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CapEst: A Measurement-based Approach to
Estimating Link Capacity in Wireless Networks
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Abstract—Estimating link capacity in a wireless network is a complex task because the available capacity at a link is a function of
not only the current arrival rate at that link, but also of the arrival rate at links which interfere with that link as well as of the nature
of interference between these links. Models which accurately characterize this dependence are either too computationally complex to
be useful or lack accuracy. Further, they have a high implementation overhead and make restrictive assumptions, which makes them
inapplicable to real networks.
In this paper, we propose CapEst, a general, simple yet accurate, measurement-based approach to estimating link capacity in a
wireless network. To be computationally light, CapEst allows inaccuracy in estimation; however, using measurements, it can correct
this inaccuracy in an iterative fashion and converge to the correct estimate. Our evaluation shows that CapEst always converged to
within 5% of the correct value in less than 18 iterations. CapEst is model-independent; hence, it is applicable to any MAC/PHY layer
and works with auto-rate adaptation. Moreover, it has a low implementation overhead, can be used with any application which requires
an estimate of residual capacity on a wireless link and can be implemented completely at the network layer without any support from
the underlying chipset.

Index Terms—Capacity Estimation, Wireless Mesh Networks, Rate Control.
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1 INTRODUCTION

The capacity of a wireless link is defined to be the
maximum sustainable data arrival rate at that link.
Estimating the residual capacity of a wireless link is
an important problem because knowledge of available
capacity is needed by several different tools and ap-
plications, including predicting safe sending rates of
various flows based on policy and path capacity [17],
online optimization of wireless mesh networks using
centralized rate control [24], distributed rate control
mechanisms which provide explicit and precise rate
feedback to sources [20], admission control, interference-
aware routing [32], network management tools to predict
the impact of configuration changes [17] etc.
However, estimating residual link capacity in a wire-

less network, especially a multi-hop network, is a hard
problem because the available capacity is a function
of not only the current arrival rate at the link under
consideration, but also of the arrival rates at links which
interfere with that link and the underlying topology.
Models which accurately represent this dependence are
very complex and computationally heavy and, as input,
require the complete topology information including
which pair of links interfere with each other, the capture
and deferral probabilities between each pair of links,
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the loss probability at each link, etc [6], [13], [17], [19],
[32]. Simpler models make simplifying assumptions [5],
[15], [16], [23], [24] which diminish their accuracy in
real networks. Moreover, model-based capacity estima-
tion techniques [17], [24] work only for the specific
MAC/PHY layer for which they were designed and
extending them to a new MAC/PHY layer requires
building a new model from scratch. Finally, none of
these methods work with auto-rate adaptation at the
MAC layer, which makes them inapplicable to any real
network.
In this paper, we propose CapEst, a general, sim-

ple yet accurate and model-independent, measurement-
based approach to estimating link capacity in a wireless
network. CapEst is an iterative mechanism. During each
iteration, each link maintains an estimate of the expected
service time per packet on that link, and uses this
estimate to predict the residual capacity on that link. This
residual capacity estimate may be inaccurate. However,
CapEst will progressively improve its estimate with
each iteration, and eventually converge to the correct
capacity value. Our evaluation of CapEst in Sections 4
and 5 shows that, first, CapEst converges, and secondly,
CapEst converges to within 5% the correct estimate in
less than 18 iterations. Note that one iteration involves
the exchange of roughly 200 packets on each link. (See
Section 5 for more details.)
Based on the residual capacity estimate, CapEst pre-

dicts the constraints imposed by the network on the rate
changes at other links. CapEst can be used with any
application because the application can use it to predict
the residual capacity estimate at each link, and behave
accordingly. By a similar argument, CapEst can be used
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by any network operation to properly allocate resources.
As a show-case, in this paper, we use CapEst for online
optimization of wireless mesh networks using central-
ized rate control. Later, Section 6 briefly illustrates how
CapEst is used with two other applications: distributed
rate allocation and interference-aware routing.
The properties which makes CapEst unique, general

and useful in many scenarios are as follows. (i) It is
simple and requires no complex computations, and yet
yields accurate estimates. (ii) It is model-independent,
hence, can be applied to any MAC/PHY layer. (iii) The
only topology information it requires is which node
interferes with whom, which can be easily collected
locally with low overhead [24]. (iv) It works with auto-
rate adaptation. (v) It can be completely implemented at
the network layer and requires no additional support
from the chipset. (vi) CapEst can be used with any
application which requires an estimate of wireless link
capacity, and on any wireless network, whether single-
hop or multi-hop.

2 RELATED WORK

Model-based Capacity Estimation: Several
researchers have proposed models for IEEE 802.11
capacity/throughput estimation in multi-hop
networks [5], [6], [13], [15], [16], [17], [18], [19],
[23], [24], [29], [32]. Model-based capacity estimation
suffers from numerous disadvantages. They are tied to
the model being used, hence, cannot be extended easily
to other scenarios, like a different MAC/PHY layer.
Moreover, incorporating auto-rate adaptation would
make the models prohibitively complicated, so these
techniques do not work with this MAC feature. Finally,
and most importantly, the models used tend to be
either very complex and require complete topological
information [6], [13], [17], [19], [32], or make simplifying
assumptions on traffic [18], [23], topology [15], [16] or
the MAC layer [5], [24], [29] which significantly reduces
their accuracy in a real network. Finally, there exists
a body of work which studies throughput prediction
in wireless networks with optimal scheduling [11].
If these are applied directly to predicting rates with
any other MAC protocol, it will lead to considerably
overestimating capacity.
Congestion/Rate Control: Numerous congestion control
approaches have been proposed to regulate rates at the
transport layer, for example, see [1], [20], [27], [28],
[30], [31] and references therein. These approaches either
use message exchanges between interfering nodes or
use back-pressure. All these approaches improve fair-
ness/throughput; however, they do not allow the spec-
ification of a well-defined throughput fairness objective
(like max-min or proportional fairness). Moreover, most
of them require changes to either IEEE 802.11 MAC or
TCP. Our work is complementary to these works. We
focus on how to accurately estimate capacity irrespective
of the MAC or the transport layer. This capacity estimate,

