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Multi-Channel Dynamic Access
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Abstract—In this paper we study opportunistic spectrum access (OSA) policies in a multiuser multi-channel random access cognitive

radio network, where users perform channel probing and switching in order to obtain better channel condition or higher instantaneous

transmission quality. Prior studies in this area include those on channel probing and switching policies for a single user to exploit

spectral diversity, and those on probing and access policies for multiple users over a single channel to exploit temporal and multiuser

diversity. By contrast, in this study we consider the collective switching of multiple users over multiple channels. This inevitably

necessitates explicit modeling of the effect of collision. Furthermore, we consider finite arrivals, whereby users are not assumed to

always have data to send and the demand for channel follows a certain arrival process. Under such a scenario, the users’ ability to

opportunistically exploit temporal diversity (the temporal variation in channel quality over a single channel) and spectral diversity

(quality variation across multiple channels at a given time) is greatly affected by the level of congestion in the system. We investigate

the associated decision process in this case, and show that the optimal policy is given by a nested stopping rule which may be viewed

as a type of generalization to results found in existing literature in this area. We analytically and numerically evaluate the extent to which

congestion affects potential gains from opportunistic dynamic channel switching.

Index Terms—Opportunistic spectrum access (OSA), cognitive radio network, diversity gain, multiuser multi-channel system, optimal

stopping rule, nested stopping rule
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1 INTRODUCTION

DYNAMIC and opportunistic spectrum access (OSA) poli-
cies have been very extensively studied in the past few

years for cognitive radio networks, against the backdrop of
spectrum open access as well as advances in ever more agile
radio transceivers, including e.g., highly efficient channel
sensing techniques [3], [16]. Within this context, a cognitive
radio is capable of quickly detecting spectrum quality and
performing channel switching so as to obtain good channel
and transmission quality. At the heart of such opportunistic
spectrum access is the idea of improving spectrum effi-
ciency through the exploitation of diversity.

Within this context there are three types of diversity
gains commonly explored. The first is temporal diversity,
where the natural temporal variation in the wireless channel
causes a user to experience or perceive different transmis-
sion conditions over time even when it stays on the same
channel, and the idea is to have the user access the channel
for data transmission when the condition is good, which
may require and warrant a certain amount of waiting. Stud-
ies like [5] investigate the tradeoff involved in waiting for a
better condition and deciding when is the best time to stop.

The second is spectral diversity, where different channels
experience different temporal variations, so for a given user at
any given time a set of channels present different transmission
conditions. The idea is then to have the user select a channel
with the best condition at any given time for data transmission,

which typically involves probingmultiple channels to find out
their conditions. Protocols like [10] does exactly this, and stud-
ies like [2], [21] further seek to identify the best sequential
probing policies using a decisionmaking framework.

The third is user diversity or spatial diversity, where the
same frequency band at the same time can offer different
transmission qualities to different users due to their differ-
ence in transceiver design, geographic location, etc. The
idea is to have the user with the best condition on a channel
use it. This diversity gain can be obtained to some degree
by using techniques like stopping rules whereby a user
essentially judges for itself whether the condition is suffi-
ciently good before transmitting, which comes as a byprod-
uct of utilizing temporal diversity.

We note that the above forms of diversities are often
studied in isolation. For instance, temporal diversity is stud-
ied in a multiuser setting but with a single channel in [19],
[22]; spectral diversity is analyzed for a single user in [18],
among others. More specifically, [22] developed optimal
stopping policies for single-channel multiuser access, while
Tan et al. [19] considered a distributed opportunistic sched-
uling problem for ad-hoc communications under delay con-
straints. In [18] authors exploited spectral diversity in OSA
for a single user with sensing errors, where the multi-chan-
nel overhead is captured by a generic penalty on each chan-
nel switching. This becomes insufficient in a multiuser
setting as such overhead will obviously depend on the level
of congestion in the system which results in different
amount of collision and the time it takes to regain access to
a channel. In [10] an opportunistic auto rate multi-channel
MAC protocol MOAR is presented to exploit spectral diver-
sity for a multi-channel multi-rate IEEE 802.11-enabled
wireless ad hoc network. However, this scheme does not
allow parallel use of multiple channels by different users
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due to its reservation mechanism. Other works that study
multi-channel access for a single user include [2], [4], [5],
[12], [13], [20].

As the number of users and their traffic volume increase
in such a multi-channel system, one would expect their abil-
ity to exploit the above diversity gains to decrease signifi-
cantly due to the increased overhead, e.g., the time it takes
to perform channel sensing or the time it takes to regain
access right, or increased collision due to channel switching.
As mentioned above, this overhead was captured in the
form of penalty cost in prior work such as [18], but is often
assumed to be independent of the traffic volume existing in
the system.

Compared to the above literature, the main contribution
of this paper is two-fold:

1) We present a model that captures opportunistic spec-
trum access policies in a multiuser multi-channel ran-
dom access setting, where users are not assumed to
always have data to send, while demand for channel
follows a certain arrival process, and delays due to
collision and contention are taken into account. We
then set out to investigate the associated optimal deci-
sion process in this scenario, assuming each user fol-
lows a random sensing order.1 We then focus on the
collective effect of channel switching decisions by the
users, and how their decision processes are affected
by increasing congestion levels in the system.

2) For this problem we characterize the nature of an
optimal access policy and identify conditions under
which channel switching actually results in transmis-
sion gain (e.g., in terms of average data rate or
throughput). We show that the optimal policy is
given by a nested stopping rule involving a two-step
stopping decision, which may be viewed as a type of
generalization to those found in the literature and
mentioned above, e.g., [22]. We also show both ana-
lytically and numerically that, unsurprisingly, with
the increase in user/data arrival rate, the average
throughput decreases and a user becomes increas-
ingly more reluctant to give up a present transmis-
sion opportunity in hopes for better condition later
on or in a different channel.

The remainder of this paper is organized as follows.
The system model is given in Section 2. In Sections 3 and
4, we model channel evolution as IID and Markovian pro-
cesses, respectively, and analyze the properties of an opti-
mal stopping/switching rule. Numerical results are given
in Section 5, and Section 6 concludes the paper.

2 MODEL, ASSUMPTIONS AND PRELIMINARIES

2.1 Model and Assumptions

Consider a wireless system with N channels indexed by
the set V ¼ f1; 2; . . . ; Ng. We associate each channel with a
positive reward of transmission (e.g., transmission rate)

Xj, which is a positive random variable with distribution
given by fXjðxÞ, assumed to have finite support with a

maximum value of X
j
. There are m cognitive users (or

radio transceivers), each equipped with a single transmit-
ter attempting to send data to a base station. Our model
also captures direct peer-to-peer communication, where m
pairs of users communicate and each pair can rendezvous
and perform channel sensing and switching together
through the use of a control channel [14]. However, for
simplicity of exposition, for the rest of the paper we will
take the view of m users transmitting to a base station. We
will assume these m users are within a single interference
domain, so that at any given time each channel can only
be occupied by one user. Considering spatial reuse will
make the problem considerably more challenging and
remains an interesting direction of future research. We
consider discrete time with a suitably chosen time unit,
and with all other time values integer multiples of this
underlying (and possibly very small) unit. We will con-
sider two channel models, an IID model where channel
conditions over time are assumed to form an IID process
defined on this time unit (in Section 3), and a Markovian
model where channel conditions over time form a Markov
chain (in Section 4). Different channels are in general not
identically distributed but are assumed to evolve indepen-
dent of each other. Strictly speaking an IID process is a
special case of a Markov process. The purpose for making
this distinction is to use the IID model to represent a fast-
varying channel while using the Markov model for a
slow-varying channel.

