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Abstract—We analyze the following group learning problem
in the context of opinion diffusion: Consider a network with M
users, each facing N options. In a discrete time setting, at each
time step, each user chooses K out of the N options, and receive
randomly generated rewards, whose statistics depend on the
options chosen as well as the user itself, and are unknown to the
users. Each user aims to maximize their expected total rewards
over a certain time horizon through an online learning process,
i.e., a sequence of exploration (sampling the return of each
option) and exploitation (selecting empirically good options)
steps. Different from a typical regret learning problem setting
(also known as the class of multi-armed bandit problems),
the group of users share information regarding their decisions
and experiences in a broadcast network. The challenge is that
while it may be helpful to observe others’ actions in one’s
own learning (i.e., second-hand learning), what is considered
desirable option for one user may be undesirable for another
(think of restaurant choices), and this difference in preference
is in general unknown a priori. Even when two users happen to
have the same preference (e.g., they agree one option is better
than the other), they may differ in their absolute valuation of
each individual option.

Within this context we consider two group learning scenarios,
(1) users with uniform preferences and (2) users with diverse
preferences, and examine how a user should construct its learn-
ing process to best extract information from others’ decisions
and experiences so as to maximize its own reward. Performance
is measured in weak regret, the difference between the user’s
total reward and the reward from a user-specific best single-
action policy (i.e., always selecting the set of options generating
the highest mean rewards for this user). Within each scenario
we also consider two cases: (i) when users exchange full informa-
tion, meaning they share the actual rewards they obtained from
their choices, and (ii) when users exchange limited information,
e.g., only their choices but not rewards obtained from these
choices. We show the gains from group learning compared to
individual learning from one’s own choices and experiences.

I. INTRODUCTION

We analyze the following group learning problem in the
context of opinion diffusion: Consider a network with M
users, each facing N options. In a discrete time setting, at
each time step, each user chooses K out of the N options,
and receive randomly generated rewards, whose statistics
depend on the options chosen as well as the user itself, and
are unknown to the users. Each user aims to maximize its
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expected total reward over a certain time horizon through
an online learning process, i.e., a sequence of exploration
(sampling the return of each option) and exploitation (s-
electing empirically good options) steps. Taken separately,
an individual user’s learning process may be mapped into a
standard multi-armed bandit (MAB) problem which has been
extensively studied, see e.g., [5], [2], [3].

Our interest in this study, however, is on how an indi-
vidual’s learning process may be affected by “second-hand
learning”, i.e., by observing how others in the group act. The
challenge is that while it may be helpful to observe others’
actions to speed up one’s own learning, what is considered
desirable option for one may be undesirable for another (think
of restaurant choices: one Yelp user’s recommendation may
or may not be useful for another), and this difference in
preference is in general unknown a priori. Moreover, even
when two users happen to have the same preference (e.g.,
they agree one option is better than the other), they may
differ in their absolute valuation of each individual option
(again think of restaurant choices: two Yelp users may agree
restaurant A is better than B, but one user may rate them 5
and 4 stars respectively, while the other may rate them 4 and
3 stars, respectively).

Consequently it seems that if an individual wants to take
others’ actions into account in its own learning process, it
would also need to figure out whether their preferences are
aligned, which may add to the overhead in the learning pro-
cess. This raises the interesting question of whether learning
from group behavior is indeed beneficial to an individual,
and if so what type of learning algorithm can effectively
utilize the group information in addition to its own direct
observations. This is what we aim to address in this paper.

We will assume that users are heterogeneous in general,
i.e., when using the same option they obtain rewards driven
by different random processes with different mean values.
We then consider two scenarios. (1) In the first, users have
uniform preference ordering of the N options. This means
that even though they may value each options differently
(i.e., have different reward statistics), they always have the
same preference ordering. (2) In the second, users have
diverse preference orderings of the N options, meaning
that one user’s best options are not so for another. Within
each scenario we also consider two cases: (i) when users



exchange full information, meaning they disclose the actual
rewards they obtained from their choices, and (ii) when users
exchange limited information, e.g., only their choices but
not rewards obtained from these choices. For each of these
cases we examine how a user should construct its learning
process to best extract information from others’ decisions and
experiences so as to maximize its own reward. Performance
is measured in weak regret, the difference between the
user’s total reward and the reward from a user-specific best
single-action policy (i.e., always selecting the set of options
generating the highest mean rewards for this user).

