenomenon we note there are two sources of error at play,

one due to Kalman filtering and the other due to the recovery

algorithm. When the threshold is very low the group test is

highly sensitive to small errors in the estimate comparison

which could be attributed to measurement noise or inaccuracy

in the model rather than actual sensor fault. This high sensitivity

leads to high false alarm, but not high detection rate because

incorrect group testing results cause the recovery algorithm

to err on the fault state. With high false alarm and low

detection rate, this is clearly an undesirable threshold region.

As the threshold increases the error from recovery decreases,

which more than compensates for the decreased sensitivity in

the group testing, achieving an overall better tradeoff. When

the threshold increases beyond a certain level, the group test

becomes insensitive to faults and eventually declares all groups

normal, resulting in deteriorating detection rate and false alarm.

The same evaluation is done for the other fault types; these

are shown in Figs. 5b and 5c. In Fig. 5b, results of detecting

non-linearity fault are shown. The normal dynamic range is set

to 80% of the output maximum, with a slope in the abnormal

region of 0.3. The result for mean-drift error is presented in
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Fig. 6: Detection and false alarm rate on detecting excessive-

noise fault.

Fig. 5c. The mean-drift has a maximum frequency of 5Hz
and a magnitude of 50% of the sensor output variance. All

these results show similar behavior to those observed in the

spike fault case. Within the preferred threshold range, the

detection rate generally exceeds 80% in accuracy while false

alarm remains low. Furthermore, the preferred threshold range

is smaller when the fault is less pronounced. Finally, the

detection performance of the proposed method is tested when

the sensor is corrupted by excessive Gaussian noise with zero

mean and variance equal to 50% of the variance of sensor

output. The result presented in Fig. 6 shows that the proposed

method is not recommended for detecting this type of fault. The

poor detection performance in this case is due to the fact that

Kalman filtering, in computing statistically optimal estimates

of the system state, tends to eliminate noise variance existing

in the sensor measurement. Consequently, zero-mean excessive

noise is sufficiently suppressed in the estimate and does not get

reflected in the residual of a group test.

In addition to the control experiment, we also evaluated the

algorithm performance on real sensor faults. Several weeks

after deployment, sensor 11 appears to start having errors

(this is done by manual and visual inspection of its data). As

shown in Fig. 7, the output of sensor 11 has obvious spikes

beyond normal fluctuation, and possibly has a shift on the mean

amplitude and a small mean-drift error as well. It should be

noted that this observation is not the absolute “ground truth”

but is the closest we can possible get under the circumstances

(the alternative is to take the sensor off the bridge and calibrate
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Fig. 7: Abnormal vibration measurement of sensor 11.

it in a lab; even if we could do so the result is only valid if

the same type of faults persists in the lab setting). We used

our algorithm on the 18 sensors with 6 and 8 tests respectively.

Under the same preferred threshold range (between 3 × 10−3

and 1× 10−4) as in the control experiment, our algorithm was

able to identify the faults in sensor 11, with a detection rate

> 78% (> 92%) and false alarm < 1.8% (< 0.7%) when using

6 (resp. 8) tests.

V. COMPARISON WITH OTHER METHODS

In this section we compare our group-testing based detection

method with two existing methods both in terms of their

complexity and in accuracy. As our method is model-based, our

comparison focuses on other model-based methods. Among the

model-based methods listed in Table I, two of them are directly

comparable, which are Kobayashi et al. [7] and Da et al. [8].

Both Kobayashi and Da are based on a bank of Kalman

filters. Specifically, with N sensors in the network, N fault

detection tests (N Kalman filters) are required to evaluate all

sensors in the network. In each test, all sensors but one are

involved, i.e., test i uses N−1 sensors and exclude sensor i. A

key assumption in this method is that there is only one faulty

sensor in the network, thus the test which does not contain the

faulty sensor will have different characteristics than the other

N − 1 tests, and thus the single faulty sensor can be identified.

The difference between these two methods lies in how to

compare the test outcomes to determine the difference charac-

teristics with and without the faulty sensor. Under the method

by Kobayashi the estimated sensor output from the Kalman

filter is compared to the corresponding observed sensor output.

The test which does not contain the faulty sensor will have

higher consistency result than the other tests. Under the method

by Da, there is a reference system which gives a reference

system state estimate from N sensors by the Kalman filter.

Each test compares the estimated system state (from N − 1
sensors) from the Kalman filter to this reference system state.

The test that does not contain the faulty sensor is supposed

to have lower consistency result because the reference system

contains faulty sensor but the test does not.

Fig. 8 shows the detection rate of the three methods under

different types of faults, different measurement noises, and with

a single faulty sensor, using the same set of bridge data as in the

previous section. As we can see, Kobayashi and Da’s method

achieve similar performance as our proposed method when 8

to 10 tests are used. This result is to be expected when the

assumption of no more than one faulty sensor holds, since all

the methods are based on Kalman filter. Moreover, because

they use a fixed number of sensors (N − 1) in a test (while

our method involves different (and fewer) number of sensors

in different group tests, ranging from 1 to N/2 in a test), their

estimation accuracy is generally better because the sensitivity

to fault of Kalman filtering is slightly different when different

number of sensors are used. As shown in Section II, the the

complexity of Kalman filtering largely depends on the size of

the system state s, rather than the number of sensors used in

state estimation. One detection test of Da’s and Kobayashi’s

algorithms has similar complexity as one group detection test

of the proposed group-testing based detection method if the

sensor network size remains the same. The results in Fig. 8

indicate our proposed method is able to achieve similar, and

sometimes better, accuracy when around 8 to 10 tests are used,

which is about half of the complexity of Kobayashi’s and Da’s

method (18 tests).

When the system has more than one faulty sensor, the per-

formance of Kobayashi and Da’s method deteriorates sharply

as all the reference system are contaminated by faulty sensor

observations. If the false alarm rate is restricted to a reasonable

level (5%), the accuracy of Da’s method dropped to about

55% and Kobayashi’s method dropped to about 50% for non-

linearity fault and to about 20% for spike and mean drift fault

(Fig. 9). At the same time, the proposed algorithm maintains

over 85% of accuracy for all fault types as shown in the

simulation results in section IV.

To summarize, compared to other model-based methods, our

proposed method has fewer assumptions on the underlying

system and the nature of the faults. It achieves high accuracy

with much lower complexity than existing methods. This is

particularly relevant for very large sensor networks. Moreover,

the proposed method provides a simple trade off between

complexity and fault detection accuracy. When the network

lacks resources such as energy or communication bandwidth,

fewer tests need be done by lowering the target detection

accuracy. Furthermore, the above comparison shows that the

proposed method is insensitive to measurement noise.

VI. CONCLUSION

This paper presented the first study on the asymptotic fault

detection problem where the number of faulty sensors is much

smaller than the size of the sensor network. By introducing how

to detect whether a random group of sensors contain any faulty

sensor and how to form a sensor fault detection problem in

a group testing framework, the proposed method successfully

reduced the number of detection tests required to identify faulty

sensors, thus The reduction in complexity helps to preserve

power and communication bandwidth in resources-limited wire-

less sensor networks. Detailed performance analysis also shows

the proposed method is able to achieve comparable, sometimes

even higher, accuracy that the other existing methods while

reducing the detection complexity. Future works of this study

include developing an adaptive compressed sensing algorithm,

where the decision on which sensors being tested is based on

the previous results.
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Fig. 9: Detection rate under different measurement noises and fault types with two faulty sensors.
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