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Atomic Congestion Games on Graphs and its
Applications in Networking

Cem Tekin, Mingyan Liu, Richard Southwell, Jianwei Huang, Sahand H. A. Ahmad

Abstract— In this paper, we introduce and analyze the prop-
erties of a class of game, the atomic congestion game on graphs
(ACGG), which is a generalization of the classical congestion
game. In particular, the ACGG captures the spatial information
which is often ignored in the classical congestion game. This
is useful in many networking problems, e.g., wireless networks
where interference among the users heavily depend on the spatial
information. In an ACGG, a player’s payoff for using a resource
is a function of the number of players who interact with it and
use the same resource. Such spatial information can be captured
by a graph. We study fundamental properties of the ACGG;
under what conditions this game possesses a pure strategy Nash
equilibrium (PNE), or the finite improvement property (FIP),
which is sufficient for the existence of a PNE. We show that
a PNE may not exist in general, but that it does exist in
many important special cases including tree, loop, or regular
bipartite networks. The FIP also exists for important special
cases including systems with 2 resources or identical payoff
functions for each resource. Finally, we present two wireless
network applications of an ACGG: power control and channel
contention under IEEE 802.11.

I. INTRODUCTION

In this paper, we study an atomic congestion game on
graphs (ACGG), which is a generalized form of the class of
non-cooperative strategic games known as congestion games
[1], [2]. We analyze the properties of the ACGG and further
discuss its applications in networking such as spectrum sharing
in a multi-channel wireless system and channel contention
under IEEE 802.11.

In a classical congestion game, multiple players share multi-
ple resources. A player’s payoff1 for using a particular resource
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1One can also consider the cost of using a resource instead of payoff. If
we define the cost as the inverse of the payoff, then maximizing the payoff
is equivalent to minimizing the cost. For simplicity of presentation, we will
only refer to the maximization of payoff in this paper.

depends on the number of players simultaneously using that
resource. A formal description is provided in Section III. The
congestion game framework is well suited to model resource
competition where the resulting payoff is a function of the
level of congestion (number of active/competing players).

An improvement step is a move where one player changes
its strategy to increase its payoff. An improvement path is a
sequence of asynchronous improvement steps. The congestion
game enjoys many appealing properties: it has a pure strategy
Nash Equilibrium (PNE), and any improvement path is finite
and will lead to a PNE. The latter property is also called
the finite improvement property (FIP): local greedy updates of
selfish players collectively optimize a global objective known
as the potential function, and such updates converge in a finite
number of steps regardless of the updating sequence.

Due to the above reasons, congestion games are used
widely in modeling networking problems, particularly routing
problems (see Section II). In this paper, we introduce a
generalization of this model where players can only affect
with their neighbors according to a graph structure. These
generalized games will be referred to as atomic congestion
games on graphs (ACGG). In this game, an interaction graph
describes the the congestion relationships between the players.
A player’s payoff for using a resource is a function of the total
number of players who are using the same resource and are
within its interaction set (i.e., connected to it by edges in the
graph). Therefore, resources are reusable beyond a player’s
interaction set. The original congestion game is now a special
case of the extended ACGG where the underlying interaction
graph is complete (i.e., every player interacts with every other
player).2

Our main motivation behind this generalization comes from
applications in wireless networks, a key feature of which is
spatial reuse: common spectrum resources may be shared by
multiple players located far apart without causing congestion
to each other. This feature cannot be captured by the standard
congestion game, which assumes that all players have an
equal impact on the congestion. Specifically, we consider a
system where a user can only access one channel at a time,
but can switch between channels. A user’s principal interest
lies in optimizing its own performance (e.g., its data rate)
by selecting the best channel for itself. This and similar

2In our preliminary work [3], we used the term network congestion games.
However, to better differentiate this class of games from routing games (see
e.g., [4], [5]) which are also sometimes referred to as network congestion
games, we will use the term atomic congestion games on graphs in this paper.
Note that a routing game is essentially a classical congestion game in which
a player’s strategy space consists of a set of feasible routes and each route
consists of multiple resources (links).
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problems have recently captured increasing interest from the
research community, particularly in the context of cognitive
radio networks and software defined ratio technologies, where
devices are expected to have far greater flexibility in sensing
channel availability and moving their operating frequencies.