This problem can also be viewed as a learning problem
with contextual information (or side information in some
literature), see e.g., [4], [7], [6]. However, in these studies sta-
tistical information linking a user’s own information and the
side information is required in the following sense. Denote
by X a user’s observation and by Y the side information (say
shared information from other users), the knowledge of the
conditional probability of observing X (i.e., p(X|Y )) needs
to be given or assumed. In contrast, we do not require such
statistical information; instead we examine how a user can
estimate and learn from the shared, and possibly imperfect
side information.

The paper is organized as follows. Section II gives the
system model. Sections III and IV analyze the uniform and
diverse preference scenarios, respectively. Numerical results
are presented in Section V and Section VI concludes the
paper.

II. PROBLEM FORMULATION AND SYSTEM MODEL

Consider a system or network of M users indexed by the
set U = {1, 2, ...,M} and a set of available options denoted
by Ω = {1, 2, ..., N}. The system works in discrete time
indexed by t = 1, 2, .... At each time step a user can choose
up to K options. For user i an option j generates an IID
reward denoted by random variable Xi

j , with a mean reward
given by µij := E[Xi

j ]. We will assume that µil 6= µij , l 6=
j,∀i ∈ U , i.e., different options present distinct values to a
user. We will denote the set of top K options (in terms of
mean rewards) for user i as N i

K and its complement N
i

K .
Denote by ai(t) the set of choices made by user i at time t;
the sequence {ai(t)}t=1,2,··· constitutes user i’s policy.

Following the classical regret learning literature, we will
adopt the weak regret as a performance metric, which mea-
sures the gap between the total reward (up to some time T )
of a given learning algorithm and the total reward of the best
single-action policy given a priori average statistics, which in
our case is the sum reward generated by the top K options for
a user. This is formally given as follows for user i adopting
algorithm a:

Ri,a(T ) = T ·
∑
j∈NiK

µij − E[

T∑
t=1

∑
j∈ai(t)

Xi
j ] (1)

The goal of a learning algorithm is to minimize the above
regret measure.

As mentioned in the introduction, we consider two scenar-
ios. In the first case, users share the same preference ordering
over the N options, i.e., if µij1 > µij2 , j1, j2 ∈ Ω, then
µkj1 > µkj2 , ∀k 6= i, k ∈ U . This implies that N i

K = Nk
K ,

∀i, k ∈ U . This will be referred to as the uniform preference
scenario.

In the second, the diverse preference scenario, users have
different preference orderings over the N options. Specif-
ically, in this case we will assume that the M users may
be classified into G distinct groups, indexed by the set
G = {1, 2, ..., G}, with users within the same group (say
group l) having a unique K-preferred set N l

K , assumed to be
public knowledge. Note that even with the same preferred set,
users may be further classified based on the actual ordering
of these top K options. Our model essentially bundles these
sub-classes into the same group, provided their top K choices
are the same. This is because as a user is allowed K choices
at a time, further distinguishing their preferences within these
K options will not add to the performance of an algorithm.

Under each scenario, we further consider two types of
information shared/exchanged by the users. Under the first
type, users disclose full information: they not only announce
the decisions they make (the options they choose), but also
the observations following the decisions, i.e., the actual
rewards received from those options. Such announcements
may be made at the end of each time step, or may be made
periodically but at a lesser frequency. The second type of
exchange is partial information where users disclose only
part of decisions and/or observations. Specifically, we will
assume that the users only share their decision information,
i.e., the set of choices they make, at the beginning of
each time step, but withhold the actual observation/reward
information following the decisions.

III. GROUP LEARNING WITH UNIFORM PREFERENCE

Without loss of generality, we will assume that under the
uniform preference ordering we have µi1 > µi2 > ... >
µiN ,∀i ∈ U .