amongst many applications, can also be used to build a
rate control protocol which allows the intermediate rout-
ing nodes to provide explicit and precise rate feedback
to source nodes (like XCP or RCP in wired networks). It
can also be used to set long-term rates while retaining
TCP, similar to the model-based capacity estimation
techniques of [17] and [24], to get better end-to-end
throughputs.
Asymptotic Capacity Bounds: An orthogonal body of
work studies asymptotic capacity bounds in multi-hop
networks [7], [8], [10]. While these works lend useful
insight into the performance of wireless networks in the
limit, their models are abstract by necessity and cannot
be used to estimate capacity in any specific real network.

3 CAPEST DESCRIPTION

CapEst is an iterative mechanism. During each iteration,
each link measures the expected service time per packet
on that link, and uses this measurement to estimate the
residual capacity on that link. The application, which for
this section is centralized rate allocation to get max-min
fairness, uses the estimated residual capacity to allocate
flow-rates. The estimate may be inaccurate; however,
it will progressively improve with each iteration, and
eventually converge to the correct value. This section
describes each component of CapEst in detail and the
max-min fair centralized rate allocator.
We first define our notations. Let V denote the set
of wireless nodes. A link i → j is described by the
transmitter-receiver pair of nodes i, j ∈ V, i 6= j. Let L
denote the set of active links. Let λi→j denote the packet
arrival rate at link i → j. Let Ni→j denote the set of
links which interfere with i → j, where a link k → l is
defined to interfere with link i→ j if and only if either i
interferes with node k or l, or j interferes with node k or
l. For convenience, i→ j ∈ Ni→j . (Ni→j is also referred
to as the neighborhood of i→ j [20].)
In this description, we make the following assump-

tions. (i) The retransmit limit at the MAC layer is very
large, so no packet is dropped by the MAC layer. (ii) The
size of all packets is the same and the data rate at all
links is the same. Note that these assumptions are being
made for ease of presentation, and in Sections 3.3 and 3.4,
we present modifications to CapEst to incorporate finite
retransmit limits and different packet sizes and data rates
respectively.

3.1 Estimating Capacity

We first describe how each link estimates its expected
service time. For each successful packet transmission,
CapEst measures the time elapsed between the MAC
layer receiving the packet from the network layer, and
the MAC layer informing the network layer that the
packet has been successfully transmitted. This denotes
the service time of that packet. Thus, CapEst is com-
pletely implemented in the network layer. CapEst main-
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tains the value of two variables Si→j and Ki→j
1, which

denote the estimated expected service time and a counter
to indicate the number of packets over which the aver-
aging is being done respectively, at each link i→ j. For
each successful packet transmission2, if Slast

i→j denotes the
service time of the most recently transmitted packet, then
the values of these two variables are updated as follows.

Si→j ←
Si→j ×Ki→j + Slast

i→j

Ki→j + 1
(1)

Ki→j ← Ki→j + 1. (2)

1/Si→j gives the MAC service rate at link i → j.
Thus, the residual capacity on link i → j is equal to
(

1/Si→j

)

−λi→j . Now, since transmissions on neighbor-
ing links will also eat up the capacity at link i → j,
this residual capacity will be distributed amongst all the
links in Ni→j . Note that the application using CapEst,
based on this residual capacity estimate, will either re-
allocate rates or change the routing or admit/remove
flows etc, which will change the rate on the links in the
network. However, this rate change will have to obey the
following constraint at each link to keep the new rates
feasible.

∑

k→l∈Ni→j

δk→l ≤
(

1/Si→j

)

− λi→j ,∀i→ j ∈ L, (3)

where δk→l denotes the rate increase at link k → l
in packets per unit time. How exactly is this residual
capacity divided amongst the neighboring links depends
on the application at hand. For example, Section 3.2
describes a centralized methodology to distribute this
estimated residual capacity amongst interfering links so
as to obtain max-min fairness amongst all flows. Simi-
larly, Section 5.7 describes how to divide this estimated
capacity to get weighted fairness.
Note that all interfering links in Ni→j do not have the

same effect on the link i → j. Some of these interfering
links can be scheduled simultaneously, and some do not
always interfere and packets may go through due to
capture affect (non-binary interference [19]). However,
the linear constraint of Equation (3) treats the links in
Ni→j as a clique with binary interference. Hence, there
may be some remaining capacity on link i → j after
utilizing Equation (3) to ensure that the data arrival rates
remain feasible. CapEst will automatically improve the
capacity estimate in the next iteration and converge to
the correct capacity value iteratively.
We refer to the duration of one iteration as the iteration

duration. At the start of the iteration, both the variables
Si→j and Ki→j are initialized to 0. We start estimating

1. We could have used an exponentially weighted moving average
to estimate Si→j too. However, since each packet is served by the
same service process, giving equal weight to each packet in deter-
mining Si→j should yield better estimates, which we verify through
simulations.
2. CapEst uses the aggregate stream of packets to estimate capacity,

not per flow stream of packets. Thus, all packets of all flows will be
used to update Si→j and Ki→j .

the expected service time afresh at each iteration because
the residual capacity distribution in the previous iter-
ation may change the link rates at links in Ni→j , and
hence change the value of Si→j . Thus, retaining Si→j

from the previous iteration is inaccurate. We next discuss
how to set the value of the iteration duration. Note that
CapEst has no overhead; it only requires each link to
determine Si→j which does not require any message
exchange between links. This however does not imply
that there is no constraint on the choice of the iteration
duration. Each link i → j has to measure Si→j afresh.
Thus, an iteration duration has to be long enough so as
to accurately measure Si→j . However, we cannot make
the iteration duration too long as it directly impacts the
convergence time of CapEst. Moreover, the application
which will distribute capacity will have overhead as
it will need message exchanges to ensure Equation (3)
holds. The choice of the value of the iteration duration
is further discussed in Section 5.