The system operates in a way similar to a multi-channel
random access network like IEEE 802.11, with the following
modifications related to dynamic and opportunistic channel
access. Each user has a pre-assigned (or self-generated) ran-
dom sequence of channels; this sequence determines in
which order the user performs channel switching, an
approach similar to that used in [18]. More on this assump-
tion is discussed in Section 2.3. Each time a user enters a
new channel, it must perform carrier sensing (CS) and com-
pete for access (contention resolution) as in a regular 802.11
channel. As soon as it gains the right to transmit, the user
reserves the channel (e.g., through the use of RTS-CTS type
of handshake) and finds out the instantaneous data trans-
mission quality (channel information could be piggybacked
on these control packets) it may get if it transmits right
away. Upon finding out the channel condition, this user
faces the following choices:

1) Transmit on the current channel right away. Intui-
tively this happens if the current channel condition
is deemed good enough. This action will be referred
to as STOP. This is shown in Fig. 1, where the second
RS-CP (denoting the Reservation-Channel probing
process) followed by DATA indicates a STOP at the
first channel (first line in the figure).

2) Forego this transmission opportunity, presumably
due to poor channel condition, but remain on the
same channel and compete for access again in the
near future hoping to come across a better condition
then. This happens if the current channel condition is
poor but the average quality is believed to be good, so
the user will risk waiting for possibly better condition
later. This action will be referred to as STAY. This is

1. We discuss in much greater detail the choice of random sensing
order versus optimal sensing order in Section 2.4.
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illustrated by the first RS-CP on the first line (channel)
followed by a horizontal arrow.

3) Give up the current channel and switch to the next
one on its list/sequence of channels. This happens if
the current channel condition is poor, and the pros-
pect of getting better conditions later by staying on
the same channel is not as good as by switching to
the next channel. This action will be referred to as
SWITCH. An example is shown by the RS-CP on the
second line (channel) followed by a vertical arrow
indicating a SWITCH action.

Note that option (2) above allows the system to exploit both
multiuser diversity (the transmission opportunity is given
to another user under the random access) and temporal
diversity (the user in question waits for better condition to
appear in time), while option (3) allows the system to
exploit spectral diversity as users seek better conditions on
other channels. Options (1) and (2) are similar to those used
in existing stopping time frameworks, see e.g., [22].

In the above decision process once a user decides to leave
a channel it cannot use the channel for transmission without
going through carrier sensing and random access competi-
tion again. More importantly from a technical point of view,
this assumption means that the user cannot claim the same
channel condition at a later time. Once a user gets the right
to transmit on a certain channel, it can transmit for a period
of T time units, which is a constant. For simplicity a single
time unit is assumed to be the amount of time to transmit a
control packet (e.g., RTS/CTS type of packets.).

2.2 Capturing the Level of Congestion

As mentioned earlier our focus in this paper is on under-
standing how the users’ channel access decision process is
affected by increasing traffic load or congestion in the sys-
tem. To model this we will first take the view of a single
user, and introduce user arrival rates in each channel as
well as the amount of delay involved in STAY and SWITCH
as parameters that need to be taken into consideration in its
decision process. Note that these parameter values are the
result of the collective switching actions of all users, and
therefore cannot be obtained prior to defining the switching
policies. We will however assume that these parameters
have well-defined averages to facilitate our analysis. Later
we show that the system under the optimal switching policy
converges and that these parameters indeed have well-
defined averages, thereby justifying such an assumption. In
other words, policies derived under the assumption that
these parameters have well-defined averages lead to a stable

system with well-defined averages for these parameters.
This is not unlike a mean-field approach where a single user
operates against a background formed by other users in a
system over which this single user has no control or influ-
ence. In practice these values may be obtained through
learning.

Specifically, we assume that the total packet arrivals to
a channel, including external arrival, retransmission, as
well as arrivals switched from other channels, form a
Poisson process, with the attempt rate vector given by

G ¼ ½G1; G2; . . . ; GN � and a sum rate
PN

i¼1 Gi ¼ G. These
quantities will also be referred to as the load or traffic load
on a channel. We will not directly deal with the external
arrival processes as our analysis entirely depends on the
above “internal” offered load. However, we will assume
that the external arrivals are such that the system remains
stable.

The level of congestion on any channel is captured by
two parameters. The first is an average contention delay on
channel j denoted by tcj; this is the average time from carrier
sense to gaining the right to transmit on channel j. The
more competing users there are on channel j, the higher this
quantity is. The second is an average switching delay of chan-
nel j, denoted by tsj ; this is the time from a user switching

into channel j (from another channel) to its gaining the right
to transmit on channel j. Compared to tcj the switching

delay includes the additional time for the radio to perform
channel switching and additional waiting time in the event
that the switching occurs during an active transmission. In
our characterization of tsj below, however, we will ignore

the hardware switching delay as it simply adds a constant,
which is very small compared to contention delay, and will
not affect our subsequent analysis.

For a packet arriving at channel i (from an external
arrival process or by switching from another channel), the
delay it experiences between arrival and successful trans-
mission consists of two parts, the average time it takes for
the channel to become idle if it happens to arrive during an
active transmission (including its associated control packet
exchange), denoted by twi , and the average time it takes to
compete for and gain the right to transmit, given by tci . We
thus have tsi ¼ twi þ tci .

Denote by Y the random variable representing the time
between a new arrival and the completion of the current
transmission. Following results in [14], we have fY ðyÞ ¼
Sie

�Siy, where Si is the success rate of channel contention
given by

Fig. 1. System model.
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Si ¼
Gie

�2Gi

1þ ð1þ T ÞGie�2Gi
: (1)

twi is then calculated as follows:

twi ¼
Z 1þT

0

fY ðyÞð1=z þ yÞdy

¼ 1

Si
þ 1

z
� T þ 1þ 1

Si
þ 1

z

� �
e�ðTþ1ÞSi ; (2)

where 1=z is the expected random backoff time. For tci , since

a competition succeeds with probability e�2Gi we have

tci ¼ ðe2Gi � 1Þ � ð1=z þ 2Þ þ 2: (3)

Using the above expressions, it is not difficult to establish
the following results.

Proposition 2.1. Both tcj and tsj are non-decreasing functions of
arrival rate Gj, 8j 2 V.

Proposition 2.2. Both tcj and tsj are non-decreasing functions of
the data transmission time T , 8j 2 V.

The decision process we introduce next is a function of tci
and tsi , so a user needs to know these parameter values in
order to compute the optimal policy. In practice, this infor-
mation may be obtained through measurement and empiri-
cal means.

2.3 Problem Formulation

For simplicity and without loss of generality, for the single
user under consideration we will relabel the channels in its
sequence in the ascending order: 1; 2; . . . ; N . We now define
the following rate-of-return problem with the objective of
maximizing the effective data rate over one successful data
transmission.

Specifically, let p denote a policy p ¼ fa1;a2; . . .agðpÞg
which specifies the sequence of actions leading up to a suc-
cessful transmission, with ak denoting the kth action,
ak 2 fSTAY; SWITCHg, k ¼ 1; . . . ; gðpÞ � 1, and agðpÞ ¼
STOP. An action is only taken upon gaining the right to
transmit in a channel, and gðpÞ denotes the stopping time at
which the process terminates with a transmission action.

Let Xp
gðpÞ denote the data rate obtained at the last step

when the process terminates. Then the total reward the user
gets isXp

gðpÞ � T , the total amount of data transmitted. A natu-

ral goal would be to maximize the ratio between this reward
and the total amount of time spent in the decision process
(summing up the delays involved in switching and conten-
tion as a result of the actions), i.e., the effective or average
throughput or data rate. While this appears to be a standard
rate-of-return problem, an inherent difficulty arises from the
fact that different channels have different statistics, and thus
the rewards generated and the delays experienced, respec-
tively, are not independent across channels. This prevents
the use of the renewal theorem to turn the expectation of the
aforementioned ratio (average throughput) into a ratio of
expectations as is commonly done.