A. Uniform preference, full information (U FULL)

This case will be referred to as U FULL. Under this
model users not only broadcast their decisions within the
network, but also release observations of selected options’
quality/rewards at the end of each time step. Since users have
the same preference ordering, a fact assumed to be known to
the users, it would seem straightforward that one user could
easily learn from another. The challenge here lies in the fact
that the statistics driving the rewards are not identical for
all users even when using the same option. So information
obtained from another user may need to be treated differently
from one’s own observations.



In general the reward user i obtains from option j may be
modeled as

Xi
j = f(Xj ,Ni,Li) , (2)

where f(·) is some arbitrary unknown function, Xj describes
certain intrinsic or objective value of option j that is inde-
pendent of the specific user (e.g., the bandwidth of a channel,
or the rating given to a restaurant by AAA, and so on), Ni
is a noise term, and Li captures user-specific features that
affect the perceived value of this option to user i (e.g., user
i’s location information or transceiver specification which
may affect its perceived channel quality, or user i’s dietary
restriction which may affect its preference for different types
of restaurants). For simplicity in this study we will limit
our attention to the following special case of user-specific
valuations, where the rewards received by two users from
the same option are given by a linear relationship:

µij/µ
k
j = δi,kj . (3)

The scaling factor δi,kj will be referred to as the distortion
or distortion factor between two users.

Under this model it can be seen that a user could recov-

er/convert observations from other users for its own use by
estimating the distortion. Consider two users i and k, and
option j. Denote by rij(t) the sample mean reward collected
by i directly itself from option j up to time t. This quantity
is not only available to user i, but also to all other users k
due to the full information disclosure, and vice versa. User
i then estimates the distortion between itself and user k by
δ̃i,kj (t) = rij(t)/r

k
j (t).

With this quantity we then make the following simple
modification to the well-known UCB algorithm introduced
in [3]. In the original UCB (or rather, a trivial multiple-play
extension of it), user i’s decision ai(t) at time t is entirely
based on its own observations. Specifically, denote by nij(t)
the number of times user i has selected option j up to time t.
The original UCB then selects option j at time t, if its index
value given below is among the K highest:

UCB index: rij(t) +

√
2 log t

nij(t)
. (4)

Under the modified algorithm (referred to as the
U FULL algorithm), option j is selected at time t if
its index value defined below is among the K highest:

U FULL index:

∑t
m=1X

i
j(m) · Ij∈ai(m) +

∑
k 6=i

∑t
m=1 δ̃

i,k
j (m)Xk

j (m) · Ij∈ak(m)∑
i∈U n

i
j(t)

+

√
2 log t∑
i∈U n

i
j(t)

. (5)

We have the following results on algorithm U FULL.
Theorem 3.1: The weak regret of user i under U FULL is

upper bounded by

RiU FULL(t) ≤
∑
j∈NiK

d 8 log t

M ·∆i
j

e+ const. (6)

where ∆i
j = µiK − µij .

Proof 1: The proof can be found in Appendix-A, in which
Lemma A.2 and Theorem 3.1 are proved simultaneously.
Under the original UCB algorithm [3] a single user’s weak
regret is upper bounded by (the superscript i is suppressed
here because the result applies to any single user)

RUCB(t) ≤
∑
j∈NK

d8 log t

∆j
e+ const. (7)

Therefore we see that there is potential gain in group learn-
ing. Note however the improvement is not guaranteed as it
appears in an upper bound, which does not necessarily imply
better performance. The performance comparison is shown
later via simulation.

It can be shown that similar result exists when the full
information is broadcast at periodic intervals but not neces-

sarily at the end of each time step.

B. Uniform preference, partial information (U PART)

We now consider the case where users only share their
decisions/actions, but not their direct observations. This case
(and the associated algorithm) will be referred to as U PART.
The difficulty in this case comes from the fact that to a user
i, even though other users’ actions reflect an option’s relative
value to them (and by positive association to user i itself),
the actions do not directly reveal the actual obserations.

Denote by nj(t) the total number of times option j has
been selected by the entire group up to time t. Then βj(t) :=

nj(t)∑
l∈Ω nl(t)

denotes the frequency at which option j is being
used by the group up to time t. This will be referred to as
the group recommendation or behavior. Several observations
immediately follow. Firstly, we have

∑
j∈Ω βj(t) = 1,∀t.