3.2 Distributing Capacity to Obtain Max-Min Fair-
ness

To illustrate how CapEst will be used with a real ap-
plication, we now describe a centralized mechanism3 to
allocate max-min fair rates to flows.
Each link determines its residual capacity through

CapEst and conveys this information to a centralized
rate allocator. This centralized allocator is also aware
of which pair of links in L interfere with each other as
well as the routing path of each flow. Let F denote the
set of end-to-end flows characterized by their source-
destination pairs. Let rf denote the new flow-rate deter-
mined by the centralized rate allocator, and let rallocate

i→j

denote the maximum flow rate allowed on link i → j
for any flow passing through this link.
Consider a link i → j. Let I(f, i → j) be an indicator
variable which is equal to 1 only if flow f ∈ F passes
through a link i → j ∈ L, otherwise it is equal to 0.
Based on the residual capacity estimates, the centralized
allocator updates the value of rf , f ∈ F according to the
following set of equations.

rmax
i→j ← rallocate

i→j + α
1/Si→j − λi→j

∑

k→l∈Ni→j

∑

f∈F
I(f, k → l)

rallocate
i→j ← mink→l∈Ni→j

rmax
k→l

rf ← mini→j∈Pf
rallocate
i→j , (4)

where 0 < α ≤ 1 is a parameter which controls the
proportion of residual capacity distributed, rmax

i→j denotes
the maximum flow-rate allowed by link i → j on any
link in Ni→j and the set Pf contains the links lying on
the routing path of flow f . Thus, amongst the links a
flow traverses, its rate is updated according to the link

3. Note that the centralized nature of the algorithm described in this
section is due to the centralized max-min allocator and not CapEst,
which does not require centralized operation. In Section 6.1, we discuss
a distributed rate allocation algorithm based on CapEst.
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with the minimum residual capacity in its neighborhood.
Note that the residual capacity estimate may be negative,
which will merely result in reducing the value of rf .
This mechanism will allocate equal rates to flows

which pass through the neighborhood of the same bot-
tleneck link. According to the proof presented in [21], for
CSMA-CA based MAC protocols, this property ensures
max-min fairness.

3.3 Finite Retransmit Limits

A packet may be dropped at the MAC layer if the
number of retransmissions exceeds the maximum re-
transmit limit. Since this packet was dropped without
being serviced, what is its service time? Should we
ignore this packet and not change the current estimate
of the expected service time, or, should we merely take
the duration for which the packet was in the MAC layer
and use it as a measure of its service time? Note that
these lost packets may indicate that the link is suffering
from severe interference, and hence, imply that flows
passing through the neighborhood of this link should
reduce their rates. Ignoring lost packets is thus not the
correct approach. Moreover, merely using the duration
the lost packet spent in the MAC layer as the packet’s
service time is not sufficient to increase the value of the
expected service time by an amount which leads to a
negative residual capacity.
We use the following approach. We define the service

time of a lost packet to be equal to the sum of the
duration spent by the packet in the MAC layer and
the expected additional duration required by the MAC
layer to service the packet if it was not dropped. As-
suming independent losses4, the latter term is equal to
E[Time to transmit a packet]

1−ploss
i→j

, where ploss
i→j is the proba-

bility that a DATA transmission on link i→ j is not suc-
cessful. This quantity depends on the specific MAC layer
at hand. For example, for IEEE 802.11, this quantity can

be approximated by Wm/2+Ts

1−ploss
i→j

, where Wm is the largest

back-off window value and Ts is the transmission time
of a packet. Note that ploss

i→j can be directly monitored
at the network layer by keeping a running ratio of the
number of packets lost to the number of packets sent
to the MAC layer for transmission5 after incorporating
that each lost packet is transmitted as many times as the
MAC retransmit limit.

3.4 Differing Packet Sizes and Data Rates

The methodology to estimate the expected service time
(Equations (1) and (2)) remains the same. What changes

4. A more complex model accounting for correlated losses can be
easily incorporated, however, our simulation results presented in Sec-
tion 5.8 show that this simple independent loss model yields accurate
results.
5. Actually, the correct approach is to use the probability of loss

seen at the PHY layer, but measuring this quantity requires support
from the chipset firmware. If the firmware supports measuring this
loss probability, it should be used.

is how to distribute this residual capacity amongst neigh-
boring links, which is governed by the constraint of
Equation (3). The objective of this constraint is to ensure
that the sum of the increase in the proportion of time
a link k → l ∈ Ni→j transmits should be less than the
proportion of time the channel around i and j is empty.
Thus, if each link has a different transmission time, then
the increase in rates on k → l ∈ Ni→j as well as the
residual capacity on i → j has to be scaled so as to
represent the increase in airtime being consumed and
the idle airtime around i and j respectively. Hence, if
T i→j represents the average packet transmission time at
link i→ j, then the capacity estimation mechanism will
impose the following constraint.

∑

k→l∈Ni→j

δk→l
T k→l

T i→j

≤
(

1/Si→j

)

− λi→j ,∀i→ j ∈ L. (5)

Equation (5) merely normalizes rates to airtime. Note
that Equation (3) is a special case of Equation (5) if the
packet sizes and data rates at all links are the same.
Finally, the following equation states how the value of

T i→j is estimated.

T i→j ←
T i→j ×Ki→j +

P last
i→j

Dlast
i→j

Ki→j + 1
, (6)

where P last
i→j and Dlast

i→j denote the packet size of the last
packet transmitted and the data rate used to transmit the
last packet respectively for link i→ j.

