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Abstract

In this paper we study the transport capacity of a data-gathering wireless sensor network under different commu-

nication organizations. In particular, we consider using a flat as well as a hierarchical/clustering architecture to realize

many-to-one communications. The capacity of the network under this many-to-one data-gathering scenario is reduced

compared to random one-to-one communication due to the unavoidable creation of a point of traffic concentration at

the data collector/receiver. We introduce the overall throughput bound of k ¼ W =n per node, where W is the trans-

mission capacity, and show under what conditions it can be achieved and under what conditions it cannot. When those

conditions are not met, we constructively show how k ¼ HðW =nÞ is achieved with high probability as the number of

sensors goes to infinity. We also show how the introduction of clustering can improve the throughput. We discuss the

trade-offs between achieving capacity and energy consumption, how transport capacity might be affected by considering

in-network processing and the implications this study has on the design of practical protocols for large-scale data-

gathering wireless sensor networks.
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1. Introduction

This paper studies the transport capacity of

many-to-one communication in a data-gathering

wireless sensor network. The rapid advances in

micro-electromechanical systems (MEMS) and

wireless technologies have enabled the integration
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of sensing, actuation, processing and wireless
communication capabilities into tiny sensor de-

vices. These sensors can then be deployed in large

numbers to self-organize into networks that serve

a wide range of purposes. The main objective of

this study is to understand the fundamental sca-

lability of large-scale wireless sensor networks used

for field or data-gathering. Such understanding is

essential in the deployment of these networks and
the development of efficient protocols.

The reason for considering many-to-one type of

communication among other possibilities is be-

cause many-to-one and many-to-few are commu-

nication modes that commonly take place in a
ed.
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data-gathering wireless sensor network. Conse-

quently they are the system-level abstractions that

capture the nature of communication in a wide

range of sensor network applications, where the

ultimate destination of data is a single control

center (subsequently referred to as the sink or re-

ceiver) or a few connected control centers that

have the resource to process the data and the au-

thority to issue/take actions. Such applications

include various data-gathering, monitoring and

surveillance sensor networks, such as field imaging

or monitoring where periodic snapshots of the

field are reconstructed from the sensing data. At

the same time, many statistical signal processing
algorithms and studies that utilize sensor networks

for detection and tracking are based on a hierar-

chical structure that uses clusters [1,2]. Commu-

nications within each cluster are again of the

many-to-one type, i.e., data flows from each sensor

to the cluster head where they can be processed,

compressed, aggregated and relayed. More

broadly, clustering is arguably one of the most
frequently proposed and used methods to organize

communications in a large-scale network [3,4].

Thus we can easily envision many future large

sensor networks to have many-to-one communi-

cation overall at a higher level, as well as within

clusters in local areas. Hence fully understanding

the scalability properties and implications of

many-to-one communication is of great impor-
tance in the design and configuration of networks

employing such communications.

Within the context of many-to-one communi-

cation, possible organizations of the network in-

clude the flat and hierarchical organizations. In a

flat organization all nodes/sensors act as peers in

transmitting and relaying data for one another. In a

hierarchical network, layers of clusters are formed.
Nodes send their data to the cluster heads who then

relay the data to either a higher layer cluster head

or the sink (such as in [3]). In this paper we will

examine and compare both organizations in terms

of transport capacity and energy consumption.

We define the many-to-one throughput capacity

as the per source data throughput, when all or many

of the sources are transmitting to a single fixed
receiver or sink. The throughput capacity of a

wireless network was first studied by Gupta and
Kumar in [5], key results of which include that the

achievable per node throughput is hðW =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
Þ,

where W is the transmission capacity and n is the

total number of nodes in the network. [6] showed

that the capacity obtained by [5] can be improved

if mobility is used to reduce the number of hops
needed to reach the destination at the expense of

unbounded delay. Bansal and Liu [7] further

studied the effect of mobility on capacity when the

allowed delay is bounded. Another related paper is

[8], which showed that when delay and complexity

are ignored and infinitely long and complex codes

are used the capacity obtained by [5] can be in-

creased via relay sensors. In [9] the capacity of a
hybrid network is studied.

The result obtained by [5] is based on the as-

sumption that communications are one-to-one,

and that sources and destinations are randomly

chosen. It does not apply to scenarios where there

are communication hot spots in the network. Since

many-to-one communication causes the sink to

become a point of traffic concentration, the
throughput achievable per source node in this case

is reduced. In this paper we are only interested in

the case where every source gets an equal (on av-

erage) amount of original data (not including re-

layed data) across to the sink. This is because

otherwise throughput can be maximized by having

only the sensors closest to the destination transmit.

Equal share of throughput from every sensor is
desired for applications like imaging where each

sensor represents a certain region of the whole field

and data from each part are equally important.

When distributed data compression is used this

this is again approximately the case. However,

when conditional coding is used this may no

longer be true since the amount of processed data

can vary from source to source.
The rest of the paper is organized as follows.

Section 2 presents our network model. Section 3

gives the main results on capacity analysis in a flat

network along with discussion. Section 4 presents

results on capacity of a hierarchical network.

Section 5 discusses issues related to trade-offs be-

tween capacity and energy consumption, in-net-

work processing, and design implications of our
results on efficient protocol development. Section 6

concludes the paper.
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2. Network model

We consider a network deployed in a field of

circular shape. There are n nodes/sources (we will

use nodes, sources and sensors interchangeably in
subsequent discussions) deployed in a network. A

sink/destination is located at the center of the net-

work/circle. Each node is not only a source of

data, but also a relay for some other sources to

reach the sink.

Throughout the paper we will refer to a net-

work where the nodes are randomly placed fol-

lowing a uniform distribution as a randomly

deployed network or a random network. In such a

network we have no direct control over the exact

location of the nodes. We will refer to a network

where we can determine the exact locations of the

nodes as an arbitrary network. Note that an arbi-

trary network is thus a particular instance of the

random network with a very low probability of

occurring. Considering this, two possible ways of
deriving throughput limit arise. One is to consider

the best possible deployment and determine its

capacity. Although this will be a true upper bound,

it is not a very useful or insightful one since that

particular deployment outcome is likely to be of a

very small probability as a result of the random

deployment strategy. The other, which is the ap-

proach we take in this paper, is to derive the
throughput limit that is achievable with high

probability as the number of sensors goes to in-

finity under the random deployment.

We consider two network organizational ar-

chitectures. The first one is a flat architecture

where nodes communicate with the sink via pos-

sibly multi-hop routes by using peer nodes as re-

lays. Intuitively, with fixed transmission range,
nodes closer to the sink will serve as relay for a

larger number of sources. We will assume that all

sources use the same frequency to transmit data,

thus sharing time. However, our results apply as

long as there is a single shared resource, e.g., time,

frequency, and so on.