Secondly, as time goes on, we would like better options j to
be selected with higher frequency, i.e., larger βj(t).

With these observations, we construct the following algo-
rithm U PART, by biasing toward potentially good options
as indicated by the group behavior. Under the U PART
algorithm, option j is selected at time t if its index value



defined below is among the K highest:

U PART index:

rij(t)− α(1− βj(t))
√

log t
t +

√
2 log t
nij(t)

, (8)

where α is a weighting factor over the group recommenda-
tion.

A few remarks are in order. In the above index expression,
the middle, bias term serves as a penalty: a larger group
frequency βj(t) means a smaller penalty. But its effect
diminishes as t increases. This reflects the notion that as
time goes on a user becomes increasingly more confident
in its own observations and relies less and less on the group
recommendation. Lastly, the weight α captures how much the
user values the group recommendation compared to its own
observations, with a small value indicating a small weight.

We have the following result on the U PART algorithm.
Theorem 3.2: The weak regret of user i under U PART is

upper bounded by

RiU PART(t) ≤
∑
j∈NiK

d4(
√

2− α(1− βj(t)))2 log t

∆i
j

e+ const. ,

(9)

and βj(t) ≤ O( log t
t ).

Proof 2: Proof can be found in Appendix-B.
Again, compared to the bounds from the original UCB,

we potentially achieve a better performance as the bound
constant decreases from 8 to 4(

√
2 − α(1 − βj(t)))

2 with
the group recommendation mechanism, but with the same
cautionary note on the upper bound. The performance com-
parison is shown in simulation results later.

IV. GROUP LEARNING WITH DIVERSE PREFERENCES

A. Diverse preferences, full information (D FULL)
To capture simultaneously the group difference and the

individual difference, we will assume that the mean rewards

received by two users from option j are related as follows:
Since different groups may have its own identity information,
the direct attenuation factor model may fail to catch the
observation differences between different groups. To illus-
trate the idea better we consider a slightly different model
compared to the uniform group case. Consider the following
model:

µij = dik + δi,kj · µ
k
j , (10)

where the additive term dik is the preference distance be-
tween groups: dik = 0 for i, k belonging to the same group,
while the multiplicative term δi,kj remains the distortion
between two individuals beyond the group difference.

For group identity to be meaningful one would expect
the group distance values d to be on a higher order of
magnitude than the individual distortion values δ. One way
to learn from the shared information is then to identify one’s
group affiliation with respect to others’, which is then used
to weigh different observations from different individuals.
Here we assume users know the group preference distances
dik. We introduce the following sample frequency based
group identity classification mechanism. Each user keeps
the same set of statistics nij(t) as before: the number
of times user i is seen using option j. From these a
user tries to estimate another’s preference by ordering
the statistics: at time t user i’s preference is estimated
to be the set Ñ i

K(t), which contains elements/options j
whose frequency nij(t) is among the K highest of all i’s
frequencies. User i is then put in the preference group l with
whose (known) preferred set N l

K its estimated preference
Ñ i
K(t) is the closest in distance, defined as follows:

Assign user i to group gi(t) if: gi(t) = l∗ = argmaxl∈G D
i,l(t) = |Ñ i

K(t) ∩N l
K | , (11)

with ties broken randomly.
We again estimate the pair-wise distortion factor

in a manner similar to the uniform preference case:

δ̃i,kj (t) = rij(t)/(r
k
j (t) − dik). The resulting D FULL

algorithm run by user i then selects, at time t, an option
j if its index value given below is among the K highest:

D FULL index:

∑t
m=1X

i
j(m) · Ij∈ai(m) +

∑
k 6=i

∑t
m=1 δ̃

i,k
j (m)Xk

j (m) · Ij∈ak(m)∑
i∈U n

i
j(t)

+

√
2 log t∑
i∈U n

i
j(t)

. (12)



We have the following result on algorithm D FULL.
Theorem 4.1: For each user j belonging to group r we

have that the probability of incorrect classification at time t
is bounded as

P (gj(t) 6= r) ≤ C1 ·
log t

t
,∀(j, r), t. (13)

for some positive constant C1.
Proof 3: We provide a sketch of the proof here. The main

idea is to bound the probability that the number of times
sub-optimal arms are played being higher than that of the
optimal arms by time t. Consider j ∈ NK and ∗ ∈ NK .