4 CONVERGENCE OF CAPEST

In this section, we attempt to analytically understand
the convergence properties of CapEst with the max-min
fair centralized rate allocator under a WLAN topology,
where all nodes can hear each other, all nodes are
homogeneous, and each link has the same packet arrival
rate. Let λfin denote the arrival rate at each edge such
that the expected service time at each edge is equal to
1/λfin. If λ < λfin, then the system is stable and the
input arrival rate can be supported. Hence, the service
rate 1/S is larger than the arrival rate and the arrival
rate is increased in the next iteration. On the other hand,
λ > λfin, then the system is unstable and the service rate
is smaller than the arrival rate. This leads to a reduction
in the arrival rate in the next iteration. Thus, there is
always a push to move λ towards λfin. However, it
is not obvious whether this process would converge to
λ = λfin or keep oscillating.
The following theorem states a sufficient condition

for the process to converge for a homogeneous WLAN
topology.
Theorem 4.1: For a WLAN topology where all nodes

can hear each other, with homogeneous nodes having
small buffers, and with each link having the same
packet arrival rate, λfin always exists and is unique, and
CapEst, with the max-min fair centralized rate allocator
with α < 1

2b0
, under the following assumptions: (i)
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nb0 >> 1, (ii) b2
0 >> 1, (iii) b0 > 4, (iv) n > 3 and

(v) b0 ≤
(n−2)Ts

(n−1)σ , where n is the number of nodes, b0 is
the first average backoff window value, Ts is the packet
transmission time and σ is the slot duration, with the
initial rate chosen to be larger than 1

nb0σ+(n−1)σ+nTs
,

always converges to λfin.

The details of the proof are given in the Appendix. We
give a sketch of the proof here. We first determine that
the set of equations representing the system is a fixed
point formulation of the form λ = Ψ(λ) where λ denotes
the arrival rate at each node. CapEst iteratively solves
this fixed point formulation. We show that the fixed
point equation is continuous, hence by Brouwer fixed
point theorem, the fixed point must exist. We then show
that Ψ(λ) is monotonically decreasing and concave, and
then use the proof technique of [33] to prove that this
implies that the fixed point is unique. To derive the
convergence properties of CapEst, we next use induction
to show that at iteration k ≥ 1, with CapEst, Ψ(λk) ≥ λk,
which implies that at the congested edge i→ j, the value
of | 1

Si→j
−λi→j | reduces with each iteration. This together

with a proof to show that the value of λk, k > 1 is upper
bounded, proves that CapEst converges to the unique
fixed point.

Note that the choice of α and the initial rate stated
in the theorem only yield sufficient conditions for the
WLAN topology. Later, through simulations, we observe
that, with general multi-hop topologies, with fading and
shadowing, heterogeneous nodes and different arrival
rates for each link, even with α = 1 and irrespective of
the initial arrival rate, CapEst always converged to the
correct value. And we observe that the convergence in
all these simulations exhibit the property derived in the
proof, that with each iteration, at the congested edge i→
j, | 1

Si→j
−λi→j | continues to decrease. Thus, the modulus

of the residual capacity estimate keeps on reducing with
each iteration, and hence, |λ− λfin| decreases with each
iteration which ensures the convergence of CapEst.

5 PERFORMANCE

In this section, we demonstrate through extensive simu-
lations that CapEst not only converges quickly but also
converges to the correct rate allocation. Thus, we verify
both the correctness and the convergence of CapEst.

We evaluate CapEst with the max-min fair centralized
rate allocator with α = 1 over a number of different
topologies, for different MAC protocols and with finite
retransmit values at the MAC layer. We observe that
CapEst always converges to within 5% of the optimal
rate allocation in less than 18 iterations. Note that even
though the evaluation of CapEst in this section is only
through the max-min rate allocator application discussed
in Section 3.2, any other application can as well be used
to conduct a similar evaluation. Section 6 discusses two
such applications.

Packet Payload 1024 bytes
MAC Header 34 bytes
PHY Header 16 bytes
ACK 14 bytes + PHY header
RTS 20 bytes + PHY header
CTS 14 bytes + PHY header

Channel Bit Rate 11 Mbps
Propagation Delay 1 µs

Slot Time 20 µs
SIFS 10 µs
DIFS 50 µs

Initial backoff window 31

Maximum backoff window 1023

α 1

TABLE 1
Simulation parameters.

5.1 Methodology

We use Qualnet version 4.0 as the simulation platform.
All our simulations are conducted using an unmodified
IEEE 802.11(b) MAC (DCF). RTS/CTS is not used unless
explicitly stated. We use the default parameters of IEEE
802.11(b) (summarized in Table 1) in Qualnet. Unless
explicitly stated, auto-rate adaptation is turned off, the
link rate is set to 11 Mbps, the packet size is set to 1024
bytes and the maximum retransmit limits are set to a
very large value. This setting allows us to first evaluate
the performance of the basic CapEst mechanism without
the modifications for auto-rate adaptation and finite
retransmit limit. Later, we include both to evaluate the
mechanisms to account for them. We run bulk transfer
flows till 10, 000 packets per flow have been delivered.
(Section 5.11 discusses the impact of having short-flows
in the network.) Finally, to determine the actual max-
min rate allocation, we use the methodology proposed
by [20].

The implementation of CapEst and the max-min fair
centralized rate allocator closely follows their description
in Section 3. We choose the iteration duration to be
200 packets, that is, each link resets its estimate of
expected service time after transmitting 200 packets6.
Finally, to be able to correctly distribute capacity, the
centralized rate allocator also needs to be aware of which
links interfere with each other. We use the binary LIR
interference model described in [24] to determine which
links interfere. The link interference ratio (LIR) is defined
as LIR = c31+c32

c11+c22

where c11, c22 and c31, c32 are UDP
throughputs when the links are backlogged and transmit
individually and simultaneously respectively. LIR = 1
implies no interference, with lower LIR’s indicating a
higher degree of interference. Similar to the mechanism
in [24], links with LIR > 0.95 are classified as non-
interfering.