The second architecture is hierarchical where

clusters are formed. Under this architecture, clus-
ters are formed so that sources within a cluster

send their data (via a single hop or multi-hop de-

pending on the size of the cluster) to a designated
node known as the cluster head. The cluster head

can potentially perform data aggregation and

processing and then forward data to the sink. In

this study, we will assume that the cluster heads

serve as simple relays and no data aggregation is

performed. We will also assume that the commu-
nication between nodes and cluster heads and

communication between cluster heads and the sink

are on separate frequency channels so that the two

layers do not interfere. In general clusters can be

formed by selecting a few nodes in the network to

serve as cluster heads [3], or by adding specific

cluster head nodes [10] to the network. For sim-

plicity of presentation, we will assume that cluster
heads are extra nodes introduced while the number

of source nodes remains constant. This is solely for

clarity of discussion and does not affect our con-

clusion.

Throughout the paper we will assume that the

sources share the resource (time) by transmitting

following a schedule that consists of time slots.

Note however that the same analysis and same
results could be obtained if we considered different

resources, such as frequency or codes. This

schedule determines what subset of nodes can

transmit simultaneously during which time slot,

resulting in space reuse. This is somewhat remi-

niscent of certain dynamic TDMA schemes that

generate a local time schedule. Note that how this

schedule is generated is left unspecified in this
paper. We will examine schedules that can guar-

antee an equal average throughput from all sour-

ces in the network. Our results will be built on the

existence of such a schedule that may be obtained

either in a centralized or distributed way. We will

not be concerned with causality in packet relaying

since we are only interested in the average trans-

mission rate of sources. We will simply assume
that a node has enough of its own packets buffered

so that when it is time for it to transmit and it

happens not to have a route-through packet, they

will transmit one from the buffer.

We assume the field has an area of 1. This is

done to simplify the resulting expressions, which

can then be easily scaled with the size of the area.

Nodes share a common wireless channel using
omni-directional antennas. We assume nodes use a

fixed transmission power and achieve a fixed
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transmission range. We adopt the following com-

monly used interference model, e.g., [5]. Let Xi and

Xj be two sources with distance di;j between them.

Then the transmission from Xi to Xj will be suc-

cessful if and only if

di;j 6 r and dk;j > r þ D; DP 0 ð1Þ

for any source Xk that is simultaneously trans-

mitting. Subsequently r will be known as the

transmission range. There are two interference

concepts here. A node may interfere with another

node that is transmitting if it is within distance

2r þ D of that node. To see this consider two

transmitting nodes. If one node is within 2r þ D of
the other node there will be an overlap between a

circle of radius r around the first transmitting node

and a circle of radius r þ D around the second

transmitting node. If the intended receiver is lo-

cated within the overlapping area the transmission

will fail because of interference, hence the two

nodes need to be at least 2r þ D apart. On the

other hand a node will interfere with another node
that is receiving if it is within distance r þ D for

obvious reasons. In the rest of this paper both will

be generally referred to as interference range. The

distinction will be clear from the context.

Also note that this interference model (1) es-

sentially implies that no nodes can receive more

than one transmission at a time. We will also as-

sume that no node can transmit and receive at the
same time.

Our network scenario is depicted in Fig. 1. The

sink is situated deterministically at the center of

this field. It is the ultimate receiver of all data

generated by sources in the network. The effect of

positioning the sink closer to the edge of the net-

work is discussed in the next section.

Throughout the paper W will refer to the
transmission capacity of the channel in a flat net-

work. In a hierarchical network W will refer to the

transmission capacity of the channel used within

clusters. W 0 will refer to the transmission capacity

of the channel used from the heads to the sink.

The capacity studied in this work will be de-

rived as a function of the transmission range, as-

suming the transmission range can provide
connectivity. This is because while in the one-

to-one case it has been proven that reducing the
range of transmission to increase spatial reuse in-

creases the capacity of the network [5], it is not
immediately clear if this remains true in the many-

to-one case (in fact it will be shown that it does

not). Finding a transmission range that guarantees

connectivity is a research problem on its own and

is outside the scope of this paper. An asymptotic

connectivity result as n goes to infinity is given in

[11]. Recently Xue and Kumar also derived

bounds on the number of neighbors needed to
guarantee connectivity [12].
3. Capacity in a flat network

In this section we present capacity results for

the flat network along with respective proofs. We

begin by outlining a trivial upper bound on
throughput. We then show when this bound can be

achieved. For conditions under which this is not

achievable, we construct two lower bounds on

achievable throughput. We end this section by a

discussion on the effect of placing the sink on or

close to the boundary of the network.
3.1. A trivial upper bound

Theorem 1. The maximum per node throughput in a
wireless network featuring many-to-one communi-
cation outlined by the network model is upper
bounded by W =n.
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Proof. The maximum throughput is achieved when

the sink is 100% busy, shared by n sources. Since

W is the capacity of the shared channel, the

throughput that can be achieved by any single

source, k, must be such that

nk6W ! k6
W
n
: ð2Þ

Thus W =n bits/s per source is an upper bound for
the throughput that can be achieved on average by

each source in the network. h

The above result means that each source can only

use up to 1=n of the resources under our network

model. This is an immediate consequence of the in-

terference model, which implies that the sink cannot

receive simultaneously from more than one node.

Corollary 2. k ¼ W =n can be achieved when every
source can directly reach the sink.

Proof. When all sources can directly (via a single

hop) reach the sink, one can use a simple TDMA

scheme to schedule source transmission. n slots

will be needed, one for each source. Thus each
source gets an equal share of the channel resulting

in k ¼ W =n. h

Corollary 3. k ¼ W =n is not achievable if not every
source can directly reach the destination and D > r.

Proof. Consider a source node which is two hops

away from the destination. Let d be the distance
from this source to the destination. Then r < d 6 2r
under the interference and transmission model.

SinceD > r by assumption, we have d 6 2r < r þ D.
Thus the sink is within the interference range of this

source node. This means that during this node�s
transmission the sink has to be idle. From Theorem

1 we know that the bound W =n is only achieved

when the sink has zero idle time. Therefore
k ¼ W =n cannot be achieved in this case. h
2

Destinati
d=r d=r

1

Fig. 2. k ¼ W =n is
This result points to the fact that when D > r
there is no schedule that will allow the sink to be

busy all the time. This in turn prevents the network

from achieving the upper bound on throughput.

Corollary 4. k ¼ W =n may be achieved in an arbi-
trary network when not every source can directly
reach the destination and D < r.

Proof. We prove this corollary by construction.

Consider a network with four sources and one sink

on a straight line as shown in Fig. 2. The distance

between any two adjacent sources (sink) is pre-

cisely r. We show below that there exists a schedule
of length 4 that allows the sink to receive one

packet from each of the 4 sources, therefore

achieving W =n per source.

Using the labels shown in Fig. 2, since D < r,
the first slot can be shared by Sources 1 and 3.

Thus the sink receives one packet from Source 3

and Source 2 receives one packet from Source 1.

The second slot is shared by Sources 2 and 4, with
the sink receiving a packet from Source 2, and

Source 3 receiving a packet from Source 4. In the

third slot Source 3 relays the packet from Source 4

to the sink. In the fourth slot Source 2 relays the

packet from Source 1 to the sink. The same

schedule then repeats. h

Unfortunately here the bound is achieved by
carefully positioning nodes in the network. For a

randomly deployed networks this bound cannot be

achieved with high probability. The following

subsection examines this issue.

