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Abstract—In this work, we consider the interaction between

an adaptive jammer and a user, and we study the joint control

of transmission power and channel switching for the user in

the presence of jamming interference. Instead of adopting a

game-theoretical approach to studying the interaction, which

typically requires full knowledge of the jammer about the user

and vice versa, we adopt an online learning perspective to

model the reasoning of the attacker as well as the defender. We

note that the two aspects of the control are typically coupled,

and moreover, the tractability of analysis may be limited if

the jammer is capable of learning the user’s control strategy,

thus attacking adaptively. Interestingly, we show that the power

control aspect can be in fact decoupled from the channel

switching decisions as a result of this interaction, and we develop

the explicit form of the optimal control for certain scenarios.

I. INTRODUCTION

In a multi-channel wireless communication system, a

user (or node) is typically presented with the challenges

of strategically tuning the transmission power and selecting

the channel to use. These challenges arise from the energy

constraint of the hardware, e.g., a battery-powered device

with energy harvesting, and the time-varying nature of the

channel quality, including natural fluctuation and interference

from other users. In this paper, we consider a particular cause

of the variation of the channel condition due to the jamming

interference from an attacker, and study the joint control of

transmission power and channel switching in this context. We

note that the two aspects of the control are typically coupled,

and moreover, the tractability of analysis may be limited if

the jammer is capable of learning the user’s control strategy,

thus attacking adaptively.

In this study we are interested in understanding the in-

teraction between an adaptive jammer and a user, and aim

to present a framework for analyzing this interaction and

studying the joint control of the user. We show that the

power control aspect can be decoupled from the channel

switching decisions as a result of this interaction, and develop

the explicit form of the optimal control for certain scenarios.

Related work. Defense against jamming attacks has been

extensively studied in the literature, and a big part focuses on

specific attack and defense mechanisms, see e.g., [1], [2] for

a collection of jamming attacks and anti-jamming measures.

Examples also include using stronger error detection, cor-

rection, and spreading codes at the physical layer [3], [4],

[5], [6], exploring the vulnerability in the rate adaptation

mechanism of IEEE 802.11 [7], and multi-channel jamming

using a single cognitive radio [8]. Interestingly, jamming can

also be used by legitimate users to achieve physical layer

security in the presence of an eavesdropper, see e.g., [9],

[10], [11].

The interaction between a jammer and a user/defender

is often modeled as a strategic game. Examples include a

non-zero-sum game formulation when transmission costs are

incurred to both the jammer and the user [12], a random

access game [13], a differential game between a mobile

jammer and mobile users [14], a Stackelberg game [15], and

a zero-sum game framework [16]. Typically the existence of

Nash equilibrium strategies is investigated and the equilib-

rium strategies are identified if they exist under the respective

game formulation.

There is also a large body of existing work on the trans-

mission power control problem, especially when the energy-

constrained node is capable of harvesting renewable energy.

The study of stand-alone optimal power control problems is

not the focus of this work, and the interested reader is referred

to, e.g., [17], [18], [19], [20] and the references therein.

Our approach. Instead of adopting a game-theoretical

approach to studying the interaction between the two sides,

which typically requires full knowledge of the jammer
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about the user and vice versa, including their respective

information/strategy spaces, and infinite rationality to obtain

equilibrium solutions, we will simply assume that the jammer

is able to learn and adapt over time using its observations of

the user’s behavior; it need not possess all the information

available to the user nor does it presume that the user

is rational. To model the jammer’s adaptive behavior, we

will employ online learning algorithms developed for the

class of adversarial or non-stochastic multi-armed bandit

problems [21], [22], which provide robust and considerable

performance guarantee, without assuming any probabilistic

model of the underlying reward process (the user’s behavior).

We then investigate two cases. In the first case we assume that

the user is aware of the type of learning algorithm used by the

jammer while in the second case it has no such information

and thus must also try to learn.

Main contribution.

• We present an analytical framework of the joint control

problem for a class of sublinear regret online learning

algorithms that may be adopted by the attacker.