To address this difficulty, we will make the following sim-
plification: instead ofmaximizing the overall rate of return for
each successful transmission over the entire decision process,

we will seek to maximize the rate of return over the remaining
decision process given the current state of the process. This
may be viewed as a “no-recall” approximation to the original
goal by ignoring the history or past decisions in the same pro-
cess. This objective can be represented by the following
dynamic program, noting that the user goes through the chan-
nels in the order 1; 2; . . . ; N

VNðxÞ ¼ max x;
T

T þ tcN
EfVNðXN jxÞg

� �
;

ViðxÞ ¼ max

�
x;

T

T þ tci
EfV iðXiÞ jxg;

T

T þ tsiþ1

EfV iþ1ðXiþ1Þ jxg
�
; i < N;

(4)

where ViðxÞ is the value function at stage i (in channel i) of
the decision process when the observed channel state is x;
this is also the maximum average throughput obtainable
given current state x (transmission rate) in channel i: In the
above equation, the first term is the reward (current trans-
mission rate) if we STOP, the second the expected reward if
we STAY, and the last the expected reward if we SWITCH.

2.4 Critique on the Model

The model given above captures the multiuser, multi-
channel, and random access nature of the problem. The
optimal decision process defined by (4) appears to be a finite
horizon problem, i.e., the process stops at channel (or stage)
N . However, this would only be partly true, as (4) actually
illustrates a two-dimensional decision problem, where there
is a finite number of steps (N) along the spectral dimension
(the channels), but within each channel (for each i) the deci-
sion process is over an infinite horizon along the time
dimension, i.e., the decision process may go on indefinitely
within a particular channel. This will be seen more clearly
in Section 3.

The reason we have limited the horizon to be finite along
the spectral dimension—the infinite horizon version would
be where the user can continue to switch channels for an
indefinite number of times, including revisiting channels it
has visited in the past—has to do with the IID assumption
on the channels. Since channel state realizations are inde-
pendent over time (for the same channel), the second and
third terms in (4) are both independent of the current state
x. In other words, the comparison between the second and
the third terms is independent of the current state x, sug-
gesting that under the same contention level G if the second
term is larger than the third term, then it will always be
larger regardless of the current state. The interpretation of
this observation is that if we ever decide to STAY (the sec-
ond term is larger) on the same channel, then we will never
SWITCH later. The opposite is also true: if we ever decide
to SWITCH away from a channel (the third term is larger),
then under the optimal policy we will never come back to
the same channel even if we are allowed to. This means that
under the objective of maximizing the future rate of return,
a channel is never visited more than once, resulting in the
finite horizon formulation along the spectral dimension
given above. In other words, there is no need to allow the
user to revisit a channel it has visited before but switched
away from.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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The reason why we limit the user to a pre-determined
sequence (randomly chosen) of channels has to do with the
multiuser scenario we aim to analyze. If there is only a sin-
gle user, then obviously a reasonable thing to do is to also
optimize the sequence/order of channel sensing, together
with optimizing the switching and transmission decisions.
Indeed there has been a large volume of study on determin-
ing optimal sensing orders, see e.g., [5], [6], [7], [9], with the
main idea being that upon switching, a user should switch
to a channel believed to present the best transmission
opportunity. A related problem is channel assignment, see
e.g., [1] that studied such a problem under stochastic uncer-
tainty and with adjacent channel interference. However,
contention among users is not taken into consideration in
[1]; furthermore, to achieve globally optimal assignment the
approach either assumes static assignment that does not
respond to random realization of channel conditions, or
employs a central controller. A two-user model in a similar
context was introduced and analyzed in [7], but beyond
two users the problem remains open. Compared to [1], the
contention and the opportunistic exploitation of time-vary-
ing channel conditions are key aspects of the model we
study in this paper.

An optimal sensing order becomes elusive in a multi-
user setting because the above type of optimization relies
on known statistics of the channel dynamics. However, this
is no longer applicable when there are multiple competing
users: one’s previously optimal sensing order may no lon-
ger be optimal depending on what order the other users
adopt. Consequently this needs to be either treated as a cen-
tralized multiuser optimization problem, where the jointly
optimal sensing orders are computed simultaneously for all
users, or treated as a game-theoretic problem where each
user selfishly determines its sensing order to maximize its
own utility. A recent study [17] adopts an approach close to
the first one with a joint design framework of sensing order
and channel switching decision. The model in [17] however
focuses on the interaction between a secondary user and a
primary user, rather than on the contention relationship
among competing secondary users (which our model cap-
tures), thus it does not jointly design channel switching
decisions for multiple users.

The second, game-theoretic approach is largely an open
area as it involves the equilibrium analysis of complex
decisions (not only the sensing order of channels but also
the stopping decisions on any given channel). While this
remains an interesting direction of future research, in the
present study we adopt the assumption that a user simply
follows a pre-defined (can be randomly chosen) sequence
of channels and focus our attention on the switching deci-
sions instead. In Section 5 we compare the results between
randomly selecting these sequences and users optimally
selecting these sequences individually without considering
other users’ behavior.

For the remainder of our presentation, we will use the
terms stages and steps to describe the two time scales of deci-
sion making along the two dimensions described above.
Movement along the spectral dimension (i.e., switching
from one channel to the next) occur in stages; stage i means
channel i and this is indexed by the subscript in the value
function ViðxÞ. The decision process within the same stage

(or in the same channel) occurs in steps; the decision to
remain on the same channel or switch away occurs at the
boundary of a step. The indexing of steps is not explicit in
the expression given in (4) but will be made explicit in our
subsequent analysis.

3 OPTIMAL ACCESS POLICY UNDER THE IID
CHANNEL MODEL

In this section, we model the channels as fast changing, IID
processes, where successive observations of the state of the
same channel are independent.

3.1 An Optimal “Nested” Stopping Rule

Since successive channel states are independent, the value
function (4) is simplified:

ViðxÞ ¼ max

�
x;

T

T þ tci
EfViðXiÞg; T

T þ tsiþ1

EfViþ1ðXiþ1Þg
�
:

(5)

The above three-way comparison suggests the following. If
the current state x is sufficiently high then the optimal deci-
sion is STOP. The comparison between the second and the
third terms is more interesting: both terms are independent
of the state x, so if the second term is larger then it will
always be larger. As previously mentioned, this implies that
if we ever decide to STAY, then we will never SWITCH
later. The reverse is also true: if we ever decide to SWITCH
then we will never return to the same channel. These obser-
vations can lead to a concrete proof of the existence and
uniqueness of a threshold rule but in general cannot pro-
duce a closed form for the computation of the threshold.
Below we will instead use results from optimal stopping
theory [8] to obtain not only the existence but also a closed
form for the threshold. Consider the following substitution,

X̂iðxÞ ¼ max x;
T

T þ tsiþ1

EfViþ1ðXiþ1Þg
� �

(6)

with the value function subsequently re-written as

ViðxÞ ¼ max X̂iðxÞ; T

T þ tci
EfViðXiÞg

� �
: (7)

This substitution reduces the decision process to a two-
way comparison, and more importantly, a one-dimensional
decision process. Specifically, since the state x is IID over

the same channel/stage i, the first term X̂iðxÞ as defined in
(6) is also IID over the same stage i while encoding the infor-
mation on other channels/stages. Therefore, if we view

X̂iðxÞ as the reward of a (meta) stopping action of state x
and tci as the cost for continuing, then the value function
given in (7) represents a standard stopping time rate-of-
return problem with two possible actions in each step,
(meta) stopping and continuation, respectively, and this
process concerns only a single stage/channel. The switching
to the next stage occurs when the (meta) stopping action is
taken (which essentially ends the above one-dimensional
stopping time problem), and it is determined that SWITCH
is a better action than STOP.