3.2. An upper bound for random multiple-hop

networks

In this subsection we will show that when the

sink cannot directly receive from every source in

the network, and assuming that the channel
3 4

on
d=r d=r

achievable.



524 E.J. Duarte-Melo, M. Liu / Computer Networks 43 (2003) 519–537
allocation does not take into account difference in

traffic load, then k ¼ W =n is not achievable with

high probability regardless of the value of D. We

will determine the upper bound on throughput by

deriving the maximum number of simultaneous

transmissions.
Denote by Ar the area of a circle of radius r, i.e.,

Ar ¼ pr2. Let random variable Vr denote the

number of nodes within an area of size Ar and

assume a total area of 1. We then have the fol-

lowing lemma.

Lemma 5. In a randomly deployed network with n
nodes,

ProbðnAr �
ffiffiffiffiffiffiffi
ann

p
6Vr6nAr þ

ffiffiffiffiffiffiffi
ann

p Þ! 1 as n!1;

ð3Þ
where the sequence fang is such that limn!1 an=n ¼
�, � positive but arbitrarily small.

Proof. The mean of Vr is nAr and the variance r2 is

nArð1� ArÞ, using Chebychev�s inequality we have

Prob nArð � ffiffiffiffiffiffiffi
ann

p
6 Vr 6 nAr þ

ffiffiffiffiffiffiffi
ann

p ÞP 1� r2

ann

¼ 1� Arð1� ArÞ
an

: ð4Þ

The second term on the RHS of Eq. (4) goes to

zero since an ! 1 as n ! 1. Thus the proof is

complete. h

This lemma shows that the number of nodes in

a fixed area is bounded within
ffiffiffiffiffiffiffi
ann

p
of the mean

where an goes to infinity as n ! 1 but limn!1 an=n
is arbitrarily small.

Theorem 6. If a network has randomly deployed
sources and the transmission range r is such that not
all sources can directly reach the sink, then with high
probability the throughput upper bound k ¼ W =n is
not achievable.

Proof. The proof is based on the maximum num-

ber of simultaneous transmissions achievable

within the network. For every transmitter–receiver

pair, there is an interference area around the re-

ceiver, within which no nodes can transmit in or-

der for the receiver to receive successfully. In
particular this area is a circle of radius r þ D cen-

tered around the receiver. Denoted by ArþD, this

area satisfies

ArþD P pr2; ð5Þ

where equality holds when D ¼ 0. Since every re-

ceiving sensor needs the same amount of space, the

number of simultaneous transmissions, denoted by
t, that can be accommodated is

t <
1

ArþD
6

1

pr2
: ð6Þ

Note the first inequality is strict because circles
cannot create a perfect tessellation in a two di-

mensional area. Regardless of how the circles are

arranged, there will always be some uncovered

area. Denote by lm the minimum uncovered area

per transmitter–receiver pair as a result of a node

arrangement that minimizes the total uncovered

area. It can be shown that a very good approxi-

mation of lm is r2ð2
ffiffiffi
3

p
� pÞ (details can be found

in the Appendix A). Then

t6
1

pr2 þ lm

; ð7Þ

where equality holds when 1=ðpr2 þ lmÞ is an in-

teger. Following (7) the length of a schedule, de-

noted by s, that ensures all sources have a chance

to transmit has to satisfy the following

sP nðpr2 þ lmÞ: ð8Þ
Again equality holds when nðpr2 þ lmÞ is an inte-

ger. Denote by l the number of sources that use a

node that is one hop away from the sink as their
relay, including the relaying node itself. In order to

maximize throughput each of the node that is one

hop away from the sink has to get an equal share

of the total traffic load. Using Lemma 5 l can be

bounded with high probability as follows:

1

pr2 þ
ffiffiffiffiffiffiffiffiffi
an=n

p ¼ n
npr2 þ ffiffiffiffiffiffiffi

ann
p 6 l6

n
npr2 � ffiffiffiffiffiffiffi

ann
p

¼ 1

pr2 �
ffiffiffiffiffiffiffiffiffi
an=n

p ; ð9Þ

as n ! 1;
1

pr2 þ
ffiffi
�

p 6 l6
1

pr2 �
ffiffi
�

p : ð10Þ
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A node that is one hop away from the sink will

need to carry traffic from l source nodes thus

l � k ¼ W =s. As n ! 1, with high probability

k6
W

1
pr2þ

ffiffi
�

p nðpr2 þ lmÞ
6

W ðpr2 þ
ffiffi
�

p
Þ

nðpr2 þ lmÞ
: ð11Þ

Note that since lm is positive and fixed for fixed r,
and

ffiffi
�

p
can be made arbitrarily close to zero, as

n ! 1

k6
W ðpr2 þ

ffiffi
�

p
Þ

nðpr2 þ lmÞ
<

W
n
: ð12Þ

Thus k ¼ W =n is not achievable. h

Eq. (12) indicates that k is approximately (as

n ! 1, � close to zero) bounded by W pr2

nðpr2þlmÞ
¼ W

1:014n.

This is not a significant improvement on the W =n
upper bound. Nevertheless it shows that the trivial

upper bound is not achievable with high proba-

bility using multi-hopping. It is not immediately

clear whether or not this slightly tighter bound is

achievable with high probability for a random
topology. This is subject to further study. Here we

have assumed that the channel allocation does not

take into account difference in traffic load. In the

next subsection we will first construct achievable

throughput using multi-hopping following the

same assumption, then we will assume that chan-

nel allocation takes into account the difference in

traffic load and show that the achievable
throughput increases.
3.3. Achievable throughput

The following theorems construct capacities

that can be achieved with high probability in a

randomly deployed network that follows the con-

ditions outlined in Section 2. Again our results are
as functions of r and we assume the transmission

range r is large enough to guarantee connectivity.

In constructing these bounds we will assume that

the routing and relaying scheme is such that each

of the one hop away nodes carries an equal share

of the overall traffic. This is feasible given our

network model outlined in Section 2.
Theorem 7. A randomly deployed network using
multi-hop transmission for many-to-one communi-
cation can achieve throughput

kP
W
n

pr2 �
ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p

with high probability, when no knowledge of the
traffic load is assumed and � is as given in Lemma 5.

Proof. Consider a source that is at least 2r þ D
away from the closest border of the network. The

area of interference, when this source is transmit-
ting, is a circle of radius r0 ¼ 2r þ D centered at

this source. Using Lemma 5, with high probability

the number of interfering neighbors including the

source, k1, is
nAr0 �

ffiffiffiffiffiffiffi
ann

p
6 k1 6 nAr0 þ

ffiffiffiffiffiffiffi
ann

p
: ð13Þ

Consider the entire network represented as a

connected graph G(V,E), with edges connecting

nodes that are within each other�s interference
range (within 2r þ D). Then the highest degree of

this graph is k1–1, since k1 is the number of nodes

within any interference area. Using the known

result from graph theory, see for example [13,14],

the chromaticity of such a graph is upper bounded

by the highest degree plus one, which is k1–1þ 1 ¼
k1 in this case. Therefore there exists a schedule of

length at most s6 k1 that allows all sources to
transmit. The sources one hop away from the sink

will have to carry the traffic of the entire network.