P (

t∑
n=1

Ia(n)=j ≥
t∑

n=1

Ia(n)=∗)

= P (

t∑
n=1

Ia(n)=j ≥
t∑

n=1

Ia(n)=∗|
t∑

n=1

Ia(n)=∗ ≥ O(t))

· P (

t∑
n=1

Ia(n)=∗ ≥ O(t))

+ P (

t∑
n=1

Ia(n)=j ≥
t∑

n=1

Ia(n)=∗|
t∑

n=1

Ia(n)=∗ < O(t))

· P (

t∑
n=1

Ia(n)=∗ < O(t)) (14)

Each term can in turn be bounded using Markov inequality
to get the desired result. Details are omitted for brevity.

Theorem 4.2: Under algorithm D FULL, user i’s weak
regret is upper bounded by

RiD FULL(t) ≤
∑
j∈NiK

d 8 log t

M ·∆i
j

e+ const. , (15)

Proof 4: The proof of Theorem 4.2 follows similarly the
case of uniform preference, and is thus omitted.

B. Diverse preferences, partial information (D PART)
As in the case of D FULL we can track for each user

nij(t) and obtain the frequency of choices βij(t), and use
this information to perform group classification. A user i
then assigns a weight to an option j given by the ratio. Our
algorithm proceeds in parallel with the uniform group case
except for the following difference: each group will assign
another group with certain discount for their observations
instead of raw statistics. To be specific, user i will assign the
following weight to the jth option:

βij(t) =

∑
k∈U (nkj (t))ω

i,k∑
m∈Ω

∑
k∈U (nkm(t))ωi,k

, (16)

where weights ωi,k = 1 if i estimates user k to be in the
same group as itself, and ωi,k < 1 otherwise. ωi,k can also
be chosen as a function of the group distance.

The resulting algorithm D PART is as follows, where user
i chooses option j if its index value is among the top K

highest:

D PART index:

rij(t)− α(1− βij(t))
√

log t
t +

√
2 log t
nij(t)

, (17)

The upper bound on the weak regret under D PART is the
same as in the case of U PART.

Theorem 4.3: Under algorithm D PART, user i’s weak
regret is upper bounded by

RiD PART(t) ≤
∑
j∈NiK

d
4(
√

2− α(1− βij(t)))2 log t

∆i
j

e+ const.,

(18)

where βij(t) ≤ O( 1
tωd

) for some 0 < ωd < 1.
Proof 5: The proof follows similarly as in the uniform

reference case with partial information exchange. Below we
only sketch the main difference which comes from bounding
the sample frequency of other users. First we note that∑

l∈Ω

∑
j∈U

nω
gi,gj

l (t) = O(t) . (19)

For user j within the same group as user i we have

E[nω
gi,gj

m (t)] = E[njm(t)] = O(log t) . (20)

For user j from a different group we know

E[nω
gi,gj

m (t)] < E[njm(t)] ≤ O(t) (21)

since ωgi,gj < 1. Meanwhile the chance of mis-classifying
a user from a different group as one from the same group
is upper bounded by O( log t

t ), and the number of such mis-
classification is at most

O(t) · O(
log t

t
) = O(log t) (22)

which helps establish βj(t) ≤ O( 1
tωd

).

V. NUMERICAL RESULTS

We start with U FULL. In our simulation we have three
users with five independent options; each user targets the
top three options at each time, i.e., M = K = 3, N =
5. Furthermore the five options’ reward statistics are given
by exponentially distributed random variables. The distortion
factor at each user for each option is modeled as a Gaussian
random variable with certain mean and variance 1.

From Fig. 1 we see with full information exchange the
system’s performance can be greatly improved compared
with individual learning. Moreover, its performance is com-
parable to a centralized scheme (denoted UCB Centralized
in the figure), whereby the M users are centrally controlled
and coordinated in their learning using UCB, and allowing
simultaneous selection of the same options by multiple users.