6. Note that based on the convergence time requirements and over-
head of the application, one can decide to choose a longer iteration
duration too.
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Fig. 1. (a) Flow in the Middle Topology. (b) Chain-cross Topology. (c) Deployment at Houston. (d) Twin-Flow topology.
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Fig. 2. Performance of CapEst. (a) Flow in the Middle. (b) Chain-Cross. (c) Random topology: 30 nodes, 5 flows. (d)
Random topology: 100 nodes, 10 flows.

5.2 Commonly Used Multi-hop Topologies

In this section, we evaluate CapEst with two differ-
ent, commonly used topologies. Simulations on these
two topologies are conducted with zero channel losses,
although packet losses due to collisions do occur. We
adjusted the carrier sense threshold to reduce the inter-
ference range to be able to generate these topologies.

5.2.1 Flow in the Middle Topology

Figure 1(a) shows the topology. This topology has been
studied and used by several researchers to understand
the performance of different rate control and scheduling
protocols in mesh networks [13], [20], [31]. Figure 2(a)
plots the evolution of the rate assigned to each flow
by the centralized rate allocator. We observe that the
mechanism converges to within 5% of the optimal max-
min rate allocation in less than 16 iterations.

5.2.2 Chain-Cross Topology

Figure 1(b) shows the topology. This topology was pro-
posed by [20] to understand the performance of rate
control protocols in mesh networks. This topology has
a flow in the middle which goes over multiple hops
(1→ 7) as well as a smaller flow in the middle (1→ 2).
Figure 2(b) plots the evolution of the rate assigned to
each flow by the centralized rate allocator. We see that
the mechanism converges to within 5% of the optimal in
less than 5 iterations.

5.3 Randomly Generated Topologies

We generate two topologies by distributing nodes in a
square area uniformly at random. The source-destination
pairs are also randomly generated. The first random
topology has 30 nodes and 5 flows, while the second has
100 nodes and 10 flows. We use the two-ray path loss
model with Rayleigh fading and log-normal shadow-
ing [22] as the channel model in simulations. The carrier-
sense threshold, the noise level and the fading and
shadowing parameters are set to their default values in
Qualnet. We use AODV to set up the routes. Figures 2(c)
and 2(d) plot the evolution of the rate assigned to each
flow by the centralized rate allocator. For the smaller
random topology, the mechanism converges to within
5% of the optimal within 18 iterations.
For the larger topology, the mechanism converges to a

rate smaller than the optimal. The reason is as follows. In
this topology, the link which is getting congested first, or
in other words, has the least residual capacity remaining
at all iterations of the algorithm, is a high-loss link7 (loss
rate > 40%). Hence, the iteration duration has to be
larger than 200 packets to obtain an accurate estimate.
If we increase the iteration duration to 500 packets, as
shown in Figure 4(b), the mechanism converges to within
5% of the optimal within 15 iterations. Note that, in
general, either routing schemes like ETX [4] will avoid
the use of such high-loss links for routing, or auto-rate

7. A link which suffers from a large number of physical layer losses
without including losses due to collisions is referred to as high-loss
link.
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adaptation will reduce the data rate to reduce the link
loss rate, and hence, for most cases, an iteration duration
of 200 packet suffices.
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Fig. 3. Performance of CapEst: Deployment at Houston.

5.4 A Real Topology: Deployment at Houston

The next topology is derived from an outdoor residential
deployment in a Houston neighborhood [2]. The node
locations (shown in Figure 1(c)) are derived from the
deployment and fed into the simulator. The physical
channel that we use in the simulator is a two-ray path
loss model with log-normal shadowing and Rayleigh
fading. The ETX routing metric [4] (based on data loss in
absence of collisions) is used to set up the routes. Nodes
1 and 2 are connected to the wired world and serve
as gateways for this deployment. All other nodes route
their packets toward one of these nodes (whichever is
closer in terms of the ETX metric). The resulting topology
as well as the routing tree is also shown in Figure 1(c).
Figure 3 plots the evolution of the rate assigned to

each flow by the centralized rate allocator. Again, the
mechanism converges to within 5% of the optimal in
less than 12 iterations.

5.5 Impact of a Smaller Iteration Duration

In this section, we evaluate the impact of using a smaller
iteration duration on performance. We plot the evolution
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Fig. 4. Performance of CapEst with a different iteration
duration. (a) Flow in the Middle with iteration duration =
75 packets. (b) Random topology: 100 nodes, 10 flows with
iteration duration = 500 packets.
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Fig. 5. Performance of CapEst with IEEE 802.11 with
RTS/CTS. (a) Flow in the Middle. (b) Chain-cross.
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Fig. 6. (a) Performance of CapEst with DiffQ-MAC: Flow
in the Middle. (b) CapEst vs DiffQ-Transport over DiffQ-
MAC.

of the rate assigned to each flow in Figure 4(a) for the
flow in the middle topology with one iteration duration
= 75 packets. We observe that the rate converges to a
value smaller than the optimal. (Note that we had made
a similar observation for the 100 node random topology
in Section 5.3.) In general, for all topologies we studied,
we observed that using an iteration duration not suffi-
ciently large to allow the estimated expected service time
to converge leads to the mechanism converging to a rate
smaller than the optimal, however, the mechanism still
always converged and did not suffer from oscillations.

5.6 Different MAC layers

An attractive feature of CapEst is that it does not depend
on the MAC/PHY layer being used. Hence, in future, if
one decides to use a different medium access or physical
layer, CapEst can be retained without any changes. In
this section, we evaluate the performance of CapEst with
two different medium access layers.