The number of these one hop sources, k2, is bounded
with high probability as follows (Lemma 5):

nAr �
ffiffiffiffiffiffiffi
ann

p
6 k2 6 nAr þ

ffiffiffiffiffiffiffi
ann

p
. Therefore we have

n
nAr �

ffiffiffiffiffiffiffi
ann

p kP
n
k2
k ¼ W

s
P

W
k1

P
W

nAr0 þ
ffiffiffiffiffiffiffi
ann

p ;

1

Ar �
ffiffiffiffiffiffiffiffiffi
an=n

p kP
W

nAr0 þ
ffiffiffiffiffiffiffi
ann

p ;

as n ! 1; kP
W
n
� Ar �

ffiffi
�

p

Ar0 þ
ffiffi
�

p

¼ W
n
� pr2 �

ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p

ðsince
ffiffi
�

p
arbitrarily close to 0Þ

� W
4n 1þ D 1

r þ D
4r2

� �� � : �

ð14Þ



526 E.J. Duarte-Melo, M. Liu / Computer Networks 43 (2003) 519–537
In this proof we considered a source that is at

least 2r þ D away from the closest border of the

network because such a source is fully surrounded

by interfering neighbors. Therefore a source with

this characteristic has the largest number of in-

terfering neighbors in the network. Note that the
bound increases as r increases. This is because as r
increases the effect of a fixed D diminishes, i.e., D
becomes a smaller percentage of r. Conversely, an
increase in D decreases the bound as a larger

number of interfering neighbors will affect a given

source. When D ¼ 0 we can approximately achieve

k � W =4n. Also, if D ¼ r which is a common sit-

uation in many practical scenarios we can achieve
k � W =9n. Both cases seem to be independent of r.
This is because implicitly we required r to be such

that there is connectivity in the network to con-

struct this proof. Given this requirement is met,

then the achievable throughput capacity is inde-

pendent of the transmission range.

The above bound is constructed by finding a

schedule of length s6 k1 and assuming each source
gets an equal share of the bandwidth, represented

by W =s. As we have discussed, the nodes closer to

the sink carry more traffic. Equally sharing the

bandwidth necessarily means that nodes further

away from the sink will waste some of the assigned

slots. Intuitively allocating more share to the

nodes that carry more traffic should result in

higher throughput. The next theorem examines the
existence of such a schedule and derives a new

constructive lower bound based on this schedule.

Before proceeding to Theorem 8, it helps to

introduce a new concept virtual sources. This is

best illustrated with an example. Consider a simple

network consisting of three sources and a sink,

shown in Fig. 3. The distance between adjacent

nodes is r. Note that regardless of the value of D,
when one source transmits, it interferes with all

other sources in this network. Therefore only one

source can transmit at a time. The number of in-
21

d=r d=r

Fig. 3. Chain
terfering neighbors for any of the sources is two,

which is the highest degree of the graph that rep-

resents the interference relationship in this net-

work. Thus a schedule of length 3 allows all

sources to transmit once during the schedule. The

load on the source closest to the sink, Source 3, is
3k, since it carries the traffic of all three sources.

The achievable throughput is then calculated as

3k ¼ W =3, thus k ¼ W =9.
On the other hand, it is easy to see with this

example that k could achieve W =6. The way the

schedule was calculated previously assigned the

same share of the resources to all the sources.

Since we used the source with the highest need of
resource (the one carrying the most traffic) to

calculate the amount of resource needed, every

other source is wasting resource. In our example

we are giving every source the possibility of mak-

ing three transmissions. Source 3 does indeed need

all three transmissions, but Source 2 only needs

two and Source 1 only needs one, hence a total of

six transmissions.
Now consider a similar network only this time

we have three sources that can reach the sink,

shown in Fig. 4. We create a schedule where each

one of the sources gets to transmit once and once

only. However this time not all sources generate

data. Using labels shown in Fig. 4, Source 1 gen-

erates a packet and transmits it to Source 2a.

Source 2a relays the packet to Source 3a, who then
relays it to the sink. Then Source 2b generates a

packet and transmits it to Source 3b, who relays it

to the sink. Finally Source 3c generates and

transmits a packet to the destination. We can view

each column of sources in this network as an

equivalent of a single source in the previous ex-

ample, i.e., 2a and 2b combined is equivalent to 2

in Fig. 3, 3a, 3b and 3c combined is equivalent to
3, in terms of interference and traffic load. We will

define Sources 2a–2b and 3a–3c as virtual sources
in that they each represents one actual source in
d=r

3

network.
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3c

1
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Fig. 4. Virtual sources.
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the network but they are co-located in one physical

source. Adopting this concept, in this network the

highest number of interfering neighbors is 5 (with

a total of 6 virtual sources all in one interference
area) and therefore there exists a schedule of

length 6 that enables every virtual source to

transmit once. Since the traffic load is the same for

all virtual sources, the resources will be shared

equally and no source will be wasting its share. In

this case we get k ¼ W =6. Note that this is the

largest k that could be obtained for the example in

Fig. 3.
This concept allows us to define a ‘‘traffic load-

aware’’ schedule in the following way:

1. For each source node, create one virtual source

for every source node whose traffic goes

through this node, including itself.

2. Counting all the virtual sources we can deter-

mine the number of interfering neighbors (vir-
tual sources) k. The new maximum degree of

the interference graph is then k � 1.

3. A schedule of length s6 k exists which is equally

shared among virtual sources.

4. The achievable throughput per node is simply

the share obtained by any virtual source in the

network, i.e., k ¼ W =sPW =k.
Table 1

Traffic load

h nh

1 ½nAr �
ffiffiffiffiffiffiffi
ann

p
; nAr þ

ffiffiffiffiffiffiffi
ann

p �

2 ½3nAr � 2
ffiffiffiffiffiffiffi
ann

p
; 3nAr þ 2

ffiffiffiffiffiffiffi
ann

p �
. . . . . .

i ½ð2iAr � ArÞn� i
ffiffiffiffiffiffiffi
ann

p
; ð2iAr � ArÞnþ i

ffiffiffiffiffiffiffi
ann

p �
Here again we are not specifying how to find such

a schedule but rather we establish the existence of

such a schedule. The concept of virtual source is

used to prove the following theorem.

Theorem 8. A randomly deployed network using
multi-hop transmission for many-to-one communi-
cation can achieve

kP
WPh¼½2þD=r�

h¼1 lþh n
þ
h

with high probability, when knowledge of the traffic
load is assumed. lþh and nþh are the upper bounds on
the number of virtual sources per actual source and
the number of actual sources respectively, that are h
hops away from the sink with high probability.