• We show that the optimal transmission power control

can be decoupled from the optimal channel switching

decisions when channels are symmetric and static, and

the overall problem can be reduced to a rate maximiza-

tion problem with stochastic energy replenishment, to

which some existing results may readily apply.

• We also show that given any power control policy

that is independent from channel switching decisions,

channel selection strategies induced by any pair of

sublinear regret learning algorithms can be mutually best

responses for the interacting two sides, which resembles

game theoretical equilibrium solution concepts.

We proceed as follows. In Section II, we describe the

model and formulate the joint control problem. We present

the results for the two cases in Sections III and IV, respec-

tively, and Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless communication system consisting of

a user, a base station (or data sink), and m orthogonal

channels denoted as C = {1, 2, . . . ,m}. The system operates

in discrete time; in each time slot the user attempts to transmit

data to the base station. Due to hardware constraints, the user

is limited to use at most one or a subset of the channels at

any given time, while the base station is capable of receiving

data from all channels simultaneously.

The user node is powered by an onboard energy storage

device, e.g., battery, with the finite capacity Bcap. Let B(t) ∈

[0, Bcap] be the energy level stored at the node at time t, and

we assume the dynamics of the energy level is governed by

a sequence of functions ft, t = 1, 2, . . ., i.e.,

B(t+ 1) = ft(B(t), E(t), P (t)) (1)

with B(1) = Binit, where E(t) and P (t) are the energy

replenishment and the transmission power at time t, re-

spectively, and Binit is the given initial energy level. We

assume that the user has a probabilistic model on the energy

replenishing process.

There is a jammer/attacker who attempts to interfere with

the user’s communication. It is capable of transmitting jam-

ming signals over M < m channels simultaneously, within

a certain power constraint. Let µ : R2
+ → R+ be the rate

function. The data rate achievable on a channel is given by

µ(p, q) when the transmission power of the user is p and

the interfering power of the jammer is q. We assume that

channels are symmetric and static, and µ is thus channel-

independent and time-invariant, as suggested by our notation.

The rate function is increasing in p and decreasing in q,

and we also assume that the attacker jams any channel at a

fixed power level q, which is known to the user, e.g. through

measurement.

Given any time slot t, we define a variable Zk(t) such that

Zk(t) = 0 if there is no jamming attack in channel k, and

Zk(t) = 1 otherwise. In the first case when the user knows

the type of algorithm/reasoning the attacker uses, it may

regard Zk(t) as stochastic, i.e., assuming that the attacker be-

haves probabilistically according to P (Zk(t) = 1) = αk(t),

though the value of this probability may be unknown to the

user. This set of marginal probabilities α(t) = {αk(t), k ∈ C}

that channel k is jammed at time t, will be called the

attacker’s adversarial behavior. There are two interpretations

of α(t): it can describe a randomized strategy of the attacker,

or a probabilistic belief of the user about the likelihood of an

attack on any channel. Accordingly, the expected utility Uk

that the user derives from using channel k at a given time

with the transmission power P (t) is defined as

Uk(αk(t), P (t)) = µ(P (t), 0)(1 − αk(t)) + µ(P (t), q)αk(t)
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= µ(P (t), 0)− (µ(P (t), 0)− µ(P (t), q))αk(t).

This is essentially the conditional throughput the user obtains

given that it attempts a transmission on this channel when it

uses the power P (t) for transmission. In the second case

when the user has no such information, it may regard Zk(t)

as a predetermined but unknown number zk(t). Accordingly,

the user’s utility, denoted by Ûk, is given by

Ûk(zk(t), P (t)) = µ(P (t), 0)−zk(t)(µ(P (t), 0)−µ(P (t), q)).

From the attacker’s point of view, it derives utility from

the loss of the user due to jamming interference. Given any

time slot t, we define a variable Xk(t) such that Xk(t) =

µ(P (t), 0) − µ(P (t), q) if the user transmits on channel k

with power P (t), and Xk(t) = 0 otherwise. Similar to the

user, the attacker can also take on two views of the nature

of Xk(t). We will focus on the case that the attacker views

Xk(t) as a predetermined but unknown number xk(t) as we

will explain in Section III. The attacker’s utility of jamming

channel k is given by

ÛJ
k (xk(t)) = xk(t),

Depending on the knowledge of the user on the pattern

of adaptive jamming, we then formulate the joint control

problem in two cases.