5.6.1 With RTS/CTS

We first evaluate the performance of CapEst with IEEE
802.11 DCF with RTS/CTS. Figures 5(a) and 5(b) plot
the evolution of the assigned flow rates for the flow
in the middle topology and the chain-cross topology
respectively. For both the topologies, the mechanism
converges to within 5% of the optimal within 6 iterations.
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5.6.2 Back-pressure MAC

We next evaluate the performance of CapEst with a
back-pressure-based random-access protocol [9], [14],
[30]. The fundamental idea behind back-pressure based
medium access is to use queue sizes as weights to
determine which link gets scheduled. Solving a max-
weight formulation, even in a centralized manner, is
NP-hard [26]. So, multiple researchers have suggested
using a random access protocol whose channel access
probabilities inversely depend on the queue size [9], [14],
[30]. This ensures that the probability of scheduling a
packet from a larger queue is higher. The most recent of
these schemes is DiffQ [30]. DiffQ comprises of both a
MAC protocol as well as a rate control protocol. We refer
to them as DiffQ-MAC and DiffQ-Transport respectively.
The priority of each head of line packet in a queue is
determined by using a step-wise linear function of the
queue size, and each priority is mapped to a different
AIFS, CWMin and CWMax parameter in IEEE 802.11(e).

Back-pressure medium access is very different from
the traditional IEEE 802.11 DCF in conception. However,
CapEst can still accurately measure the capacity at each
edge. Figure 6(a) plots the evolution of the assigned flow
rates for the flow in the middle topology with DiffQ-
MAC. The different priority levels as well as the AIFS,
CWMin and CWMax values being used are the same as
the ones used in [30]. Again, the mechanism converges
to the optimal values within 5% of the optimal within
12 iterations.

This set-up also demonstrates the advantage of having
a rate control mechanism which does not depend on
the MAC/PHY layers. Optimal rate-control protocols for
a scheduling mechanism which solves the max-weight
problem at each step are known. However, if we use
a distributed randomized scheduling mechanism like
DiffQ-MAC, these rate control protocols are no longer
optimal. But, using a rate allocation mechanism based
on CapEst, which makes no assumption on the MAC
layer, ensures convergence to a rate point close to the
optimal. For example, Figure 6(b) plots the achievable
rate region (or the feasible rate region) for DiffQ-MAC
for the flow in the middle topology. We plot the rate
of the middle flow against the rate of the outer two
flows. (Using symmetry to assume that the rate of the
outer flows is equal simplifies the figure as it becomes
a two-dimensional figure instead of three-dimensional
one.) Figure 6(b) also plots the throughput achieved by
CapEst after 15 iterations of the algorithm as well as
the throughput achieved by DiffQ-Transport (originally
proposed by [3] and shown to be optimal with cen-
tralized max-weight scheduling). The figure shows that
CapEst allocates throughput within 5% of the optimal
while DiffQ-Transport achieves only 55% of the opti-
mal throughput. Thus, the decentralized rate control of
DiffQ-Transport loses its optimality with DiffQ-MAC as
it was designed to be optimal for the centralized max-
weight scheduling scheme. On the other hand, CapEst

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration Value

R
at

e 
(in

 M
bp

s) Max−Min: Flow 1 → 3
Max−Min: Flow 4 → 6
Max−Min: Flow 7 → 9
CapEst: Flow 1 → 3
CapEst: Flow 4 → 6
CapEst: Flow 7 → 9

(a)

0 5 10 15 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration Value

R
at

e 
(in

 M
bp

s)

Max−Min: Flows 3 → 1, 6 → 1, 9 → 1, 13 → 1, 14 → 1, 15 → 1, 16 → 1, 18 → 1
Max−Min: Flows 4 → 2, 5 → 2, 7 → 2, 8 → 2, 10 → 2, 11 → 2, 12 → 2, Flow 17 → 2
CapEst: Flows 3 → 1, 6 → 1, 9 → 1, 13 → 1, 14 → 1, 15 → 1, 16 → 1, 18 → 1
CapEst: Flows 4 → 2, 5 → 2, 7 → 2, 8 → 2, 10 → 2, 11 → 2, 12 → 2, 17 → 2

(b)

Fig. 7. Performance of CapEst with weighted fairness. (a)
Flow in the Middle. (b) Deployment at Houston.

which is designed to achieve optimal throughput inde-
pendent of the scheduling scheme achieves near-optimal
throughput.

5.7 Weighted Fairness

Section 3.2 describes how to use CapEst to obtain max-
min fairness. However, the same mechanism can easily
be adapted to obtain weighted fairness, which is defined
as follows. Let wf > 0,∀f ∈ F denote the weight of a
flow. Then, weighted fairness will allocate rates rf ,∀f ∈
F such that rf1

/rf2
= wf1

/wf2
,∀f1, f2 ∈ F , the allocated

flow rates are feasible, and the rate of no flow can be
increased without reducing the rate of any other flow.
Given wf ,∀f ∈ F , we now describe a modification

of the methodology proposed in Section 3.2 to achieve
weighted fairness. The central allocator will now update
the value of rmax

i→j according to the following equa-

tion: rmax
i→j = rallocate

i→j +
1/E[Si→j ]−λi→j

P

k→l∈Ni→j

P

f∈F
wf I(f,k→l) . The

equation to update the value of rallocate
i→j remains the

same, and the new flow rates are updated as rnew
f =

mini→j∈Pf
wfrallocate

i→j .
Figures 7(a) and 7(b) plot the evolution of flow rates

with CapEst for the flow in the middle topology and
the deployment at Houston respectively where w1→3 =
w7→9 = 4 and w4→6 = 1 for the flow in the middle
topology, while for the deployment at Houston, wf =
1 for all flows f being routed towards gateway 1 and
wf = 2 for all flows f being routed towards gateway 2.
CapEst converges to within 5% of the optimal within 18
iterations of the algorithm.