Proof. Let us consider a source that is arbitrarily

close to the sink. We now derive the number of

virtual sources differentiated by the number of
hops to the sink. By the geometry of the circles

of radius r; 2r; . . . ; ir that are centered around the

sink we get the entries in Table 1 with high prob-

ability as n ! 1 (using Lemma 5). Then the

number of interfering neighbors, k, in terms of

virtual sources with high probability satisfies

k6
Xh¼½2þD=r�

h¼1

lþh n
þ
h : ð15Þ

The inequality is due to the fact that the right hand

side is summed to the next integer greater or equal

to 2þ D=r, and the fact that this is the number of
interfering neighbors calculated by considering a

node that is arbitrarily close to the sink. Note such

a choice leads to the maximum number of inter-

fering neighbors (virtual sources). Thus a schedule
lh
1

Arþ
ffiffi
�

p ; 1
Ar�

ffiffi
�

p
h i
1�Ar�

ffiffi
�

p

3Arþ2
ffiffi
�

p ; 1�Arþ
ffiffi
�

p

3Ar�2
ffiffi
�

p
h i
. . .
1�ði�1Þ2Ar�

ffiffi
�

p

ð2iAr�Ar Þþi
ffiffi
�

p ; 1�ði�1Þ2Arþ
ffiffi
�

p

ð2iAr�ArÞ�i
ffiffi
�

p
h i
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of length s6 k exists, and the per node throughput

with high probability is

k ¼ W
s

P
W
k

P
WPh¼½2þD=r�

h¼1 lþh n
þ
h

: � ð16Þ

The above result is not a direct or explicit function

of r and D, since the expression of the sum depends

on the value of D. The following corollary is

probably more interesting by assuming D ¼ 0.

Corollary 9. A randomly deployed network using
multi-hop transmission for many-to-one communi-
cation can achieve a throughput arbitrarily close to

W
nð2�pr2Þ, when knowledge of the traffic load is as-
sumed and D ¼ 0.

Proof. This is a direct result of Theorem 8 when
D ¼ 0.

kP
W

lþ1 n
þ
1 þ lþ2 n

þ
2

; ð17Þ

as n!1;

kP
W

n ðpr2þ
ffiffi
�

p
Þ 1

pr2þ
ffiffi
�

p
� �

þð3pr2þ2
ffiffi
�

p
Þ 1�pr2þ

ffiffi
�

p

3pr2�2
ffiffi
�

p
� �� � ;

ð18Þ

ðsince
ffiffi
�

p
arbitrarily close to 0; Þ

k � W
nð2� pr2Þ : � ð19Þ

Similarly, we have when D ¼ r, k � W
nð3�5pr2Þ.

Note that when traffic load is taken into ac-

count in scheduling, the achievable throughput of

the network is almost doubled, compared to the

throughput k � W =4n obtained previously. Also

note that even with D ¼ 0, r still has an effect on k.
As r increases so does k. This is because regardless
of D, as r increases, the number of sources one hop
away from the destination increases and thus each

source carries a smaller load.

3.4. Discussion

The results here essentially showed that

throughput on the order of HðW =nÞ is achievable.
As n ! 1, the two achievable throughput results

differ only by a constant multiplier. There is no

fundamental difference between the two asymp-

totically. Nevertheless, the difference is still of

practical interest. This is because although our

results are obtained with high probability as
n ! 1, they are applicable for a finite n if one

considers a perfectly deployed network such that

any equal size area contains the same number of

nodes, e.g., a grid.

There are some circumstances that might affect

our results. Note that the previous subsections

have intentionally avoided the boundary effect by

positioning the sink at the center and limiting r to
a value that allows the node close to the sink to

have its interference range within the network

area. If the sink is close to the edge, the area close

to the sink (one or two hops away) will be smaller

as they can only reach the destination from a

limited range of directions.

Let A1 be the area that contains the sources that

are one hop away and A2 be the area that contains
the sources that are two hops away. Let l1 be the

number of virtual sources per actual source node

that is one hop away and l2 is the number of vir-

tual sources per actual source node that is two

hops away. For the purpose of this discussion letffiffi
�

p
� 0, which means that l�h � lh � lþh as n ! 1.

Then the number of interfering neighbors, as-

suming D ¼ 0, for a source arbitrarily close to the
destination is k ¼ l1nA1 þ l2nA2, where l1 ¼ n

nA1
¼

1
A1

and l2 ¼ l1�1
A2=A1

¼ 1�A1

A2
. Thus k ¼ nð2� A1Þ. As A1

decreases the number of interfering neighbors in-

creases and so does the length of the schedule. In

turn the achievable throughput decreases. Thus

placing the sink near the border of the network

reduces the achievable throughput by reducing the

area close to the sink. Furthermore in this case it is
not clear whether the source node with the highest

number of interfering neighbors is the one arbi-

trarily close to the destination. Therefore the

achievable throughput might be reduced even

further. On the other hand, since these results are

lower bounds, one may still hope to achieve higher

throughput under certain conditions.

Another issue worth discussing is decentralized
scheduling, which would be highly desirable. So

far we only assumed that certain schedules exist
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but the generation of these schedules is highly non-

trivial. However, distributed methods that com-

pute schedules with similar performance are not

impossible. The traffic-load awareness discussed

above naturally exists in many MAC schemes

simply because nodes with lower traffic load will
compete for the channel less frequently and

therefore nodes with higher traffic load will get

more share. Transmission rate control schemes,

such as proposed in [15], combined with MAC

seems promising and could be an interesting future

study.
4. Capacity in a hierarchical network

In this section we outline the results for the

hierarchical network. As mentioned in the network

model, we will consider a hierarchical network by

introducing extra nodes as cluster heads. By doing

so we obtain more clarity in the resulting expres-

sions. H denotes the number of clusters (heads)
introduced. Each cluster head will create a cluster

containing the sources closest to it. Within each

cluster the communication is either via a single

hop or via multi-hop, while the communication

from cluster heads to the sink is assumed to be

done via a single hop on a different channel. Thus

cluster heads are assumed to have much higher

transmission power than source nodes. We assume
that cluster heads cannot transmit and receive si-

multaneously.

We will consider the following placement of the

cluster heads. Note in practice we may or may not

be able to control the location of these heads.

However, considering an ideal placement helps us

construct the achievable throughput of the net-

work. In order to avoid boundary problems, we
will assume there is at least a distance of 2ð2r þ DÞ
between any two cluster heads. We will also as-

sume that each cluster covers an area of the same

size, though not necessarily the same shape. Fol-

lowing these two assumptions and using Lemma 5

we have with high probability that the number of

nodes in each cluster is within
ffiffiffiffiffiffiffi
ann

p
of n=H , where

an is such that limn!1 an=n ¼ �. Therefore the
clusters essentially form a Voronoi tessellation [16]

of the field, where every cluster (or Voronoi cell)
contains a circle of radius 2r þ D. Consequently
sources located near the boundary between two

clusters will not have a higher number of inter-

fering neighbors (in terms of virtual sources), due

to low traffic load, than the ones closer to the

cluster heads. Thus previous results are directly
applicable and we do not have to be concerned

with the boundary.