Next we show the performance of U PART. The sim-
ulation setting is the same as the one above and is not
repeated here. From Fig. 2a we see that U PART outperforms
multiuser UCB with individual learning. We also see from
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Fig. 2b that though a larger α results in a larger upper bound,
the actual performance does not necessarily increase with α.

We end this section by simulating a network with diverse
group preferences. As we mentioned in previous sections,
the major difference between learning algorithms of diverse
preferences and uniform preference is each user estimates
other users’ group identity before taking actions over ob-
served/reported samples. Therefore instead of presenting sim-
ilar regrets results as in the previous cases, we present the
mis-classification rate of our algorithm, given in Fig. 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Er
ro

r r
at

e

Fig. 3: Performance of error rate

VI. CONCLUSION

In this paper we considered group learning problem in
the context of opinion diffusion and analyzed two scenarios:
uniform group preference vs. diverse group preferences.
For each case we also considered sharing full vs. partial
information, and constructed UCB-like index based group
learning algorithms and derived their associated upper bounds
on weak regret. These upper bounds are in general better than

the original upper bound obtained by UCB when a user learns
in isolation. This points to the potential gain by combining
first-hand and second hand learning.
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APPENDIX A
PROOF OF THEOREM 3.1:

We follow the notation used in [3] where UCB is first
introduced and analyzed, and bound the number of times
sub-optimal arms are played. Consider the total number of
times that option j has been used by user i up to time t:

T ij (t) ≤ l +

t∑
n=l+1

{Iin = j, T ij (n− 1) ≥ l}

≤ l +

t∑
n=l+1

{ min
0<si<n

ri,∗si + cin−1,s∗ ≤ max
l≤sij<n

rij,sij
+ cin−1,sj}

≤ l +

t∑
n=l+1

{ min
0<si<n

ri,∗si + cin−1,s∗ ≤ max
l≤sij<n

rij,sij
+ cin−1,sj}

≤ l +

∞∑
n=1

n−1∑
si=1

n−1∑
sij=l

{r∗,isi + cin,s∗ ≤ r
i
j,sij

+ cin,sj} . (23)

Here we use ri
j,sij

to denote the estimated sample mean (as
defined in Eqn. 5 with more details) of option j for user
i with sij local plays under our group learning algorithm.
And cit,j is the time bias as in the classical UCB defined as
following,

cit,sj =

√
2 log t∑
u∈U s

u
j

(24)

with suj being number of plays of option j from user u.
Observe that ri,∗si + cin,s∗ ≤ ri

j,sij
+ cin,sj implies that at

least one of the following must hold:

ri,∗si ≤ µ
i,∗ − cin,s∗ , r

i
j,sij
≥ µij + cin,sj , µ

i,∗ ≤ µij + 2cin,sj .

(25)



We now bound each term. We proceed by examining two
cases, depending on whether the following assumption is
true.

Assumption 1: For any user i and option j, under the
proposed index policy

E[T ij (t)] ≥ O(log t), j ∈ NK . (26)

E[T ij (t)] = O(t), j ∈ NK . (27)

Remark A.1: It has been shown in the literature that for
a standard stochastic multi-armed bandit problem the above
must hold for a sub-linear regret policy and that O(log t)
is the lower bound on weak regret. Thus under our index
policy U FULL we know that for j ∈ NK we must have
E[Tj(t)] ≥ O(log t). Later we will show that indeed under
our policy we have E[Tj(t)] = O(log t) and E[Tj(t)] =
O(t) for j ∈ NK .

Consider now the case that the above assumption is true.
And we have the following lemma.

Lemma A.2: ∀ε > 0,

P (|δ̃i,kj (t)− δi,kj | > ε) ≤ 1/tdU (28)

with dU being some finite positive constant.
Proof 6: For simplicity of presentation, in this proof we

omit all sub and super-scripts when there is no confusion;
and further denote by δ(t) the estimate at time t and δ∗ the
true value.

P (|δ(t)− δ∗| > ε) = P (δ(t) > δ∗ + ε) + P (δ(t) < δ∗ − ε)

Consider P (δ(t) > δ∗ + ε) and denote c = δ∗ + ε.

P (δ(t) > c) = P (
rij(t)

rkj (t)
> c) = P (rij(t) > c · rkj (t)) .