A. Against known adaptive attack

In Section III, we assume the user knows the type of

adaptive algorithm used by the jammer, and seeks to make

optimal channel switching decisions so as to maximally evade

the attack. In particular, the user assumes the attacker behaves

probabilistically as the attacker indeed does and knows the

value of the adversarial behavior α(t) at the beginning of

the time slot t. Note that α(t) can be random itself, with a

known probabilistic model to the user in this case, and we

will describe the attack pattern in detail in Section III. Thus,

the user perceives the channel condition variable Zk(t) as

stochastic. Results obtained in this section are then used as

benchmarks in the later section when we examine the more

realistic situation where the user does not presume to know

the attacker’s adaptive behavior.

At each time t, the user decides the control action A(t) =

(P (t), π(t)), where P (t) is the transmission power and π(t)

is the index of the channel to use. We call the 2-tuple S(t) =

(B(t), α(t)) the state of the system at time t. We assume that

B(t) is perfectly observable to the user, and then so is the

state, and we also assume that the user has a perfect recall of

all past system states and control actions. We argue later (c.f.

the remarks after Theorem 2) that the perfect recall condition

on control actions can be significantly weakened for optimal

decisions. The user then determines its control action as a

function of the history of system states, past control actions,

and a private randomization device that is independent from

any activity of the attacker. Formally, we have

P (t) = gpt (A
[t−1], S[t], ωp(t)),

and

π(t) = gπt (A
[t−1], S[t], ωπ(t)),

where the notation A[t−1] denotes the vector

(A(1), . . . , A(t − 1)) with S[t] similarly defined, ωp(t)

(resp. ωπ(t)), t = 1, 2, . . ., is a random process with known

joint distributions to the user for any finite collection, and

gpt and gπt are the control rules for transmission power and

channel switching at time t. Moreover, a power control

policy is called feasible if it satisfies the energy causality

constraint that 0 ≤ P (t) ≤ B(t). We denote the control

policy – the collection of control rules – by gp = (gpt , t ≥ 1)

and gπ = (gπt , t ≥ 1). We also denote the feasible policy

spaces as Gp and Gπ .

Given a transmission power profile P = (P (1), P (2), . . .)

and a channel selection sequence π = (π(1), π(2), . . .) of a

pair of policies gp and gπ, the user collects reward r(t) =

Uπ(t)(απ(t)(t), P (t)) at each time t. The user then considers

the following infinite-horizon reward maximization problem:

maximize
gp∈Gp,gπ∈Gπ

r(gp, gπ) := lim inf
T→∞

E

{

1

T

T
∑

t=1

r(t)

}

, (2)

where the expectation is taken with respect to (w.r.t.) the

randomness of system states and the private randomization

devices.

B. Against unknown adaptive attack

In Section IV, we consider the more practical scenario

where the user has no information on the attack pattern, and

it perceives Zk(t) as a predetermined but unknown number

zk(t). In this case, we call the energy level as the state of the

system. We assume the user can observe the value of zk(t)

of the selected channel after transmission at time t, and it

has perfect recall of past observations and control actions, as
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in the case of a known attack pattern. At each time, the user

determines the control action as a function of the history of

system states, all past observations and actions, as well as a

private randomization device, i.e.,

P (t) = ĝpt (B
[t], z[t−1]

π , A[t−1], ωp(t)),

and

π(t) = ĝπt (B
[t], z[t−1]

π , A[t−1], ωπ(t)),

where z
[t−1]
π denotes (zπ(1)(1), . . . , zπ(t−1)(t − 1)). We

similarly define the control policies ĝp and ĝπ, and the

policy spaces Ĝp and Ĝπ . The user receives reward r̂(t) =

Ûπ(t)(zπ(t)(t), P (t)) at each time t if it transmits with power

P (t), and it consider the same reward maximization problems

with the proper policy space and reward function defined

above, where the expectation in the objective is taken w.r.t

the randomness of the energy replenishing process and the

private randomization device.