In addition to the above, there are other applications of
the ACGG model. For instance, it can be used to model
competition among local businesses, whose locations may be
represented by vertices on a graph. Edges connect those within
close proximity, and resources represent different business
ventures. More discussions on application are given in Section
VIII. It’s also worth mentioning that one interpretation of the
ACGG is that it models congestion games with incomplete
information, i.e., all players in reality compete with everyone
else, but a player is only aware of the presence of its neighbors
on the interaction graph. This is actually the standard justifi-
cation of graphical congestion games, see e.g., [6]. More on
this is discussed in Section II.

In subsequent sections we will examine what properties an
ACGG has. Our main findings are summarized as follows
for undirected network graphs and non-increasing payoff
functions:

1) The FIP is preserved in an ACGG with only two re-
sources. Counter examples exist for three or more re-
sources.

2) The FIP is preserved in an ACGG when all resources are
identical to a player (but may be different to different
players).

3) A PNE exists in an ACGG over a tree network, a loop, a
regular bipartite network, and when there is a dominating
resource.

4) We also identify counter examples showing that a PNE
does not necessarily exist for an ACGG with 3 resources,
over a directed graph, or with non-monotonic payoff
functions.

The organization of the remainder of this paper is as follows.
Related work is given in Section II. In Section III we present
a brief review on the classical congestion game, and formally
define the class of ACGG in Section IV. We then derive
conditions under which ACGG possesses the FIP in Section
V, and under which a PNE exists in VI. We provide negative
results on existence of a PNE or the FIP in Section VII. We
illustrate two networking applications of ACGG in Section
VIII and discuss extensions to our work in Section IX. We
conclude the paper in Section X.

II. RELATED WORK

Congestion games have been extensively studied within
the context of wireline network routing, see for instance the
congestion game studied in [7], where each source node seeks
the minimum delay path to a destination node, and the delay of
a link depends on the number of flows going through that link.
It has recently been used in wireless network modeling, e.g.,
access point selection in WiFi networks [8], [9], resource com-
petition in multicamera wireless surveillance networks [10],
uplink resource allocation in multichannel wireless access
networks [11], wireless channels with multipacket reception

capability [12], and the impact of interference set in studying
the congestion game in wireless mesh networks [13]. In our
recent work [14], we addressed the user-specific interference
issue within the traditional congestion game framework, by
introducing a concept called resource expansion, where we
define virtual resources as certain spectral-spatial unit that
allows us to capture pair-wise interference. This approach was
shown to be quite effective for user objectives like interference
minimization. Congestion games played on networks have
been studied before in [6], where each user has the same
linear payoff function. The authors discuss how these systems
can be viewed as congestion games with limited information,
where players can only observe the actions of their neighbors
on a graph. Our ACGG model allows player-specific payoff
functions of more general forms. In this sense our model is
also a generalization of that considered in [6].

It should be mentioned that game theoretic approaches have
often been used to devise effective decentralized solutions to
a multi-agent system. Within the context of wireless commu-
nication networks and interference modeling, different classes
of games have been studied. An example is the well-known
Gaussian interference game [15], [16], in which a player can
spread a fixed amount of power arbitrarily across a continuous
bandwidth, and tries to maximize its total rate in a Gaussian
interference channel over all possible power allocation strate-
gies. The Bayesian form of the Gaussian interference game
was studied in [17] in the case of incomplete information.
In addition, a market based power control mechanism was
investigated via supermodularity in [18], and using externality
in [19]. A spectrum sharing similar to the one studied here
was investigated in [20] using a mechanism design approach
in seeking a globally optimal solution. In our problem the total
power of a user is not divisible, and it can only use it in one
channel at a time. This setup is more appropriate for scenarios
where the channels have been pre-defined, and the users do
not have the ability to access multiple channels simultaneously
(which is the case with many existing devices).

Another approach to analyzing related networking problems
is the use of evolutionary game theory [21], [22]. Evolutionary
games often assume limited rationality and are applicable
typically in the presence of a larger number of users. By
contrast, our approach applies to any number of users, and
also works under limited rationality (better response updating).
Furthermore, the better response dynamics we consider are
simpler and more realistic, in the context of wireless network-
ing, than many types of evolutionary dynamics, e.g., those
based on reproduction or imitation.