LIU AND LIU: TO STAY OR TO SWITCH: MULTIUSER MULTI-CHANNEL DYNAMIC ACCESS 5
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The following theorem characterizes the property of
the optimal decision for the problem given in (5) or
equivalently (7).

Theorem 3.1. The optimal action at stage i of deciding between
{STOP, SWITCH} and STAY is given by a stopping rule: the
state space of the channel condition can be divided into a stop-
ping set Ds

i and continuation set Dc
i , such that whenever the

channel condition is observed to be in either set, the corre-
sponding action (STOP/SWITCH versus. STAY) is taken.2

Furthermore, these two sets are given by the following thresh-
old property:

Ds
i ¼ fx : X̂iðxÞ � ��g; 8i; (8)

where the threshold �� at the ith stage is given by the unique
solution to

E½X̂iðxÞ � ��þ ¼ � � tci
T

: (9)

Proof. We first prove the existence of an optimal stopping
rule. Define the reward function associated with step k of
the stopping decision process at stage i as

Zk
i ð�; xÞ ¼ X̂iðxÞT � �

�
k � tci þ T

�
; (10)

where � is a positive finite valued variable. From
[Theorem 1, Chapter 3, 8] we know that an optimal
stopping rule exists if the following two conditions
are satisfied3:

ðC1Þ E
n
sup
k

Zk
i ð�;XiÞ

o
< 1;

ðC2Þ lim
k!1

Zk
i ð�;XiÞ � Z1

i ð�;XiÞ; a:s:
(11)

Since we have a finite number of channels and the chan-
nel state realization is finite, X̂iðxÞ is finite. Therefore

Z1
i ð�;XiÞ ¼ �1. Since X̂iðxÞ, T

Tþts
iþ1

EfViþ1ðXiþ1Þg and T

are all finite, (C2) is easily satisfied. Next define

Zið�; xÞ ¼ X̂iðxÞT � �T; (12)

which is again finite. Therefore we have EfZið�;XiÞg <

1, and EfðZið�;XiÞÞ2g < 1. Also noting that Zið�;XiÞ
is IID since Xi is IID, by the dominated convergence the-

orem we have Efsupk Zk
i ð�;XiÞg < 1, verifying (C1).

The existence is thus established.
Next we prove that the optimal stopping rule is

given by a threshold. Using the principle of optimality
[Chapter 2, 8] and the results from [Section 4.1, 8] (we
refer the reader to [Example 6.2, 8] for further detail),
our problem as expressed in (7) is equivalent to a
rate-of-return problem with a reward of stopping
given by Zið�; xÞ and a cost of continuation given by
�tci . The optimal stopping rule at step k is given by

Ds
i ¼ fx : Zið��; xÞ � 0g ¼ fx : X̂iðxÞ � ��g; (13)

where �� is such that the function V �
k ð�Þ, defined recur-

sively as [Chapter 6, 8] V �
k ð�Þ ¼ EfmaxfZið�; xÞ � �tci ;

V �
k ð�Þ � �tcigg, is evaluated to be zero, i.e., V �

k ð��Þ ¼ 0. To
obtain ��, we take V �

k ð��Þ ¼ 0 into the above definition
and get E maxfZið�; xÞ; 0gf g ¼ ��tci , or equivalently, �

� is
such that it satisfies

E½X̂iðxÞT � ��T �þ ¼ ��tci ; (14)

which is the same as (9). This completes the proof of the
form of the threshold. It remains to show that a unique
solution exists to (9). Denote by Dð�Þ ¼ E½X̂iðxÞ � ��þ�
�tc

i
T . It is not hard to verify that Dð�Þ is a continuous and

strictly decreasing function of �. Furthermore, we have

Dð� ¼ 0Þ ¼ E½X̂iðxÞ�þ > 0 since all channel states are
positive, and Dð�Þ ! �1 as � ! 1. Therefore there is a
unique solution to Dð�Þ ¼ 0, i.e., the threshold exists and
is unique, completing the proof. tu
In practice, to calculate this threshold, we define

ci ¼
T

T þ tsiþ1

EfViþ1ðXiþ1Þg: (15)

Re-writing (9) in the original random variables, we have

E max Xi;
T

T þ tsiþ1

EfViþ1ðXiþ1Þg
� �

T � �T

� 	þ
¼ E maxfXiT � �T; 0g jXi > ci


 �
� P ðXi > ciÞ

þ E maxfciT � �T; 0g jXi � ci

 �

� P ðXi � ciÞ
¼ �tci :

(16)

If the solution �� < ci, then it has to satisfy
RX

i

ci
ðx� �Þ

fXiðxÞdxþ ðci � �Þ � P ðXi � ciÞ ¼ �tci=T , and thus can be

obtained by �� ¼
RX

i

ci
xfXi ðxÞdx þ ci � P ðXi � ciÞ

1 þ tc
i
=T and verifying that

the resulting �� < ci. If the solution �� � ci, then it must sat-

isfy
RX

i

� ðx� �ÞfXiðxÞdx ¼ �tci=T , and the solution may be

obtained using �� ¼
R X

i

��
xfXi ðxÞdx

P ðXi � ��Þ þ tc
i
=T

and verifying4 that the

resulting �� � ci.

Remark 3.2. The quantity ci defined above is the expected
reward of SWITCH, while �� is the threshold for making
a decision between the set {STOP, SWITCH} and STAY.
The optimal policy given in the above theorem is illus-
trated in Fig. 2, which can be viewed as a sequence of
two YES/NO questions used in decision making involv-
ing two thresholds. (1) If �� < ci, then the optimal deci-
sion is either STOP or SWITCH depending on whether
x > ci. If the current condition is very good (x > ci) then
the decision is STOP; otherwise SWITCH. In this case the
reward from switching is sufficiently good that we will
never consider STAY. (2) If �� > ci, then the optimal deci-
sion is either STOP or STAY depending on whether

2. The word “continuation” in this context refers to continuing on
the same channel, whereas “stopping” (or the term (meta) stopping
used earlier) refers to no longer staying on the same channel either by a
transmission or by switching away.

3. The interpretation of these two conditions is that even if we know
the future the maximum expected reward, or the reward approaching
the supremum, is finite.

4. This function is a fixed point equation which could be solved by
iterative methods as in [22].

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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x > ��. In this case the reward from switching is inferior
so that SWITCH is not an option. This policy will be
referred to as a nested stopping policy.

3.2 Properties of the Nested Stopping Policy

We next investigate a number of properties of the multiuser
multi-channel system as a result of the above nested stop-
ping policy. We start by examining its effect on the traffic
load vector G. Unless otherwise noted, all proofs can be
found in the appendix.

Lemma 3.3 (Monotonicity of the value function). Consider
two traffic load vectors G and G

0
where Gi � G

0
i; 8i 2 V.

Denote the corresponding sets of value functions by V and V
0
,

respectively. Then we have EfVig � EfV 0
i g; 8i 2 V.

This lemma conveys the intuition that when the load
increases, competition increases leading to longer delays.
Thus the expected throughput decreases in general. We
next establish the stability of the system under the nested
stopping policy, starting with an assumption.

Assumption 1. No channel is dominant, i.e., there is no single
channel that will attract all arrivals under the nested stopping
policy.

This assumption excludes the extreme case where a sin-
gle channel is of far better quality (e.g., very high data rate)
that even considering the cost in competition it is beneficial
to always switch to this channel, regardless of the condi-
tions observed in the other channels.