4.1. Main results

We will refer to the throughput achieved within

a cluster (as opposed to that obtained in the entire

network) as k0. Note that since a cluster head needs
to split its time between transmission and recep-

tion, k0 is the per node throughput achieved during

the portion of time that the cluster head is re-

ceiving. The bounds on k0 are immediately avail-

able from our results in the previous section by

considering the cluster head as the sink and a total

of n
H sources in the network. Note that in general

the achievable throughput k0 is a function of H .
Intuitively, from previous results we expect each

cluster to achieve a higher throughput due to the

reduced number of sources in a cluster.

The question of interest is whether there exists

an appropriate number of clusters H that would

allow the network to achieve k ¼ W =n with high

probability using clustering, when cluster heads

have the same transmission capacity W as the
sources. That W =n remains to be the upper bound

is again obvious considering the fact that the

sink cannot receive from more than one node (at

rate W ), and that there are n sources in the net-

work.

In order to achieve the maximum capacity

k ¼ W =n, the sink has to be busy all the time,

which implies that at any given moment one of the
cluster heads must be transmitting. Since each

cluster has the same size, every cluster head would

need to transmit the same amount of data and

requires the same amount of time. If this limit is

achieved, it follows that each head transmits 1=H
fraction of the time, leaving 1� 1=H as the frac-

tion of time devoted to receiving from sources

within the cluster. In order to achieve W =n, total
throughput achieved within clusters must be at

least W :
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k0n 1

�
� 1

H

�
PW : ð20Þ

Using Theorem 7, we have

k0 P
W

n=H þ ffiffiffiffiffiffiffi
ann

p � pr2 �
ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p :

ð21Þ

Thus

k0n 1

�
� 1

H

�
P

W
n=H þ ffiffiffiffiffiffiffi

ann
p

� pr2 �
ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p n 1

�
� 1

H

�
: ð22Þ

Therefore if the following holds, (20) will hold:

as n ! 1;
W

nð1=H þ
ffiffi
�

p
Þ

� pr2 �
ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p n 1

�
� 1

H

�
PW :

ð23Þ

After some algebra it can be shown that we need

the following to satisfy (23) and (20):

H P
5pr2 þ 4prDþ pD2

pr2 �
ffiffi
�

p
þ ð4pr2 þ 4prDþ pD2Þ

ffiffi
�

p : ð24Þ

Since r > 0, DP 0 and
ffiffi
�

p
is arbitrarily close to 0,

(24) implies H is bounded from below by a positive

number. At the same time our assumptions on the

formation of clusters implies

H 6
1

pð2r þ DÞ2
: ð25Þ

Thus k ¼ W =n can be achieved under our network
assumption if

5pr2 þ 4prDþ pD2

pr2 �
ffiffi
�

p
þ ð4pr2 þ 4prDþ pD2Þ

ffiffi
�

p 6
1

pð2r þ DÞ2
;

ð26Þ
which means that the range of transmission r must

satisfy

20r4 þ 36Dr3 þ 25D2r2 þ 8D3r þ D4

r2 �
ffiffi
�

p
4r2 þ 4rDþ D2 � 1=p
� � 6

1

p
: ð27Þ
In the case of D ¼ 0 and letting
ffiffi
�

p
� 0, we need

r <
ffiffiffiffiffi
1

20p

q
. Therefore there is a range of transmis-

sion that allows us to achieve k ¼ W =n as n ! 1.

In the case of D ¼ r, we need r <
ffiffiffiffiffi
1

90p

q
. Note that

as the density of the network increases, the r nee-
ded for connectivity decreases. In fact as n goes to

infinity it has been shown in [11] that rðnÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞþcn

pn

q
ensures connectivity. Since we are deal-

ing with a fixed area size, increasing n increases our
density, therefore as n ! 1 it is always possible to

satisfy (24) and (25) and therefore find the number

of heads H needed to achieve k ¼ W =n.
Note that the equality in (20) holds when the

amount cluster heads receive from sources equals

the amount they transmit to the sink. Strict in-

equality is also feasible but that would imply that

sources send more to the cluster head than they

can delivery to the sink, which would eventually

lead to overflow.

If k0 is greater than the lower bound used above

then k ¼ W =n can be achieved with even less heads.
For instance if we use Corollary 9, k0 P W

n
Hð2�pr2Þ,

then we have

1� 1

H
P

W =n
W

n
Hð2�pr2Þ

; H P 3� pr2: ð28Þ

If single-hop communications are also used within

each cluster then, k0 ¼ Wn=H . In this case we

would need W
n=H nð1� 1=HÞPW , which means

H P 2.

Note that in both cases the minimum require-

ment on H is independent of n. The reason for this

is that both the capacity of the multi-hop and the
capacity for the single hops are of order HðW =nÞ,
which in this case relates to the communication on

the first layer within clusters and the second layer

between clusters. The analysis above allows us to

state the following theorem:

Theorem 10. In a network using clustering, where
cluster heads have the same transmission capacity W
as the sources, there exists an appropriate number of
clusters H and an appropriate range of transmission
r that would allow the network to achieve k ¼ W =n
with high probability as n ! 1.
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Now we consider the case where the transmis-

sion capacity of the cluster heads is W 0, assuming

W 0 > W . We want to know if there exists an ap-

propriate number of heads H that allows the net-

work to achieve k ¼ W 0=n, which would also be the

upper bound on capacity in this case. W 0=n is the
upper bound because the sink cannot receive at

rate more than W 0, and that there are n sources in

the network. The rest of the analysis is very similar

to the previous one. We therefore skip the rea-

soning and state that in order to achieve the ca-

pacity we need

k0n 1

�
� 1

H

�
PW 0: ð29Þ

Using Theorem 7 we can show if the following
holds then (29) will hold:

W
nð1=H þ

ffiffi
�

p
Þ �

pr2 �
ffiffi
�

p

4pr2 þ 4prDþ pD2 þ
ffiffi
�

p n 1

�
� 1

H

�

PW 0 as n ! 1; ð30Þ

which means we need

H P
5pr2 þ 4prDþ pD2

pr2 �
ffiffi
�

p
þ ð4pr2 þ 4prDþ pD2Þ

ffiffi
�

p � W
0

W
:

ð31Þ
H is lower bounded and has to satisfy H 6

1

pð2rþDÞ2.

For the same reason as before, as n ! 1 there

always exists an r that will enable us to use the H
needed to achieve k ¼ W 0=n. Again, if k0 is greater
than the lower bound used above then k ¼ W 0=n
can be achieved with even fewer heads. Using

Corollary 9, k0 P W
n
Hð2�pr2Þ, we need

1� 1

H
P

W 0=n
W

n
Hð2�pr2Þ

; H P ð3� pr2ÞW
0

W
: ð32Þ

In this case, H remains independent of n for the

same reason discussed before. However, it is de-

pendent on W 0. This is because in order to achieve

higher throughput (due to W 0 PW ), we need

smaller clusters. The above analysis allows us to

state the following theorem.

Theorem 11. In a network using clustering, where
cluster heads have transmission capacity W 0, there
exists an appropriate number of clusters H and an
appropriate range of transmission r, as n ! 1, that
allows the network to achieve k ¼ W 0=n with high
probability. W 0=n is also the upper bound on
throughput in this scenario.