Note that typically we cannot directly evaluate the ob-

jectives in this case, given the unknown and non-stochastic

nature of the attack pattern. The optimal control of this

type of setting is usually addressed in the framework of

non-stochastic online learning, where the existing literature

focuses on a “sample-path” argument and seeks the best

possible response in terms of minimizing the regret from

the performance of ad-hoc strategies for any realization of

unknown variables. These learning techniques will become

our main model for the adaptive attack throughout the paper

and also the countermeasure of the user in this case.

III. OPTIMAL JOINT CONTROL AGAINST KNOWN

ADAPTIVE ATTACK

We start by assuming that the user always has data to

transmit, though this can be relaxed as described later.

The user receives feedback right after a transmission as to

whether it has been interfered/jammed. The attacker has to

decide which channel to jam and commit to that decision

at the beginning of a slot; it however gets to find out the

transmission activity on all channels by the end of that time

slot. In other words, we assume the attacker needs to make

the right decision right at the beginning of a slot in order

to have sufficient time for effective jamming. If it chose

correctly, it naturally learns the fact that the channel was

used by the user and that jamming was successful; however,

even if it chose unwisely (one that the user did not use),

this does not prevent it from finding out after the fact which

channel the user actually used for transmission by scanning

through the channels.

The attacker is not assumed to know the user’s decision

making rationale, and thus regards the user activity vari-

able Xk(t) as deterministic but unknown. Given the full

information on past user activities on all channels available

to the jammer, we assume it adopts an algorithm referred

to as Hedge-M shown below. Hedge-M is a multiple-play

(attack) extension of the Hedge algorithm, and the latter

is a variant introduced by Auer et al. [21] of the original

Hedge algorithm developed by Freund and Schapire [23],

along the line of work on multiplicative weights learning

[24] (see [25] for an in-depth survey and references therein).

Hedge-M is reverse-engineered from the algorithm Exp3.M

[26], which is a multiple-play algorithm (also an extension of

single-play algorithm Exp3 [26]) with partial information (the

attacker only observes the activity of the channels it jammed).

Hedge-M (or its root Hedge or Exp3) is an online learning

algorithm in the adversarial multi-arm bandit setting [21],

[22], which presumes no probabilistic behavior pattern of the

opponent (in our case, the user). It can be shown to be able

to guarantee an order-optimal sublinear weak regret, which

in our problem context translates into sublinear “missing”

of jamming opportunities compared to always attacking (in

hindsight) the most active/used channel under arbitrary user

transmission decisions.

Formally, let x(t) = (xk(t), ∀k ∈ C), t = 1, · · · , T , over

a finite horizon T , and let CM (t) denote the set of indices of

M channels the attacker jams at time t, which is regarded as

a random variable by the user. For any jamming strategy A =

(CM (1), CM (2), . . . , CM (T )), the total utility of the attacker

is given by

GA(T ) =

T
∑

t=1

∑

k∈CM (t)

ÛJ
k (xk(t)) =

T
∑

t=1

∑

k∈CM (t)

xk(t).

while the maximum reward of consistently attacking the M

most rewarding channel in hindsight is

Gmax(T ) = max
CM⊂C

T
∑

t=1

∑

k∈CM

xk(t),

where CM is of cardinality M . Hedge-M aims to minimize

the gap (i.e., regret) between GHedge-M and Gmax, by select-

ing channels randomly using a set of marginal probabilities
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which is adaptively updated based on past user activities: it

always selects the most rewarding channels in retrospect with

the highest probability. The algorithm is shown below.

Hedge-M

Parameter: A real number a > 1.

Initialization: Set wk(1) := 1 for all k ∈ C.

Repeat for t = 1, 2, . . . , T

1) If maxk∈C
wk(t)∑
m
j=1

wj(t)
> 1

M
, then compute v(t) such

that

v(t)
∑

k:wk(t)≥v(t) v(t) +
∑

k:wk(t)<v(t) wk(t)
=

1

M
,

and set C0(t) := {k : wk(t) ≥ vt}. Otherwise, set

C0(t) := ∅.