P (rij(t) > c · rkj (t)) =

∫
x

P (rij(t) > c · x) · P (rkj (t) = x)dx

=

∫
x≤µkj−ε

P (rij(t) > c · x)P (rkj (t) = x)dx

+

∫
µkj−ε<x<µkj+ε

P (rij(t) > c · x) · P (rkj (t) = x)dx

+

∫
x≥µkj+ε

P (rij(t) > c · x) · P (rkj (t) = x)dx . (29)

where for simplicity we have used P () to denote the density
function.

Note that for x /∈ (µkj − ε, µkj + ε), we have P (rkj (t) =

x) ≤ e−2ε2Tkj (t). Therefore we have∫
x≤µkj−ε

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤
∫
x≤µkj−ε

P (rij(t) > c · x) · e−2ε2Tkj (t)dx

≤ e−2ε2Tkj (t)

∫
x≤µkj−ε

1dx = O(e−T
k
j (t)) (30)

∫
µkj−ε≤x≤µkj+ε

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤
∫
µkj−ε≤x≤µkj+ε

P (rij(t) > c · x)dx

≤
∫
µkj−ε≤x≤µkj+ε

e−2ε2T ij (t)dx = O(e−T
i
j (t)) (31)

∫
x≥µkj+ε

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤ e−2ε2T ij (t)

∫
x≥µkj+ε

P (rkj (t) = x)dx

≤ e−2ε2T ij (t)P (rkj (t) ≥ µkj + ε)

≤ e−2ε2T ij (t) · e−2ε2Tkj (t) = O(e−(T ij (t)+Tkj (t))) (32)

As E[T kj (t)] ≥ O(log t) we have

O(E[e−T
k
j (t)]) ≤ 1/td (33)

here d is some finite positive number. Other terms can be
similarly analyzed, proving the lemma.

With the help of the above Lemma we have the following
bound (for user k)

skj∑
n=1

1

ndU
≤

(skj )1−dU − 1

1− dU
. (34)

And we have the distortion factor in the sample mean
bounded by C · (skj )1−dU∑

u∈U s
u
j

. Next we show√
log n∑
u∈U s

u
j

> C ·
(skj )1−dU∑
u∈U s

u
j

. (35)

For sij ≤ O(log n), since dU > 0 we have (
∑
u∈U s

u
j )1/2 >

C · (skj )1−dU
√

logn
. If sij > O(log n), consider two cases. If

skj = O(log n), the above holds obviously. If skj > O(log n),
through the proof of Lemma A.2 we know dU ≥ 1 (details
omitted) and again we have (35) hold. Therefore we have

P{ri,∗si ≤ µ
i,∗ −

√
2

√
log n∑
u∈U s

u
j

±
C ′ ·

∑
k∈U (sk)1−dU

j∑
u∈U s

u
j

}

≈ P{ri,∗,csi ≤ µi,∗ −
√

2

√
log n∑
u∈U s

u
j

}

≤ e−4 logn = n−4 (36)

And similarly

P{rij,sij ≥ µ
i
j + cin,sj} ≤ n

−4 . (37)

For the last term µi,∗ ≤ µij+2cin,sj , let l = d 8
M log t/(∆i

j)
2e



we have

µi,∗ − µij − 2cin,sj

≥ µi,∗ − µij − 2
√

2

√
log t/

∑
u∈U

suj

≥ µi,∗ − µij −∆i
j = 0 (38)

The rest of the proof regarding weak performance bound
follows [3] and is thus omitted.

Now consider the case where the assumption does not hold.
As mentioned earlier we must have E[Tj(t)] ≥ O(log t) for
j ∈ NK . Therefore the only possibility for the assumption
to not hold is E[Tj(t)] < O(t) for j ∈ NK .

Suppose there is an optimal arm N∗ that is sample at
order less than O(t). Then there must be a sub-optimal arm
j ∈ NK that is sampled with order at least O(t).