Lemma 3.4 (Ergodicity of the arrival process). The arrival
processes are ergodic under the nested stopping policy and
Assumption 1.

Lemma 3.5 (Load balance). We have @Gi
@G � 0; 8i 2 V under the

nested stopping policy.
In other words, if the total traffic load increases, the

input/load to each channel is non-decreasing. This property
combined with the monotonicity (Lemma 3.3) leads to the
following stronger monotonicity result on the value func-
tion; the proof is trivial and thus omitted.

Lemma 3.6 (Strong monotonicity). EfVig; i 2 V, are all non-
increasing functions of G.

We next analyze the impact of transmission time T and
address the question whether by reserving more time for a
single transmission users gain in average throughput.

Lemma 3.7 (Impact of T ). EfVig; i 2 V, are all non-decreasing
functions of T .

This result reflects the intuition that once a user finds a
good transmission condition, it is beneficial for it to be able

to use it for a longer period of time. However, practically T
cannot be made too large due to the channel coherence
time: the channel condition will likely change over a large
period T .

3.3 Discussion

The performance a user obtains as a result of the preceding
decision process depends on the accuracy of its measure-
ment over the level of contention in the system, i.e., tcj and
tsj . Fortunately, the performance loss due to errors in these

measurements can be bounded as shown below. For sim-
plicity we have assumed that the errors across all measure-
ments are uniformly given by a small quantity D; if the
errors are different for different measurements, D may be
taken as the maximummeasurement error.

Theorem 3.8. For a given user, the change of its value function at
the ith stage (1 � i � N) as a result of a small (D) change to
tc; ts is bounded as follows:

jViðtc þ D; ts þ DÞ � Viðtc; tsÞj

� jDj �
XN
j¼i

X
o2fs;cg

T�
T þ toj

�2 � Cj; (17)

where Cj is a positive constant.

Our model so far has assumed that each user can only
access a single channel at a time. If parallel transmissions
are enabled (e.g., as in an OFDM system), a single user can
access multiple channels simultaneously. Under the most
relaxed setting, we can model each user as having k inde-
pendent antennas with no inter-channel interference. This
then allows us to model the decision process of each user as

k (or any number k
0 � k depending on how many packets it

has to transmit) separate decision processes, each being the
same as that presented earlier in this section. In other
words, without restriction on the use of multiple interfaces,
a single user is now equivalent to k different users and the
subsequent analysis will remain the same.

If the use of these antennas are more restrictive, e.g., that
a user may only use these interfaces concurrently, and that
in doing so must access contiguous blocks of channels, or
that there is throughput loss due to simultaneous channel
access, then the resulting decision process becomes quite
different and combinatorial. Specifically, due to this cou-
pling, the resulting access decision is over “bundles” of
channels rather than individual channels. A user may have
up to N

k

� �
choices of such channel bundles. If the user can

sense either sequentially or simultaneously the channel con-
dition in each channel within a bundle, it can then estimate
the transmission reward from using this bundle. Conceptu-
ally, a similar decision process can be formulated where the
user try to decide whether to switch to a different bundle or
use the current bundle for transmission, or wait. A practical
difficulty, however, lies in the random access nature of a
channel: if the user needs to gain access in each channel in
order to use the bundle then this could entail very signifi-
cant amount of delay (thus the cost of delaying or switch-
ing), unless the traffic is extremely light. This remains a
very relevant and interesting problem of future research.

Fig. 2. Illustration of the decision process.

LIU AND LIU: TO STAY OR TO SWITCH: MULTIUSER MULTI-CHANNEL DYNAMIC ACCESS 7
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4 OPTIMAL ACCESS POLICY UNDER

THE MARKOVIAN CHANNEL MODEL

This section presents a parallel effort to the previous section,
under the assumption that the channel conditions evolve
over time as a Markov chain.

4.1 Uniqueness of the Optimal Strategy

Denote the state space of channel i by Si, and the single-step
(over one unit of time) state transition probability by
Piðy jxÞ, x; y 2 Si. The k-step transition probability is

denoted by Pk
i ðy jxÞ. The value function representing the

maximum average throughput given the current condition
at stage i is given by the following:

ViðxÞ ¼ max X̂iðxÞ; T

tci þ T
�
X
y2Si

Ptc
i
i ðy jxÞ � ViðyÞ

( )
; (18)

where X̂iðxÞ follows the same definition as in the IID case.
We make the following approximation. When 1=T is suffi-

ciently small,5 we have T
tc
i
þ T ¼ 1

1 þ tc
i
=T 	 ð 1

1 þ 1=TÞ
tc
i . Denote

b ¼ 1
1þ1=T and we arrive at the following approximated

value function

ViðxÞ ¼ max X̂iðxÞ;btc
i �

X
y2Si

Ptc
i
i ðy jxÞ � ViðyÞ

( )
: (19)

Denote by U ¼ fS;Cg the set of two actions, stopping and
continuation, where the stopping action S bundles STOP
and SWITCH into a single action, i.e., S ¼ fSTOP;

SWITCHg due to the definition of X̂iðxÞ and as in the IID
case, and the continuation action C ¼ fSTAYg. Then the
above can be re-written as

ViðxÞ ¼ max
u2U

rðu; xÞ þ bt
c
i �

X
y2Si

Pu;tc
i

i ðy jxÞ � ViðyÞ
( )

; (20)

where rðS; xÞ ¼ X̂iðxÞ, rðC; xÞ ¼ 0, PS;tc
i

i ðy jxÞ ¼ 0, and PC;tc
i

i

ðy jxÞ ¼ Ptc
i
i ðy jxÞ.

Theorem 4.1. The set of Equation (19) or equivalently (20) have a
unique solution.
Our proof is based on the contraction mapping theorem

[11] and the next lemma.

Lemma 4.2. Let F be the class of all functions v : f1; 2; . . . ;
Sg ! R. Define norm jjvjj :¼

P
x2S jvðxÞj and a mapping

T : F ! F by

ðT vÞðxÞ :¼ max
u2U

rðu; xÞ þ h �
X
y2S

vðyÞ � Puðy jxÞ
( )

;

0 < h < 1; then T is a contraction.
The next result also immediately follows; the proof is

omitted for brevity.

Corollary 4.3 (Threshold policy). The optimal stopping rule
reduces to a threshold policy.

Remark 4.4. As may be expected, this threshold policy
works in a way very similar to the IID case (only the
numerical calculation differs): at stage/channel i, there is
a SWITCH reward ci (expected throughput by switching
away from i) and �� by staying on the same channel. The
optimal decision is then based on the relationship
between �� and ci.

4.2 Properties of the Nested Stopping Policy

We can similarly obtain a number of properties for the mul-
tiuser multi-channel system as a result of the nested stop-
ping policy under the Markovian model.

Theorem 4.5 (Monotonicity). EfVig; i 2 V are all non-
increasing functions of G.

Following the above result we can derive similar proper-
ties of the nested stopping policy in the Markovian case as
in the IID case, including ergodicity of the arrival processes,
load balance and the non-increasing value functions in T .
The proof of these are omitted for brevity and due to their
similarity to those in the IID case.

5 NUMERICAL RESULTS

5.1 The IID Channel Model

We first consider a scenario of five independent channels
with their channel condition (taken to be the instantaneous
transmission rate measured in bytes per time unit) exponen-
tially distributed over a finite range, with average rates given
by f1=0:4; 1=0:6; 1=0:5; 1=0:3; 1=0:2g. A single transmission
period is set to T ¼ 40 time units. The level of contention/
congestion measured by tci and tsi (measured in time units) as
a function of load G (measured in packet per unit time) is
illustrated in Table 1 for channel 1. These quantities are
rounded off to the nearest integers when used in computing
the optimal policy.We set packet length to be 1,024 Bytes.