2) Set

w′
k(t) =







v(t), k ∈ C0(t)

wk(t), k ∈ C \ C0(t)

3) Let α(t) = (α1(t), αt(t), . . . , αm(t)) where

αk(t) = M
w′

k(t)
∑m

j=1 w
′
j(t)

,

and choose M channels with the marginal distribution

α, using a subroutine Dependent Rounding that returns

the set C1(t) of channels selected.

4) Observe (reward) vector (x1(t), x2(t), . . . , xm(t)).

5) Set wk(t+ 1) = wk(t)a
xk(t) for all k ∈ C.

The subroutine Dependent Rounding [27] draws M out

of m items with the given marginal distribution, which can

be found in the appendix. The performance of Hedge-M is

formally characterized by the following theorem, and the

proof is omitted for brevity.

Theorem 1: If a = 1 +
√

2 ln(m/M)/(MT ), then

EGHedge-M(T ) ≥ Gmax(T )−
√

2 ln(m/M)MT , where the

expectation is w.r.t. the randomness in the actions taken by

Hedge-M.

We assume the user knows the facts that it is the only user

and that the attacker is using Hedge-M; it thus maintains the

correct belief about the evolution of the adversarial behavior

α(t) as in our general formulation for known attack patterns,

where α(t) is determined by Hedge-M, given all actions

taken by the user in the past. That is, the evolution of

the adversarial behavior can be written as a function the

history of all past control actions on channel selection and

transmission power:

α(t) = ht(π
[t−1], P [t−1]) (3)

for some function ht. Hence, combining with (1) and (3),

given any control rules gpt and gπt , there exist functions g̃pt

and g̃πt such that

P (t) = g̃pt (E
[t−1], ωp,[t], ωπ,[t]),

and

π(t) = g̃πt (E
[t−1], ωp,[t], ωπ,[t]),

where we have suppressed the dependence on the constant

initial conditions Binit and α(1).

Given any sequence of energy replenishment E[T−1] and

outcomes of the private random devices ωp,[T ] and ωπ,[T ], for

any control policies gp and gπ, let µ := (µ(1), . . . , µ(T )) be

the induced rate profile when there is no jamming attack

on the transmissions. i.e., µ(t) := µ(P (t), 0); similarly, let

µ
q := (µq(1), . . . , µq(T )) where µq(t) := µ(P (t), q). Let

µ(T ) := 1
T

∑T
t=1 µ(t) and µq(T ) := 1

T

∑T
t=1 µ

q(t). We then

have the following result.

Lemma 1: For any polices gp and gπ,

r(gp, gπ) ≤ lim inf
T→∞

E

{

m−M

m
µ(T ) +

M

m
µq(T )

}

.

Proof: Let (CM (1), CM (2), . . . , CM (T )) be the sequence

of M channels selected by Hedge-M, and we have

EGHedge-M(T )

= E







T
∑

t=1

∑

k∈CM (t)

xk(t)







=

T
∑

t=1

m
∑

k=1

xk(t)αk(t)

=

T
∑

t=1

(µ(t)− µq(t))απ(t)(t) =

T
∑

t=1

µ(t)−
T
∑

t=1

r(t).

Note that the above expectation is taken w.r.t. the randomness

in Hedge-M. We then obtain

1

T

T
∑

t=1

r(t) = µ(T )−
1

T
EGHedge-M(T )

≤ µ(T )−
1

T
(Gmax(T )−

√

2T ln (m/M)M)

≤
m−M

m
µ(T ) +

M

m
µq(T ) +

√

2 ln (m/M)M/T,

since Gmax(T ) ≥
M
m

∑T
t=1(µ(t)−µq(t)), and the result then

follows.

We note that the quantity m−M
m

µ(T ) + M
m
µq(T ) can
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depend only on the results of power control. Consider then

any power control policy γp = (γp
t , t ≥ 1) that is indepen-

dent of the past channel switching decisions and adversarial

behaviors, i.e.,

P (t) = γp
t (P

[t−1], B[t], ωp(t)).