4.2. Discussion

The results in this section showed higher

throughput can be achieved by using clustering.

However this comes at a cost, which is the extra

nodes functioning as cluster heads. These extra

nodes will require a bigger transmission range/rate

and a greater energy reserve to handle the trans-
missions required. They will also require a second

channel so that their transmissions do not interfere

with the transmissions within the cluster. The idea

in this section is that while previously the only way

to achieve k ¼ W =n was with direct transmission,

where all n nodes need to be able to reach the sink

in a single hop, in this section we showed how that

result can be achieved with only a handful of
‘‘enhanced’’ or more powerful nodes. Moreover

the number of these enhanced nodes does not de-

pend on n.
The introduction of these cluster heads brings

two important differences compared to the flat

architecture. One is the longer range of transmis-

sion of the cluster heads and the second one is the

existence of a second channel. The longer range of
transmission is needed to keep the sink busy 100%

of the time. Without this, it is not possible to

achieve k ¼ W =n. Regarding the second channel,

consider the hierarchical network case where we

use W within clusters and W from clusters to sink.

We have shown that it is possible to obtain

k ¼ W =n. However, if we use 2W as the trans-

mission capacity in a flat network, it is not im-
mediately clear that we can achieve k ¼ W =n.
Therefore we believe the reason why the hierar-

chical network achieves a higher throughput is due

to the combination of the ability of the cluster

heads to reach the sink in a single hop, as well as

the clustering architecture.

We showed the minimum requirement on the

number of clusters needed to achieve the capacity.
The feasibility of this obviously depends on the

size of the network and the range of transmission

r. Throughout the paper we have assumed that r is
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sufficiently large to ensure connectivity without

quantifying it. Here we use the same assumption.

It is reasonable to expect that as long as the net-

work is large enough, this minimum number of

clusters should be able to be accommodated.

Instead of introducing new nodes, one could
have used some of the sources as cluster heads

assuming they use a different channel and higher

transmission power for communicating with the

sink. Minor changes would occur in our equations

following this model. The end conclusion would

remain the same. The difference is that H would

then represent the number of sources to be sub-

stituted instead of the number of nodes to be in-
troduced.

The result of using more than the required

number of heads is that each head will increase its

idle time. That can be an advantage in a more

practical scenario where that ‘‘idle’’ time can be

used for synchronization or the exchange of con-

trol messages. So while the result presented in the

previous section is theoretically valid, in a practical
scenario we will need to increase the number of

heads.
5. Discussion

5.1. Energy consumption

In this subsection we attempt to reveal certain

trade-offs between energy consumption and

achievable throughput. The previous section de-

rived asymptotic bounds on the transport capacity

as the number of sensors in the network grows

infinitely. These limiting results do not directly

apply to a deployment with fixed, finite number of

sensors. More specifically, we were able to bound
the number of sensors in a fixed area A to be withinffiffiffiffiffiffiffi
ann

p
of mean nA with high probability as n ! 1

(Lemma 5). Such a result does not exist when n is

fixed. However, if we imagine a perfectly typical
deployment that happens to have precisely nA
sensors in an area of A, then all the previous results

would apply to a network with fixed n by simply

replacing the interval (of half width
ffiffiffiffiffiffiffi
ann

p
) around

the mean nA by the mean itself. This is obviously

an ideal imaginary scenario since for any random
deployment of n sensors, the probability of having

precisely nA sensors in an area of A indeed di-

minishes as n becomes large. Nevertheless, this is

the network scenario we are going to assume in

this subsection for the following reasons. Firstly,

such a perfectly typical network can be viewed as
the average of a large number of random deploy-

ments. Secondly and more importantly, this allows

us to compare our capacity results with the energy

consumption results of [17] and discuss the trade-

offs under a finite setting. Consequently, the results

presented in this subsection are averages.

We briefly restate the assumptions we made in

[17]. We considered the energy consumed under
ideal conditions, by assuming that when a node is

neither transmitting nor receiving it would be

asleep and does not consume any energy. Also, the

energy model used was such that the energy con-

sumed in transmitting b bits was EtðrÞ ¼ ðet þ
edraÞb, where et and ed are specifications of the

transceiver used by the nodes, and r is the trans-

mission range. Note that we did not consider
power control, therefore for a given scenario r was
fixed. a depends on the characteristics of the

channel, with typical values of 2 and 4. The

channel considered was time invariant, thus a was

constant. Energy consumed in receiving b bits was

Er ¼ erb, where er also depends on the transceiver

used by the node. We did not consider the energy

consumed by the sink. We also assumed that the
total area of the network was A instead of unit

since we examined the effect of different network

scales.

We reproduce here the relevant results of [17] to

aid our discussion. In a flat network, the energy

consumed, E, is

E ¼ xEtðrÞ þ ðx� nÞEr; ð33Þ

where x is the total number of transmissions re-

quired to deliver one packet from every node to
the sink. Details on x and its calculation can be

found in [17].

In the above case the network consists entirely

of sensing nodes, meaning each node not only re-

lays data, but also generates data. Duarte-Melo

and Liu [17] also considered a network with u
nodes that generate data, and v nodes that act only
as relays, both randomly deployed. It was shown
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that the energy consumed is E ¼ yEt þ ðy � uÞEr,

where y only depends on u, not v. This means that

if we have a network with n nodes and to that we

add v nodes acting as relays, the minimum amount

of energy consumed in the network does not

change for a given transmission range. However,
by introducing extra nodes, a smaller range of

transmission is sufficient to ensure connectivity.

Depending on the size of the network area, this

could be beneficial.

In a hierarchical network the energy consumed

is

EH ¼ ðx0ðEtÞ þ x0ðErÞ þ
n
H
EtðRÞÞH ; ð34Þ

where x0 is the number of transmissions performed

by the nodes in a cluster. Also, EH1
� EH2

P 0 when

H1 < H2, meaning that as the number of heads

increases, the energy consumed decreases. Both
results are plotted in [17] for a few different area

sizes. Those results show that a flat network con-

sumes less energy if the area of the network is

large, and a hierarchical network consumes less

energy if the area is small.

Based on the results from [17] and the results

from the previous section, small networks would

benefit from the use of clusters, which reduces the
energy consumption and increases capacity.

However, in large networks a trade-off exists. If

the capacity of the flat network is enough for the

application, then one should design the network to

use multi-hop transmission in order to save en-

ergy. If higher capacity is needed then a hierar-

chical architecture should be used at the expense of

energy consumption.
Figs. 5–7 show the results for the energy con-

sumption of the flat network (left Y -axis) and the

capacity that can be achieved in the same network

(right Y -axis). We see that while energy con-

sumption is affected by the scale of the network,

capacity is not (it does change the feasible range of

r to ensure connectivity). This means that the re-

lation between energy and capacity changes as the
scale of the network changes. In particular, we see

that at small scales, the capacity increases as the

energy consumption decreases. At large scales, the

capacity increases only as the energy consumption

increases.
It is important to mention that this set of figures

show significant difference in how the energy

consumption changes with the transmission range.