5.8 Finite Retransmit Limits

In this section, we set the IEEE 802.11 retransmit limits
to their default values. Thus, packets may be dropped
at the MAC layer. We use the methodology proposed in
Section 3.3 to update the estimate of the expected service
time for lost packets. Figures 8(a), and 8(b) show the
evolution of allocated rates for the flow in the middle
topology and the deployment at Houston respectively.
There is slightly more variation in the allocated rates,
however, not only does CapEst converge but also the
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Fig. 8. Performance of CapEst with finite MAC retransmit
limits. (a) Flow in the Middle. (b) Deployment at Houston.

convergence time remains the same as before. We eval-
uate CapEst for all the other scenarios described above
with the default retransmit values for IEEE 802.11, and
our observations remain the same as before.
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Fig. 9. Performance of CapEst with auto-rate adaptation:
Deployment at Houston.

5.9 Auto-Rate Adaptation

In this section, we switch on the default auto-rate fall-
back mechanism of Qualnet. We use the methodology
proposed in Section 3.4 to constrain the rate updates.
Figure 9 show the evolution of allocated rates for the
deployment at Houston. Again, not only does CapEst
converge to the correct rate allocation but also the con-
vergence time remains the same as before.
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Fig. 10. (a) CapEst vs [17]. (b) CapEst vs [24].
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Fig. 11. Performance of CapEst. (a) With short flows;
the deployment at Houston topology. (b) With external
interference; Twin-flow topology.

5.10 Comparison with Prior Works

Two prior works have discussed centrally allocating
max-min fair rates for a given topology [17], [24]. [17]
assumes that the entire topology is precisely known,
and then sets up a convex optimization problem based
on an approximate model for IEEE 802.11 DCF with-
out RTS/CTS to determine the exact flow rates. [24]
assumes that only which node interferes with whom is
known, and then sets up a linear program based on an
approximate model for IEEE 802.11 DCF to determine
the exact flow rates. Note that the model used by [17]
is more complex as well as more accurate than [24].
Both these methods are model-based, and hence suffer
from all the shortcomings any model-based capacity
estimation technique suffers from. Additionally, since
they are based on approximate models, they will yield
either an over-estimate or an under-estimate of the actual
rates, and as reported by [17], [24], this over or under
estimation can be more than 40% of the actual value.
Figure 10(a) compares the rates assigned as well as the

actual throughput achieved by CapEst after 15 iterations
and the method proposed in [17] (set-up to obtain
max-min fairness) while Figure 10(b) compares the same
for CapEst and the method proposed in [24] (set-up to
obtain max-min fairness) for the chain-cross topology.
We observe that the methodologies of both the prior
works overestimate capacity which leads to an infeasible
rate allocation leading to a lot of packet drops and a
much lower actual throughput value for the two flows
in the middle (1→ 2 and 1→ 7).
Note that the initial flow rates can be assigned based

on the solution of either of these two methods. However,
after assigning these initial rates, the CapEst mechanism
can be used to converge to the correct flow rates. In other
words, instead of starting CapEst from near-zero rates,
its initial starting rate allocation can be determined using
either one of these two methods.

5.11 Short Flows

The 200 packets in an iteration duration can belong to
any flow, long-term or short-term. Hence, CapEst does
not need any additional support when numerous short
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flows are present in a network. For example, the central-
ized rate allocation mechanism can easily determine the
rate of a new short flow based on the previous residual
capacity estimate. If we introduce 50 short flows of 10
packets each in the deployment at Houston topology,
at randomly generated times after the 10th iteration, in
addition to the 16 long flows, and choose the source of
each short flow randomly, we observe that each of these
short flows are allocated adequate capacity allowing
them to complete their data transfer quickly within 200
ms, without any discernible impact on the rates allocated
to the long-term flows, as observed in Figure 11(a).

5.12 External Interference

The presence of external interference merely increases
the expected service time at links, which reduces the
residual capacity estimate. Hence, unlike model-based
capacity estimation techniques, CapEst does not need
any additional support or mechanisms to account for
external interference. Consider the twin-flow topology
shown in Figure 1(d). Let flow 11 → 12 be a CBR flow
sending data at the rate of 3 Mbps. Let flow 1 → 5 be
routed along the path 1 → 2 → 3 → 4 → 5. If CapEst
with the max-min centralized rate allocator is used to
set the rate of flow 1 → 5, then flow 11 → 12 will
serve as a source of external interference. Figure 11(b)
plots the evolution of the rate allocated to flow 1 → 5
in this scenario, and we observe that the rate allocated
converges to within 5% of the optimal within 6 iterations.

6 OTHER APPLICATIONS

Accurately estimating capacity is an important tool
which can be used in many different applications. So
far we have only used centralized rate allocation as an
example to study the properties of CapEst. As discussed
in the Introduction, CapEst can also be used with a
number of other applications. To illustrate how CapEst
will get modified when used with these applications, in
this section, we will explore how CapEst fits into the
following two applications: distributed rate allocation
and interference-aware routing.

6.1 Distributed Rate Allocation

WCPCap is one of the recent distributed rate control al-
gorithms for mesh networks which uses capacity estima-
tion to allow the intermediate router nodes to explicitly
and precisely tell the source nodes the rate to transmit
at [20]. It comprises of two parts. The first part estimates
residual capacity at each link using a complex model for
IEEE 802.11 with RTS/CTS in multi-hop networks, and
the second part divides this estimated capacity amongst
end-to-end flows in a distributed manner to achieve
max-min fairness. Since WCPCap uses a specific model
to estimate capacity, it suffers from all the drawbacks
which any model-based capacity estimation technique
suffers from.
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Fig. 12. Performance of CapEst implemented within
WCPCap. (a) Flow in the middle topology. (b) Chain-cross
topology.