Denote the space of such policies by Γp, and note that Γp is

a subset of Gp. It can be argued that

max
gp∈Gp,gπ∈Gπ

lim inf
T→∞

E

{

m−M

m
µ(T ) +

M

m
µq(T )

}

(4)

= max
γp∈Γp

lim inf
T→∞

E

{

m−M

m
µ(T ) +

M

m
µq(T )

}

, (5)

where µ and µ
q on the right-hand side of (5) are induced1

by γp given any ET−1 and ωp,[T ]. Let γp
⋆ be an optimal

policy for this maximization. Consider also a greedy policy

of channel switching, denoted by γπ
greedy, by which π(t) ∈

argmink∈C αk(t) for all t. We show that an optimal joint

control can be in the form of γp
⋆ and γπ

greedy, by showing that

this pair achieves the upper bound established in the right-

hand side of (5).

Theorem 2: For any γp ∈ Γp together with γπ
greedy,

r(γp, γπ
greedy) = lim inf

T→∞
E

{

m−M

m
µ(T ) +

M

m
µq(T )

}

.

Hence, the optimal transmission power control can be de-

coupled from the optimal channel switching, and the greedy

channel switching policy is optimal given the decoupled

power control. This is also the reason why this decoupling

is referred to as “one-way”.

Proof: Consider the induced rate profiles µ and µ
q

for any γp ∈ Γp. The proof is straightforward by noting

that mink∈C αk(t) ≤ M
m

. Hence, using the greedy channel

switching policy, we have

r(t) ≥ µ(t)− (µ(t)− µq(t))
M

m
=

m−M

m
µ(t) +

M

m
µq(t),

and the result then follows.

Using the greedy policy for channel switching, it is only

necessary for the user to have a perfect recall of the last

control action and to be able to store and update the value

of Gk(t) for all k ∈ C. We also note that the same result

holds even if the user does not always have data to transmit,

because an idle slot would not affect the adversarial behavior

of the attacker given its full information on the channel

1Using a similar argument, for any γ
p
t , there exists a function γ̃

p
t such

that P (t) = γ̃
p
t (E

T−1, ωp,[T ])

activity. The same result can also be extended to the case

where the user is able to transmit in multiple channels

simultaneously. Furthermore, the above result suggests the

joint control problem then reduces to the infinite-horizon

problem given by the right-hand side of (5). Note that when

a binary collision model is adopted, i.e., µ(p, q) = 0 for

any q > 0, the joint control problem reduces to the rate

maximization problem with the energy causality constraint:

max
γp∈Γp

µ(γp) := lim inf
T→∞

E

{

1

T

T
∑

t=1

µ(P (t), 0)

}

. (6)

Some existing results readily apply to (6), see e.g. [19], [20].

IV. AGAINST UNKNOWN ATTACKS

We now turn to the more realistic case where the user

presumes no knowledge of the reasoning used by the attacker,

and accordingly employs learning techniques. We show that

when the adversary happens to use the online learning

techniques like in the previous section, the user can perform

optimally as in the last case even without the knowledge

of attack pattern. As in the previous section we assume

symmetric and static channels.

As before, we will assume that the user can only observe

the jamming activity if it occurs in the same channel the user

selects. Previously, when the user knows the adaptation the

attacker is using, this assumption does not affect the user in

any significant way since it is able to completely track the

attacker’s belief based on its own actions. However, when the

user cannot assume knowledge on the attacker’s behavior,

this assumption implies partial information for the user: it

only gets to find out the value zk if it selects channel k.

Consequently we will assume that the user adopts the partial

information counterpart of Hedge called Exp3 [21], [22] to

update its probability τk of choosing channel k in a time slot.

The description of Exp3 is given in the appendix; it has a

similar sublinear regret like Hedge [21], [22]. Note that Exp3

as a channel switching policy belongs to the policy space

Ĝπ in our formulation. For the attacker, we will assume it

continues to use Hedge-M, though this fact is unknown to

the user.

Repeating a similar argument as in the previous section,

for any joint control ĝp and ĝπ, we can then similarly obtain

the same upper bound as the right-hand side of (5):

r(ĝp, ĝπ) ≤ max
γp∈Γp

lim inf
T→∞

E

{

m−M

m
µ(T ) +

M

m
µq(T )

}
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when the attacker uses Hedge-M, where γp and Γp are

defined as in the previous section, and µ and µ
q are the

induced rate profiles by γp given any E[T−1] and ωp,[T ].