In Fig. 3 we compare the nested stopping policy with the
following three schemes, by measuring the average
throughput across all channels.

1) A standard random access policy in which a user
randomly selects a channel to use, followed by com-
peting for channel access using IEEE 802.11 type of
random access scheme.

2) A stopping rule based random access policy over
temporal diversity (denoted “Temporal Diversity”
in the figure) introduced in [19], [22]. In this case
each user is randomly assigned a channel, and fol-
lows a stopping rule on that channel (between using
the channel now or at a later time).

5. This is possible since T is an integer multiple of an arbitrary time
unit, which can be made very small. The only restriction is that we
have taken a single time unit to be the time it takes to transmit a control
packet, so this assumption simply implies that a data transmission is
much longer than a control transmission, which is typically true.

TABLE 1
Contention Levels

Load 0.1 0.2 0.3 0.4 0.5

tci 10.8 13.2 14.4 15.2 15.8
tsi 13.1 15.8 17.3 18.4 19.4

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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spectral diversity (denoted “Spectral Diversity” in
the figure) introduced in [10], [18] where a user
sequentially sense conditions over multiple channels
to decide which channel to use for transmission.6

Fig. 3 shows that our nested stopping policy clearly outper-
forms the others. The performance gain is more prominent
when the load is light. This is to be expected because when
there is light congestion, waiting for better condition or
switching to another channel both incur low overhead;
when there is heavy congestion a user becomes more and
more reluctant to wait or switch channels thereby underutil-
izing both types of diversity.

Fig. 4 shows the dampening effect of increased load G on
each channel separately. Fig. 5a shows that the throughput
increases in the data transmission time T as we have charac-
terized, but this increase becomes slower since increasing T
also increases the cost in channel releasing and switching.
Fig. 5b shows that the throughput also increases in the num-
ber of channels (the simulation is done by adding channels
with same statistics as given for the initial five), as the con-
tention in each channel reduces.

Next in Table 2 we show the optimal decisions table for
the optimal actions conditioned on continuation (STAY or
SWITCH) for each channel (in this specific experiment we
consider a user starts from channel 1). As can be seen,
channels 2 and 3 are of low quality so the general decision
is to switch away rather than waiting on the same channel

if the decision is not to transmit immediately. For channel
4, we see that the tendency to stay increases when the load
is high due to the higher cost in switching than staying.
The decision to stay in channel 1 is more interesting: even
though better average throughput may be obtained in
channels 4 and 5, the cost in doing so is considerable as it
has to go through channels 2 and 3. By contrast, there is a
SWITCH decision in channel 4 even though channel 4 is
on average a better channel than channel 1.

We also consider amore practical AWGNwireless channel
model considering both propagation loss and shadowing
effects. The transmission rates are given by the Shannon
capacity formula for AWGN channels: R ¼ logð1þ r jhj2Þ
nats/s/Hz, where h denotes the random channel gain with a
complex Gaussian distribution. Moreover, the cdf of trans-

mission rate is given by FRðrÞ ¼ 1� expð� expðrÞ�1
r

Þ; r � 0.

Consider a scenario with five channels with average SNR r

given by Table 3. Fig. 6 shows the sameperformance compari-
son as before. While the nested stopping rule continues to

Fig. 4. Transmission rate w.r.t.G.

Fig. 5. Performance under the IID channel model.

Fig. 3. Performance comparison: Exp.

TABLE 2
Decision of IID Channels with Different Arrival Rate

Load Ch 1 Ch 2 Ch 3 Ch 4 Ch 5

0.05 STAY SWITCH SWITCH SWITCH STAY
0.1 STAY SWITCH SWITCH STAY STAY
0.3 STAY SWITCH SWITCH STAY STAY
0.5 STAY SWITCH SWITCH STAY STAY

6. There are differences between these two references: [18] models
sensing error and derives more structural properties, but the main idea
is the same.

LIU AND LIU: TO STAY OR TO SWITCH: MULTIUSER MULTI-CHANNEL DYNAMIC ACCESS 9
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foutperform the other schemes, an interesting observation here
is that the scheme based solely on temporal diversity also out-
performs using only spectral diversity and it has very similar
performance as the nested policy. This shows that due to the
dynamic nature of AWGN channels, most of the gain is
derived from exploiting temporal diversity rather than
spectral diversity.

5.2 The Markovian Channel Model

Wenow simulate the nested stopping policy under aMarkov-
ian channel model. We model all five channels’ state (again
taken to be the instantaneous transmission rate in bytes per
time unit) change as a birth-death chain with five states and
the associated transition probabilities given as follows:

Pkðminfiþ 1; 5g j iÞ ¼ 0:8;

Pkðmaxfi� 1; 1g j iÞ ¼ 0:2;

1 � i � 5; 1 � k � 5:

(21)

For each channel the rewards increase in state indices, and
are given in Table 4. Transmission time is again set to be
T ¼ 40 time units.

The same performance comparison is shown in Fig. 7.
Taking this result together with previous results under
exponential and AWGN channel models, we observe some-
thing quite revealing. In Fig. 7 we see that the performance
of the temporal and spectral schemes are reversed: exploit-
ing spectral diversity results in much higher gain than only
exploiting temporal diversity. This is because this set of

Markovian channels are relatively slow-varying in time
compared to the previous models, thus staying on the same
channel waiting for better condition becomes less beneficial,
while hopping through channels seeking better conditions
is more effective. These results show that, compared to
exploiting only one type of diversity, our policy is very
robust against different dynamic properties of the channels
and can extract the largest amount of performance gain.

The decision table in this case is shown in Table 5. Sim-
ilar observations are made here: when the channel condi-
tion is good enough, the user would choose to transmit
immediately (STOP); the SWITCH decision is associated
with poor conditions and when a user hopes to get much
better conditions in the next channel; the STAY decision
is made on a reasonably good channel and when there is
limited prospect of getting better condition in the next
channel.

5.3 Channel Sensing Order and “No-Recall”
Approximation

We next examine the effect of selecting different sequence of
channels to use. As discussed earlier, with multiple users
(m � 2) it is very challenging to either jointly determine
optimal sensing orders for all users involved in a coopera-
tive setting, or determine the equilibrium sensing orders
selected by selfish individuals in a non-cooperative setting.
For this reason in our analysis we have assumed that each
user follows a fixed (which can be randomly chosen) order.
We now compare this choice where each user randomly
picks a sequence with an optimal sensing order where users
sense channels ordered in an derived optimal sensing order
[5] and make decisions on each channel according to the
threshold decision derived in our paper;7 as a result each

TABLE 3
Parameter Table

Channels Ch1 Ch 2 Ch 3 Ch 4 Ch 5

r 10 25 20 30 10

Fig. 6. Performance comparison: AWGN.

TABLE 4
Reward Table for Markovian Channels with Different States

States Ch 1 Ch 2 Ch 3 Ch 4 Chl 5

1 10 15 5 10 5
2 20 20 10 20 10
3 30 45 15 30 15
4 40 60 20 40 20
5 50 75 25 50 25

Fig. 7. Performance comparison: Markovian model.