III. A REVIEW OF CONGESTION GAMES

In this section we provide a brief review on the definition
of congestion games and their known properties.3 We then
introduce the ACGG as a generalization.

Congestion games [1], [2] are a class of strategic games
given by the tuple (I,R, (Σi)i∈I , (gr)r∈R), where I =
{1, 2, · · · , N} denotes a set of players, R = {1, 2, · · · , R}

3This review along with some of our notations are primarily based on
references [1], [2], [23].
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a set of resources, Σi ⊂ 2R the strategy space of player
i, and gr : N → Z a payoff (or cost) function associated
with resource r. The payoff (cost) gr(·) of resource r is a
function of the total number of players using that resource, and
in general is assumed to be non-increasing (non-decreasing).
A player in this game aims to maximize (minimize) its total
payoff (cost) which is the sum total of payoff (cost) over all
resources its strategy involves. For the rest of the paper, we
will only refer to payoff maximization.

Denoting by σ = (σ1, σ2, · · · , σN ) a strategy profile, where
σi ∈ Σi, player i’s total payoff is given by

qi(σ) =
∑
r∈σi

gr(nr(σ)) , (1)

where nr(σ) is the total number of players using resource r
under the strategy profile σ, with r ∈ σi denoting that player
i selects resource r under σ.

We can define Rosenthal’s potential function φ : Σ1×Σ2×
· · · × ΣN → Z as

φ(σ) =
∑
r∈R

nr(σ)∑
i=1

gr(i) =

N∑
i=1

∑
r∈σi

gr(m
i
r(σ)). (2)

where the second equality comes from exchanging the two
sums, and mi

r(σ) denotes the number of players who use
resource r under strategy σ and whose corresponding indices
do not exceed i (i.e., in the set {1, 2, · · · , i}).

In [1] it is shown that the change in player i’s payoff as
a result of its unilateral move (i.e., all other players’ strategy
σ−i remain fixed) is exactly the same as the change in the
potential function. This implies that the potential function may
be viewed as a global objective function. To see this, consider
player i, who unilaterally moves from strategy σi (within the
profile σ = (σi, σ−i)) to strategy σ′i (within the profile σ′ =
(σ′i, σ−i)). The change to the potential function is

φ(σ′i, σ−i)− φ(σi, σ−i)

=
∑

r∈σ′
i ,r 6∈σi

gr(nr(σ) + 1)−
∑

r∈σi,r 6∈σ
′
i

gr(nr(σ))

=
∑
r∈σ′

i

gr(nr(σ
′
))−

∑
r∈σi

gr(nr(σ))

= gi(σ−i, σ
′

i)− gi(σ−i, σi) .

The second equality comes from the fact that the number of
total players does not change for any resource that is used by
both strategies σi and σ

′

i. To see why the first equality is true,
set i = N , in which case this equality is a direct consequence
of Eqn (2). This is also true for any 1 ≤ i ≤ N by noting
that the ordering of players is arbitrary so any player making
a change may be viewed as the N th player.

Consider now a sequence of strategy changes made by
players asynchronously, in which each change improves the
corresponding player’s payoff (this is referred to as a sequence
of improvement steps). The potential function improves in
every such change sequence. Since the potential function of
any strategy profile is finite, we have the following result [2]:

Proposition 1 (finite improvement property (FIP)):
For every congestion game, every sequence of asynchronous

improvement steps is finite and converges to a pure strategy
Nash Equilibrium (PNE). Furthermore, this PNE is a local
optimum of the potential function φ, defined as a strategy
profile where changing one coordinate cannot result in a
greater value of φ.

We note that by definition, FIP in any game is sufficient
to guarantee the existence of a PNE for that game, but it
is not necessary. It follows that (a) the non-existence of a
PNE proves non-existence of the FIP, and (b) in general the
existence of a PNE does not imply the existence of FIP.
Therefore the existence of FIP is a much stronger result than
PNE.

Also note that under the above standard definition, the pay-
off functions are resource-dependent but player-independent.
This was relaxed in [24], where a player-specific payoff
function gir(·) was considered. It was shown that in this game a
PNE continues to exist (at least in the “singleton” case where
players access one resource at a time), but that the FIP no
longer holds in general.