On the other hand, consider the joint control given by

Exp3 as the channel switching policy with the power control

policy γp
⋆ ∈ Γp that maximizes the right-hand side of (5).

Given the induced rate profiles by γp
⋆ , denoted by µ⋆ and µ

q
⋆,

define Rmax(T ) as the user’s total reward in retrospect from

transmitting on the least jammed channel until a finite horizon

T . Using the weak regret result of Exp3 [22, Corollary 3.2],

of which the total reward is denoted RExp3(T ) given µ⋆ and

µ
q
⋆, we obtain

ERExp3(T ) ≥ Rmax(T )− 2.63
√

m ln(m)T ,

where the expectation is taken w.r.t. the randomness in Exp3.

Since Rmax(T ) ≥
∑T

t=1 µ⋆(t)−
M
m

∑T
t=1(µ⋆(t)−µq

⋆(t)), we

have

1

T
ERExp3(T ) ≥

m−M

m
µ⋆(T ) +

M

m
µq
⋆(T ) + o(1), (7)

where the o(1) term is w.r.t. the growth of T . Hence,

r(ĝp,Exp3) achieves the same upper bound of the average

reward established as in the previous sectioin. In other

words, Exp3 results in the same average reward for the user

compared to the case when it knows that the attacker is using

Hedge-M and responds optimally. This shows that there is

no loss of optimality when using online learning techniques

against an unknown attacker who happens to use a similar

algorithm but with more information. Also, the overall joint

control problem also reduces to a rate maximization problem

with the energy causality constraint.

Interestingly, as we show next, Hedge-M is also the best

response for the attacker to the actions of the user in this

case, when the user adopts Exp3 as the channel switching

policy with γp
⋆ for the power control. Recall our notation A =

(CM (1), CM (2), . . . , CM (T )) for any jamming strategy and

GA(T ) for the total reward of the attacker at T in Section III.

Let rJ(A) := lim infT→∞
1
T
EGA(T ). Since 1

T
EGA(T ) +

1
T
ERExp3(T ) = µ⋆(T ), where the expectation of GA is taken

w.r.t. to the possible randomness in A, we have

rJ (A) ≤ lim inf
T→∞

{

µ⋆(T )−

(

m−M

m
µ⋆(T ) +

M

m
µq
⋆(T )

)}

= lim inf
T→∞

M

m
(µ⋆(T )− µq

⋆(T )).

Conversely, as we have seen, the average gain of the attacker

using Hedge-M is:

1

T
EGHedge-M(T ) ≥

M

m
(µ⋆(T )− µq

⋆(T )) + o(1).

Hence, Hedge-M and Exp3 are mutually best responses

given γp
⋆ . In fact, this claim holds for any γp using the

same argument as above. Moreover, note also that the above

analysis only relies on the regret properties of Hedge-M and

Exp3, and their applicability in our context. The mutually

best response pair can extend to a much larger family of

sublinear regret algorithms that are applicable in the under-

lying problem.

V. CONCLUSION

In this paper, we considered the joint control of transmis-

sion power and channel selection decisions in a multi-channel

system, in the presence of a jamming attacker. We focused

on the one-way decoupling of the joint control, and showed

that the joint control can be reduced to a (single-channel)

rate maximization problem when the attacker uses sublinear-

regret online learning algorithms as its jamming strategy. The

key to establishing this decoupling is to show that given

any joint control policies, the achievable upper bound of

the performance metric only depends on the power control

decisions in this case. We presented the optimal channel

switching policy in two cases, depending whether the user

knows the reasoning used by the attacker, and we showed

that there is no loss of optimality even if the user has no

such knowledge.
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[14] S. Bhattacharya and T. Başar, “Game-theoretic Analysis of an Aerial

Jamming Attack on a UAV Communication Network,” in ACC ’10,

pp. 818–823, 2010.