TABLE 5
Decision Table for Markovian Channels with Different States

States Ch1 Ch 2 Ch 3 Ch 4 Ch 5

1 SWITCH STAY SWITCH STAY STAY
2 SWITCH STAY SWITCH STOP STAY
3 SWITCH STOP STOP STOP STOP
4 STOP STOP STOP STOP STOP
5 STOP STOP STOP STOP STOP

7. For certain channel quality distributions, e.g., exponential distri-
bution, the optimal sensing order is equivalent to a greedy sensing
order.
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user follows/cycles through the same sequence but the
starting position for each user is randomized to avoid syn-
chronization. This comparison is shown in Fig. 8 for the IID
channel case; it is clear that it is far better for each user to
sense in a different order especially when the load is high.
This comparison also highlights some of the challenges
mentioned earlier in employing an optimal channel sensing
order in a multi-user setting. Note that we have simulated a
user-homogeneous environment where all users perceive
identical channel conditions. It is evident that in this case
having all users follow the same optimal sensing order
derived for a single user (assuming it is the only user pres-
ent) is not a good strategy, while determining jointly opti-
mal sensing orders for all users is analytically intractable
and computationally prohibitive. In this sense our policy
simply assumes randomization as a compromise to enable
the multi-user study performed in this paper.

We end this section by investigating the effect of the
“no-recall” approximation introduced in Section 2 and
adopted in our analysis, by comparing it with the exact
optimal solution. We show this in the IID case in Fig. 9;
we see that this approximation has very little effect on
the system performance.

6 CONCLUSION

In this paper we considered the collective switching of multi-
ple users over multiple channels. In addition, we considered
finite arrivals. Under such a scenario, the users’ ability to
opportunistically exploit temporal diversity (the temporal
variation in channel quality over a single channel) and spec-
tral diversity (quality variation across multiple channels at a
given time) is greatly affected by the level of congestion in
the system. We investigated the optimal decision process
under both an IID and a Markovian channel models, and
evaluate the extent to which congestion affects potential
gains from opportunistic dynamic channel switching.

APPENDIX A

PROOF OF LEMMA 3.3: MONOTONICITY OF VALUE

FUNCTION IN G

We prove this by induction. When i ¼ N , i.e., the last stage,

we have ��
Nt

c
N ¼

RX
N

��
N
ðx� ��

NÞfXN ðxÞdx, where t
c
i ¼ tci=T . As

t
c
N is a non-decreasing function in GN , it is also non-decreas-

ing in G. Thus with the increase in t
c
N , the solution ��

N

cannot be increasing, proving that ��
N is a non-increasing

function of G. Since our value functions (EfmaxðXi; ��
i Þg)

are non-decreasing functions of the thresholds ��s, we have
now shown that they are non-increasing in G. Next assume
the non-decreasing property holds for i ¼ nþ 1; . . . ; N � 1.
Consider i ¼ n. We prove this in the cases ��

n < cn and

��
n � cn, respectively. For the case ��

n � cn, we have

��
nt

c
N ¼

RX
n

��n
ðx� ��

nÞfXnðxÞdx. Using similar argument as in

the case i ¼ N we know ��
n is non-increasing in G. For the

case ��
n < cn, ��

n ¼
RX

n

cn
xfXn ðxÞdxþcn�P ðXn � cnÞ

1þt
c
n

, and we get

EfVng ¼
RX

n

cn
xfXnðxÞdxþ cn � P ðXn � cnÞ. Taking the deriv-

ative of EfVngwith respect toGwe get

@EfVng
@G

¼
�
@EðXnÞ
@cn

�
@
R cn
0 xfXnðxÞdx

@cn
þ @cnP ðXn � cnÞ

cn

	�
� @cn
@G

@cn
@G

¼
@EfVnþ1g

@G

�
T þ tsnþ1

�
� EfVnþ1g

@ts
nþ1

@Gnþ1�
T þ tsnþ1

�2 : (22)

By induction hypothesis we know
@EfVnþ1g

@G � 0 and
@ts
nþ1

@Gnþ1
� 0.

Therefore we conclude @cn
@Gn

� 0 @EfVng
@G � 0, completing the

induction step and the proof. tu

APPENDIX B
PROOF OF LEMMA 3.4: ERGODICITY OF G

By Assumption 1 there exists a threshold ~Gi such that

EfViðGiÞg < EfV�iðG�iÞg, 8i 2 V, for all Gi � ~Gi, where
G�i denotes the aggregated load on all other channel except
channel i, and EfV�iðG�iÞg is defined as the average
reward/rate-of-return of all other channels except i. In this
case, the arrivals to all other channels except i will not

switch to channel i, i.e., under loads Gi > ~Gi the probability
of load Gi drifting higher is 0 almost surely. Define any
increasing, unbounded Lyapunov function LðGiÞ on ½0; G�
(e.g., LðGiÞ ¼ 1

G�Gi
), we have E ~Gi

½Lð ~GiÞ jGi� � LðGiÞ. By the

Foster-Lyapunov criteria [15] we establish the ergodicity of
the system load vector. tu

Fig. 9. Performance of approximation model.Fig. 8. Channel sensing order comparison.
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APPENDIX C
PROOF OF LEMMA 3.5: LOAD BALANCE

We prove this by induction on N . When N ¼ 1, i.e., the
system degenerates to a single channel case, the claim
holds obviously. Assume the claim holds for N ¼ 2; . . . ;
n� 1, and now consider the case N ¼ n. Suppose we
increase the total load from G to G0, and assume that
without loss of generality the load to channel 1 decreases,

i.e., G
0
1 < G1. By the induction hypothesis, the loads on all

other channels have increased, i.e., G
0
i > Gi, 8i 6¼ 1. As a

result, their corresponding value functions decrease by

the previous lemma, i.e., EfV 0
i g < EfVig, 8i 6¼ 1. This

means that the amount switching out of channel 1 must
be non-increasing, due to the fact that the threshold of
switching c1 is a non-increasing function of G, while the
amount switching into channel 1 must be non-decreasing,
leading to an overall non-decreasing load on channel 1,
which is a contradiction. tu

APPENDIX D
PROOF OF LEMMA 3.7: MONOTONICITY OF VALUE

FUNCTIONS IN T

When i ¼ N , i.e., the last stage, we have ��
Nt

c
N ¼

RX
N

��
N
ðx �

��
NÞfXN ðxÞdx. Following a similar argument as in the mono-

tonicity in G, with the decrease in t
c
N , the solution ��

N cannot

be decreasing, proving that ��
N is a non-decreasing function

of T . Assume now the claim holds for i ¼ nþ 1; . . . ; N � 1.
When i ¼ n, consider two cases. For the case ��

n � cn, we

have ��
nt

c
n ¼

RX
n

��n
ðx� ��

nÞfXnðxÞdx. We know ��
n is a non-

decreasing function of T . For the case ��
n < cn, ��

n ¼R X
n

cn
xfXn ðxÞdxþcn�P ðXn�cnÞ

1þt
c
n

. We have EfVng ¼
RX

n

cn
xfXnðxÞdxþ

cn � P ðXn � cnÞ and taking the derivative of EfVng w.r.t. T
we have

@EfVng
@T

¼
�
@EðXnÞ
@cn

�
@
R cn
0 xfXnðxÞdx

@cn

þ @cnP ðXn � cnÞ
cn

	�
� @cn
@T

(23)

@cn
@T

¼
@ T
Tþtc

@T
EfVnþ1g þ

T

T þ tc

@EfVnþ1g
@T

; (24)

and moreover we see

@ T
Tþtc

@T
¼

T þ tc � T
�
1þ @tc

@T

�
ðT þ tcÞ2

; (25)

and combine with the fact
@EfVnþ1g

@T � 0 (induction hypothe-

sis) and
@ts
nþ1
@T � 0, we conclude @cn

@T > 0 @EfVng
@T > 0, completing

the induction step and the proof. tu

APPENDIX E
PROOF OF LEMMA 4.2: CONTRACTION

For v; z 2 F , we have

ðT vÞðxÞ � ðT zÞðxÞ

¼ max
u2U

rðu; xÞ þ h �
X
y2S

vðyÞ � Puðy jxÞ
( )

�max
u2U

rðu; xÞ þ h �
X
y2S

zðyÞ � Puðy jxÞ
( )

: (26)