To illustrate the utility of CapEst in distributed rate
allocation, we combine CapEst and WCPCap. CapEst
replaces the first part of WCPCap to estimate capacity,
while the second part which divides this estimated ca-
pacity is retained as such. We evaluate the performance
of CapEst with WCPCap using Qualnet simulations. De-
fault parameters of IEEE 802.11 in Qualnet (summarized
in Table 1) are used. Retransmit limits are set to their
default values and auto-rate adaptation is switched off8.
The WCPCap parameters are set to their values used
in [20]. Figures 12(a) and 12(b) compare the performance
of model-based WCPCap and CapEst-based WCPCap
for the flow in the middle and the chain cross topologies
respectively. We observe that WCPCap with CapEst is
slightly fairer than the model-based WCPCap as model-
based WCPCap is only as accurate as the underlying
model. For example, for the chain-cross topology, CapEst
allocates a higher rate to flows 1→ 2, 1→ 7, 8→ 9 and
10→ 11 by reducing the rate of flow 6→ 7.

Implementation Overhead: Implementation overhead
for distributed rate allocation mechanisms which esti-
mate capacity, like WCPCap, tends to be prohibitive [20]
because of the following two reasons. (i) Complete topol-
ogy information has to be collected and maintained to
seed the model. (ii) The number of messages exchanged
between links is a linear function of the number of
interfering links each of the two links have. With CapEst,
both these overheads are reduced significantly. First,
as discussed earlier, the only topological information
needed by a node is its neighboring nodes, which can be
collected with very low overhead [24]. Second, the size
of messages required is smaller, and similarly to prior
works [12], these messages can be encoded in the IP
header in the following fields: Type-of-Service, Identifi-
cation, Flags and Fragmentation Offset. (This strategy is
based on the observation that the amount of fragmented
IP traffic is negligible [25].)

8. As stated earlier, model-based capacity estimation techniques, like
model-based WCPCap, become prohibitively expensive with auto-rate
adaptation.
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6.2 Interference-aware Routing

To determine routes offering maximum capacity, Gao
et al. [32] discussed a model-based approach. Given a
path in a multi-hop network, the end-to-end throughput
is determined by the minimum link capacity of the
path. So if one can figure out each link’s capacity in
a given path, then the minimum one is the end-to-end
throughput capacity of this path. And amongst multiple
paths between a source and a destination, the path which
offers the maximum throughput is the best route.
Since CapEst can be used to determine the capacity

at each link, it can easily be used to determine the
best route. We use the same topology as used in [32]
(Figure 1(d)) to evaluate CapEst. Flow 2 (between 1 and
5) has two candidate paths. Path 1 is 1→ 2→ 3→ 4→ 5,
and path 2 is 1 → 6 → 7 → 8 → 9 → 10 → 5.
Assuming default IEEE 802.11 parameters, summarized
in Table 1, data rate of 11 Mbps, packet size of 1024
bytes and the rate of existing flow 1 (between 11 and
12) to be 3 Mbps, we evaluate the capacity offered by
both paths by sending 200 packets back-to-back along
each path, to be 0.36 Mbps and 1.28 Mbps respectively.
Thus, path 2 is a much better route even though it has
more hops than path 1. Using CapEst, we arrive at the
same conclusion as [32] with a much smaller overhead
and without requiring any complex computations or any
assumptions on the MAC/PHY layer being used.

7 LIMITATIONS

In this section, we discuss two limitations which CapEst
suffers from.
Iterative Mechanism: The initial capacity estimate pro-
vided by CapEst can be inaccurate, however, CapEst
progressively improves its estimate with each iteration.
Thus, CapEst is an excellent capacity estimation tool for
applications which allow their behavior to be updated
based on the new and more accurate capacity estimate.
For example, applications which allocate resources, like
rate allocation and interference-aware routing, can up-
date the resources allocated to different flows based
on the new estimate without affecting the network
operation, and hence, are perfect candidates for using
CapEst. However, applications which are required to
provide an answer straightaway and are not allowed to
change/update it later can not use an iterative mech-
anism. For example, admission control which has to
provide a yes/no answer on whether to admit a new
flow can not later update its answer to no after having
admitted a flow.
Convergence Time: From the simulations, we observe
that CapEst converges to within 5% of the optimal rate
within 18 iterations where each iteration requires the
exchange of 200 packets per link. This takes 2 seconds
for the flow in the middle topology and 8 seconds for
the deployment at Houston. Thus, the convergence time
may become too large for some applications. However,
note that, for all topologies we study, CapEst converges

to 60% of the final rate within 6 iterations (500 ms for the
flow in the middle topology and 2.5 s for the deployment
at Houston), and then it takes a number of iterations
after that to converge to within 5% of the final rate9.
This allows the max-min rate allocator to utilize most
of the capacity within the first few iterations. Also, the
convergence time depends on the initial flow-rates. In
all simulations, we start with a small initial flow-rate.
If one can get a better estimate for the initial rates,
the convergence time will be smaller. For example, as
discussed in Section 5.10, model-based techniques like
the ones proposed in [17], [24] can be used to obtain
a good initial rate allocation. Another issue arises if
we start from a very small initial rate allocation. Then,
waiting for 200 packets to be exchanged before correcting
the initial rate allocation will waste bandwidth. To solve
this problem, we propose making the iteration duration
for link i → j to vary inversely with 1/Si→j − λi→j .
This will ensure that when there is a lot of residual
capacity in the network, it will get eaten up fast, hence
the initial increase in rates will be fast. When the network
gets closer to the optimal operating point, the iteration
duration will increase to allow a more accurate estimate.

8 CONCLUSIONS

In this paper, we propose CapEst, a mechanism to esti-
mate link capacity in a wireless network. CapEst yields
accurate estimates while being very easy to implement
and does not require any complex computations. CapEst
is measurement-based and model-independent, hence,
works for any MAC/PHY layer. CapEst can be easily
modified to work with any application which requires
an estimate of link capacity. Also, the implementation
overhead of CapEst is small and it does not lose accuracy
when used with auto-rate adaptation and finite MAC
retransmit limits. Finally, CapEst requires no support
from the underlying chipset and can be completely
implemented at the network layer.
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