[15] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using Chan-

nel Hopping to Increase 802.11 Resilience to Jamming Attacks,” in

INFOCOM ’07, Mini-Conference, pp. 2526–2530, 2007.

[16] K. Pelechrinis, C. Koufogiannakis, and S. Krishnamurthy, “On the

Efficacy of Frequency Hopping in Coping with Jamming Attacks in

802.11 Networks,” Wireless Communications, IEEE Transactions on,

vol. 9, no. 10, pp. 3258 –3271, 2010.

[17] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Trans-

mission with Energy Harvesting Nodes in Fading Wireless Channels:

Optimal Policies,” Selected Areas in Communications, IEEE Journal

on, vol. 29, pp. 1732–1743, Sep. 2011.

[18] A. Sinha and P. Chaporkar, “Optimal Power Allocation for a Re-

newable Energy Source,” in Communications (NCC), 2012 National

Conference on, pp. 1–5, Feb. 2012.

[19] S. Chen, N. B. Shroff, P. Sinha, and C. Joo, “A Simple Asymptotically

Optimal Energy Allocation and Routing Scheme in Rechargeable

Sensor Networks,” in INFOCOM’12, 2012.

[20] Q. Wang and M. Liu, “When Simplicity Meets Optimality: Efficient

Transmission Power Control with Stochastic Energy Harvesting,” in

INFOCOM’13 mini-conference, 2013.

[21] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “Gambling in

a Rigged Casino: The Adversarial Multi-armed Bandit Problem,” in

Foundations of Computer Science, 1995. Proceedings., 36th Annual

Symposium on, pp. 322–331, 1995.

[22] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The

Nonstochastic Multiarmed Bandit Problem,” SIAM J. Comput., vol. 32,

no. 1, pp. 48–77, 2003.

[23] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization

of On-Line Learning and an Application to Boosting,” Journal of

Computer and System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[24] N. Littlestone and M. K. Warmuth, “The Weighted Majority Algo-

rithm,” Information and Computation, vol. 108, no. 2, pp. 212–261,

1994.

[25] S. Arora, E. Hazan, and S. Kale, “The Multiplicative Weights Update

Method: a Meta-Algorithm and Applications,” Theory of Computing,

vol. 8, no. 6, pp. 121–164, 2012.

[26] T. Uchiya, A. Nakamura, and M. Kudo, “Algorithms for Adversarial

Bandit Problems with Multiple Plays,” in Proceedings of the 21st

international conference on Algorithmic learning theory, pp. 375–389,

Springer-Verlag, 2010.

[27] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, “Dependent

Rounding and its Applications to Approximation Algorithms,” J. ACM,

vol. 53, no. 3, pp. 324–360, 2006.

APPENDIX A

THE DEPENDENT ROUNDING ALGORITHM

Dependent Rounding

Input: A marginal distribution (αk, k ∈ C) and a natural

number M < |C| such that
∑

k∈C αk = M .

Output: A subset C1 of C such that |C1| = M .

Initialization: pk = αk for all k ∈ C.

While {k ∈ C : 0 < pk < 1} 6= ∅ do

1) Choose distinct i and j with 0 < pi < 1 and 0 < pj <

1.

2) Set a = min{1− pi, pj} and b = min{pi, 1− pj}.

3) Update pi and pj as

(pi, pj) =







(pi + a, pj − a), w.p. b
a+b

(pi − b, pj + b), w.p. a
a+b

Return {k ∈ C : pk = 1}.

APPENDIX B

EXP3

Exp3

Parameters: A real 0 < γ ≤ 1.

Initialization: Initialize Hedge(e).

Repeat for t = 1, 2, . . . , T

1) Get the distribution p(t) = (p1(t), p2(t), . . . , pm(t))

from Hedge.

2) Choose action kt according to the distribution p̂(t) =

(p1(t), p2(t), . . . , pm(t)) on channels, where

p̂k(t) = (1− γ)pk(t) +
γ

m

3) Receive the reward xkt
(t).

4) Feed the simulated reward vector x̂(t) back to Hedge,

where

x̂k(t) =







γ
m

·
xkt

(t)

p̂kt
(t) , k = kt

0, k 6= kt