Let m ¼ argmaxu2Ufrðu; xÞ þ h
P

y2S vðyÞ � Puðy jxÞg, then

ðT vÞðxÞ � ðT zÞðxÞ ¼ rðm; xÞ þ h �
X
y2S

vðyÞ � Pmðy jxÞ
( )

�max
u2U

rðu; xÞ þ h �
X
y2S

zðyÞ � Puðy jxÞ
( )

� rðm; xÞ þ h �
X
y2S

vðyÞ � Pmðy jxÞ
( )

� rðm; xÞ þ h �
X
y2S

zðyÞ � Pmðy jxÞ
( )

¼ h
X
y2S

½vðyÞ � zðyÞ� � Pmðy jxÞ

� hmax
y2S

j vðyÞ � zðyÞj ¼ hjjv� zjj:

(27)

Similarly by reversing the order of z; v we have
ðT zÞðxÞ � ðT vÞðxÞ � hjjv� zjj. Therefore we reach at jjT v�
T zjj � hjjv� zjj, i.e., T is a contraction. tu

APPENDIX F
PROOF OF THEOREM 4.5 : MONOTONICITY OF THE

VALUE FUNCTION IN G

As proved in [11], ViðxÞ; x 2 S; i 2 V can be interpreted as
follows:

ViðxÞ ¼ max
u

E
X1
k¼0

bk�tc
i � riðuk; xkÞ: (28)

Consider the expected maximum throughput at the last
stage, i.e., VNðxÞ ¼ maxuE

P1
k¼0 b

k�tc
N � rNðuk; xkÞ: Consider a

G
0
N � GN which gives us tc

0
N � tcN . Consider an arbitrary

term in the above sum bk�tc0
N , and there exists a k0 such that

k0 � tcN � tc
0
N � ðk0 þ 1Þ � tcN . Together with the fact that

bt �
P

y Ptðy jxÞ � y is convex w.r.t. twe know

max

�
bðk

0þ1Þ�tc
N �

X
y

Pðk0þ1Þ�tc
N ðy jxÞ � y;

bk0 �tc
N �

X
y

Pk0 �tc
N ðy jxÞ � y

�

� bk�tc0
N �

X
y

Pk�tc0
N ðy jxÞ � y

(29)
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V
0
NðxÞ ¼ max

u
E
X1
k¼0

ðbk�tc0
N Þk � rNðuk; xkÞ

� max
u

E
X1
k¼0

bk�tc
N � rNðuk; xkÞ ¼ VNðxÞ: (30)

Therefore as EfVNg ¼
P

x px � VNðxÞ, and we know EfVNg
is a non-increasing function ofG. This establishes the induc-
tion basis. Now assume that the theorem holds for
i ¼ nþ 1; . . . ; N � 1. Consider the case i ¼ n. Assume

G
0
> G. As discussed in the IID section we have r

0
nðu; xÞ �

rnðu; xÞ. (This can be proved by taking the derivative of ci

with respect to G and by induction hypothesis
@EfVnþ1g

@G � 0).

Therefore again similarly as argued above we have

V
0
nðxÞ ¼ max

u
E
X1
k¼0

bk�tc0n � r0nðuk; xkÞ

� max
u

E
X1
k¼0

bk�tcn � r0nðuk; xkÞ

� max
u

E
X1
k¼0

bk�tcn � rnðuk; xkÞ ¼ VnðxÞ (31)

which completes the induction step. tu

APPENDIX G
BACKWARD CALCULATION OF THE

TWO-DIMENSIONAL NESTED STOPPING POLICY

We describe the process of calculating the threshold for
each channel. Note at the last stage of the decision process
there is no more channel to switch to; therefore the
dynamic program degenerates to a standard rate-of-return
problem. The standard optimal stopping rule thus applies
and the details are omitted. By going backward, at a sub-
sequent stage i < N , the quantity EfViþ1ðXiþ1Þg is avail-

able, and we have ViðxÞ ¼ maxfX̂iðxÞ; T
tc
i
þT � EfViðXiÞgg.

We calculate ci using ci ¼ T
Tþts

iþ1
EfViþ1ðXiþ1Þg, and obtainR X

i

ci
xfXi ðxÞdxþci�P ðXi�ciÞ

1þtc
i
=T . If the latter is less than ci, we are

done and take this as the threshold ��. Otherwise, we pro-

ceed to a fixed-point equation � ¼
R X

i

�
xfXi ðxÞdx

P ðXi��Þþtc
i
=T

which can

be solved iteratively to obtain the threshold.

APPENDIX H
PROOF OF THEOREM 3.8 : SENSITIVITY

OF THE VALUE FUNCTION IN ts; tc

When D is small, using Taylor approximation (fðDÞ 	
fð0Þ þ f 0ð0Þ � D) we have

jViðtc þ D; ts þ DÞ � Viðtc; tsÞj �
@ViðDÞ
@D

����
����
D¼0

� jDj: (32)

We prove the result inductively. Recall at stage N we have
the following fixed point equation for characterizing EfVNg

EfVNgtcN ¼
Z X

N

EfVNg
ðx� EfVNgÞfXN ðxÞdx; (33)

where t
c
i ¼ tci=T . Taking the derivative on both sides w.r.t. D

we have

@EfVNðDÞg
@D

� t
c
N þ D

T
þEfVNðDÞg

T
�
@
�
tcN þ D

�
@D

¼ �ð1� F ðEfVNðDÞgÞ �
@EfVNðDÞg

@D
; (34)

where F is the cdf ofXN . Rearranging terms we have

@EfVNðDÞg
@D

����
����
D¼0

¼
EfVN ðDÞg

T
tc
N
þD

T þ 1� F ðEfVNðDÞg

������
������
D¼0

¼ EfVNg
tcN þ T ð1� F ðEfVNgÞ

����
����

¼ EfVNg
1� F ðEfVNgÞ

� 1

tcN=ð1� F ðEfVNgÞ þ T

����
����

� EfVNg
1� F ðEfVNgÞ

����
���� � 1

tcN þ T

����
���� � CN � 1

T þ tcN
;

(35)

with CN being constant, where the last inequality uses the
fact that EfVNg is bounded by a constant.

Therefore by the dynamic programming equation Eqn.
(4) (the second term) we have,

@VNðDÞ
@D

����
����
D¼0

� C
0
N � T�

T þ tcN
�2 þ T

T þ tcN
� CN � 1

T þ tcN

� ĈN � T�
T þ tcN

�2
(36)

with C
0
N; ĈN being constants. The first term comes from

@ T
Tþtc

N
þD

@D and the second comes from Eq. (35). This establishes

the induction basis. Suppose the result holds for
iþ 1; . . . ; N , consider stage i. If the decision is STAY on at
same stage/channel i, then using Eqn. (4) we see this case is
similar to stage N , and

@ViðDÞ
@D

����
����
D¼0

� Ĉi �
T�

T þ tci
�2 : (37)

When the decision is SWITCH, we have (the third term in
Eqn. (4))

@ViðDÞ
@D

����
����
D¼0

�
@ T
Tþts

iþ1
þDEfV iþ1ðDÞg

@D
(38)
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By the induction hypothesis we have

@ T
Tþts

iþ1
þDEfV iþ1ðDÞg

@D

�����
�����
D¼0

¼
@ T
Tþts

iþ1
þD

@D
EfV iþ1ðDÞg

�����
�����
D¼0

þ @EfV iþ1ðDÞg
@D

T

T þ tsiþ1 þ D

����
����
D¼0

� C
0
i �

T�
T þ tsi

�2 þ XN
j¼iþ1

X
o2fs;cg

T�
T þ tojÞ

2
� Cj:

(39)

Combining Eqs. (37) and (39) completes the induction
step. tu
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