This is because at smaller scales (network size) et is
the dominant part of the energy consumption, thus

as r increases, the energy consumption decreases
(see Fig. 5). At a bigger scale, as r increases the

energy consumption increases because the domi-

nant part of the energy consumption becomes re-

lated to the square of the distance, meaning that

we are better off with many small hops than a

few large ones (see Fig. 7). This observation is
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important because it is generally accepted that

smaller hops are better than large ones when it

comes to energy consumption. What this shows is

that the answer depends on the scale of the net-
work.

5.2. In-networking processing

Our capacity results essentially showed that the

many-to-one communication is less scalable than

the random communication case as reported in [5].

On the other hand many-to-one is the dominant
communication in a data-gathering sensor net-

work. This means that for certain applications, the

capacity needed may severely limit the feasible size

of the network in terms of number of sensors de-

ployed. To make large-scale wireless sensor net-

work feasible, the need for methods that can

reduce the number of bits needed from each sensor

has long been recognized and has motivated re-
search in distributed data compression and source

coding, distributed signal processing, or more

generally, in-network processing of sensor data

(see for example [18]). The idea is to increase the

amount of data processing within the network so

that the amount of traffic is reduced. This reflects

the need for a dynamic relationship between the

amount of processing vs. the amount of commu-
nication required to accomplish a task.

In the case of data-gathering, e.g., for the pur-

pose of image reconstruction of the sensing field,
scalability may be improved by exploiting the

correlation among data from neighboring sensors

as we deploy more and more sensors into the field.

A sensor can either use distributed data compres-

sion schemes or simply compress its own data

based on data received from other sensors to be
relayed (conditional coding). This means that less

energy is consumed in communication, and likely

less energy consumption overall (energy consumed

in communication is generally much more than

energy consumed in processing). Viewed from a

different perspective, compression can also be used

to enhance the quality of received data. To see this

imagine a given network with a transport capacity
of x bits per second per sensor. This throughput

allows us to use a quantizer with a certain step size.

Now suppose that the same network uses data

compression within the network. This will allow

the nodes to transmit the same amount of infor-

mation with less number of bits. It follows then

that with the same number of bits each sensor can

now deliver data with a smaller quantization error.
It is worth mentioning that in a recent work [19]

it was shown that regardless of the coding scheme

used, as n ! 1 the amount of information that

has to be transmitted grows faster than the ca-

pacity of a wireless network working in a many-

to-one fashion under the assumptions outlined in

Section 2. This points to the importance of con-

sidering a more sophisticated physical layer model
that can potentially outperform HðW =nÞ, as well

as sensor sleeping (suppression methods that can

limit the number of active sensing nodes). These

are part of ongoing research.

5.3. Practical implications

In addition to the theoretical results presented

in this paper, there are also practical implications

that can be obtained from these results. Our ulti-

mate goal is to apply the understanding of fun-

damental limits in the design of practical sensor
networks. In this section we point out some of the

practical issues that arise as a consequence of the

results of the previous sections.

First we examine the choice of an efficient MAC

scheme. In constructing the two lower bounds on

transport capacity we have clearly shown that in
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the case of many-to-one communication higher

per sensor throughput is achieved by having a

traffic-load-aware MAC. In other words, we need

a MAC scheme that will allocate resources pro-

portional to the amount of communication each

sensor has to perform. In general, a contention
based MAC may result in resource allocations that

reflect communication needs. However, due to

collision the actual achievable throughput may be

significantly reduced. The development of such a

scheme and its distributed implementation is sub-

ject to further study. Potential candidates include

methods proposed in [15].

A second important implication is the organi-
zation of a sensor network, i.e., flat vs. hierarchi-

cal. As we have seen from our previous discussion,

there is no general answer to this. A hierarchical

structure can easily achieve the throughput ca-

pacity at the expense of more powerful sensors

serving as cluster heads. At the same time, this

may result in higher energy consumption especially

for a network covering a large area. When clus-
tering is used, the proper placement of cluster

heads is of great importance. Throughout the pa-

per we have assumed that all clusters are of

roughly the same size. However, if the deployment

of cluster heads is random, then there is no obvi-

ous way to ensure that the actual outcome of the

deployment will satisfy our assumption. One pos-

sible solution is to add redundancy and deploy
more cluster heads than needed, but only use a

subset of them based on some selection algorithm.

This allows us to create a more even distribution of

selected cluster heads.
Fig. 8. Non-overlapping receiving areas.
6. Conclusion

In this paper we have studied the capacity and

scalability issues related to many-to-one commu-

nication in a data-gathering wireless sensor net-

work. We showed that overall the transport
capacity of such a network is HðW =nÞ per sensor

node. We derived an upper bound as well as con-

structive lower bounds for both the flat and the

hierarchical network architecture. Through con-

structing the achievable lower bounds on capacity

we showed that knowledge of the traffic load can
double the achievable throughput of a network

with multi-hop communications. Using a hierar-

chical architecture and introducing extra nodes as

cluster heads can achieve the ultimate upper

bound on throughput capacity. Moreover, the

number of clusters needed to reach the capacity of
the network is independent of n. Placing a second

layer of nodes with higher transmission rate and

using clustering can exceed the capacity of the flat

network.
Appendix A

Adopting the same notations we proceed as

follows. Any arrangement that minimizes the un-

covered area would have the circles making con-

tact with each other. Also such an arrangement

would be a regular arrangement since an irregular

arrangement would mean that at some parts of the

network the uncovered area is bigger than in

others, meaning that a better arrangement exists.
Based on this consider the arrangement seen in

Fig. 8. We have the circles aligned in rows, one on

top of the other. Fixing the circles in the top row

and shifting the circles in the bottom row we get to

the position shown in Fig. 9

We create imaginary lines that join the center of

the circles as shown in Fig. 10. The sliding of the

lower circles can be represented as the change in
angle a. Letting a range from p=2 to 2p=3 allows us
to obtain all possible arrangements. We need to

find the arrangement that minimizes the uncovered

area.

Let Y be the area surrounded by the circles, as a

function of a. Simple geometry yields

Y ¼ 8r2 cos
a
2
sin

a
2

� �
� pr2: ðA:1Þ



Fig. 9. Non-overlapping receiving areas––shifted.

α

Fig. 10. Uncovered area.

Fig. 12. Minimum uncovered area.
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This is a monotonously decreasing function in a
and Y is minimized at a ¼ 2p=3, as shown in Fig.

11. Note that a higher a would force overlapping

of circles.

Using such an a, a given circle is surrounded as

shown in Fig. 12. A circle thus ‘‘contributes’’ to six

uncovered spaces. Each of those six areas mea-

sures r2ð
ffiffiffi
3

p
� p=2Þ. Each uncovered space is

shared by three circles, thus
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Fig. 11. Y vs. a.
lm ¼ 6

3
� r2

ffiffiffi
3

p��
� p

2

��
¼ r2ð2

ffiffiffi
3

p
� pÞ: ðA:2Þ

Using our approximation of lm in Theorem 6we get

k6
W

1:014n
: ðA:3Þ
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