According to previous proof under the first case (when the
assumption holds), we have E[T ij (t)] ≤

∑
j∈NiK

d 8 log t
M ·(∆i

j)
2 e

whenever dU > 0. Therefore we know that for this assump-
tion to not hold we must have dU = 0. However we see
from the proof of Lemma A.2 that the number of plays of
the corresponding optimal arms must be bounded as constant
O(1). Specifically, recall we have

P (|δ̃i,kN∗(t)− δ
i,k
N∗ | > ε)

≤ max{O(e−T
i
N∗ (t)),O(e−T

k
N∗ (t))} (39)

We have dU > 0 (at time t) except for the case

min{T iN∗(t), T kN∗(t)} = O(1) ,

i.e., the user plays arm N∗ only constant number of times.
To simplify the analysis, we will additionally assume that

for each option each user will use no more samples (regarding
order) from other users than it has locally. Now we check
U FULL index. For the optimal arm we have

√
log t
O(1) as the

bias term in the index while for j it is
√

log t
O(t) . From above

argument we know with a sufficiently large t, the index of
the optimal arm must be larger than j which contradicts the
fact that the optimal arm is only sampled a constant number
of time, proving that this second case (the assumption does
not hold) cannot be true. The theorem is thus proved.

APPENDIX B
PROOF OF THEOREM 3.2:

In this proof for simplicity we denote

cit,sj =

√
2 log t

sj
, (40)

ĉit,sj =

√
2 log t

sj
− α[1− βj(t)]

√
log t

t
(41)

Following the same method introduced in Auer’s work [3],
to bound the regret we need to bound the number of times

the sub-optimal arms are played. Suppose j ∈ NK we have

T ij (t) ≤ l +

t∑
n=l+1

{Iin = j, T ij (n− 1) ≥ l}

≤ l +

t∑
n=l+1

{ min
0<si<n

ri,∗si + ĉin−1,si∗
≤ max
l≤sij<n

rij,sij
+ ĉin−1,sij

}

≤ l +

∞∑
n=1

n−1∑
si=1

n−1∑
sij=l

{ri,∗si + ĉin,si∗ ≤ r
i
j,sij

+ cin,sij
}

The following analysis applies to any i and thus we omit
the i in the sub and super-scripts. Observe that r∗s + ĉn,s∗ ≤
rj,sj + cn,sj implies that at least one of the following must
hold,

r∗s ≤ µ∗ − ĉn,s∗ , rj,sj ≥ µj + ĉn,sj , µ
∗ ≤ µj + 2ĉn,sj (42)

We bound each term as follows.

P{r∗s ≤ µ∗ − ĉn,s∗} ≤ P{r∗s ≤ µ∗ − (
√

2− α)

√
log n

n
}

≤ e−2(
√

2−α)2 logn = n−2(
√

2−α)2

(43)

And similarly P{rj,sj ≥ µj + ĉn,sj} ≤ n−2(
√

2−α)2

. Let
l = d(2

√
2− α[1− βj(t)])2 log t/∆2

je

µ∗ − µj − 2ĉn,sj ≥ µ∗ − µj −∆j = 0 (44)

Therefore

E[Tj(t)] ≤ d
(2(
√

2− α · [1− βj(t)]))2 log t

∆2
j

e

+

∞∑
n=1

n−1∑
s=1

t−1∑
sj=d(2

√
2−

α·(1−βj(t)))2 log t/∆2
j
e

(P{r∗s ≤ µ∗ − ĉn,s∗}

+ P{rj,sj ≥ µj + ĉn,sj})

≤ d4(
√

2− α · [1− βj(t)])2 log t

∆2
j

e

+

∞∑
n=1

n∑
s=1

n∑
sj=1

2n−2(
√

2−α)2

(45)

First consider the second term. If −2(
√

2 − α)2 < −3, i.e.,√
2−

√
3/2 > α, the sum converges to a constant, i.e.,

E[Tj(t)] ≤ d
4(
√

2− α · [1− βj(t)])2 log t

∆2
j

e+ const. (46)

Next we bound βj(t),∀j ∈ NK . Recall that βj(t) =
nj(t)∑
k nk(t) and we know nj(t) ≤ d 8 log t

∆2
j
e,∀j ∈ NK . As there

are M ·K observations from the group at each time, we have∑
k nk(t) = M ·K · t and therefore

βj(t) ≤
M · d 8 log t

∆2
j
e

M ·K · t
≤ O(

log t

t
) . (47)