It is not difficult to see why the standard definition of a
congestion game does not capture spatial reuse of wireless
communication. In particular, if we consider channels as
resources, then the payoff gr(n) for using channel r when
there are n simultaneous players does not reflect reality: the
function gr(·) in general takes a player-specific argument since
different players experience different levels of interaction even
when using the same resource. This player specificity is also
different from that studied in [24] mentioned above, where
gir(·) is a player-specific function but takes the same non-
player specific argument n. To analyze and understand the
consequence of this difference, we would need to extend and
generalize the definition of the standard congestion game.

IV. PROBLEM FORMULATION

In this section we formally define our generalized conges-
tion game, the atomic congestion game on graphs (ACGG).
Specifically, an N -player ACGG is given by ΓN =
(I,R, (Σi)i∈I , {Ki}i∈I , {gir}r∈R,i∈I), where Ki is the inter-
action set of player/user i (i.e., players interacting with player
i), while all other elements maintain the same meaning as in a
standard CG. The payoff player i receives for using resource
r is given by gir(n

i
r(σ) + 1) where nir(σ) = |{j : r ∈ σj , j ∈

Ki}|.
Our generalization goes in two directions: (a) player i’s

payoff for using resource r is a player-specific function, as
evidenced by the index i in gir(·), and (b) the argument of this
function is also player-specific; it is the number of players
interacting with itself, plus itself. The motivation for making
the payoff functions player-specific is to capture, for example,
the fact that in a wireless system players with different
coding/modulation schemes may obtain different rates from
using the same channel even when facing the same level of
interferences.

A player’s (total) payoff is the sum of payoffs from all the
resources it uses. Note that if a player is allowed to simulta-
neously use all available resources, then its best strategy is to
simply use all of them regardless of other players, provided
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that gir is a non-negative function. If all players are allowed
such a strategy, then the existence of a PNE is trivially true.

In this paper, we will limit our attention to the case where
each player is allowed only one resource at a time, i.e., its
strategy space Σi = R consists of R single resource strategies.
In this case, the payoff player i receives for using a single
resource r is given by gir(n

i
r + 1) where nir(σ) = |{j : r =

σj , j ∈ Ki}|.
It is easy to see that we can equivalently represent this

problem on a directed graph, where a node represents a player
and a directed edge connects node i to node j if and only if
i ∈ Kj . The ACGG can now be stated as a graph coloring
problem4, where each node picks a color and receives a value
depending on the conflict (number of same-colored neighbors
to a node); the goal is to see whether a PNE exists and whether
a decentralized selfish scheme leads to a PNE. In this paper
we will limit our attention to the case of undirected graphs,
where there is an undirected edge between nodes i and j if
and only if i ∈ Kj and j ∈ Ki. This has the intuitive meaning
that if node i interacts with node j, the reverse is also true.
This symmetry does not always hold in reality, but is often a
good approximation, and helps us obtain meaningful insight.
Another reason for this assumption is that a PNE does not
always exist in a directed graph (as we show in Example 4
via a counter example).

For simplicity of exposition, in subsequent sections we will
often present the problem in its coloring version, and will
use the terms resource, color, and strategy interchangeably.
For the remainder of the paper, unless stated otherwise we
shall assume that every ACGG we consider has the following
properties: (a) players only employ one resource at a given
time; (b) the payoff functions are player-specific and non-
increasing; and (c) the interaction graph is undirected.

V. EXISTENCE OF THE FINITE IMPROVEMENT PROPERTY

In this section we investigate whether an ACGG always
possesses the FIP as in the standard CG. Note that if a game
has the FIP, it immediately follows that it has a PNE as
described in Section III. Specifically, we show that in the
following two cases an ACGG possesses the FIP: (a) when
there are only two resources to choose from, and (b) when all
resources are identical to a player, for all players.

A. The Finite Improvement Property for 2 Resources

The following theorem shows that FIP holds when each
player can only select one of the two resources.

Theorem 1: An ACGG has the finite improvement prop-
erty (FIP) when there are only two resources.

Proof: We prove this theorem by a potential function
argument. Consider an ACGG with two resources, 0 and 1.
Consider a player i. Let nimax = |Ki| denote the number
of neighbors that i has on the interaction graph. Define the
mapping F i such that for all x ∈ {0, 1, . . . , nimax} we have

F i(x) = gi1(1 + x)− gi0(1 + nimax − x). (3)

4We will use several colored graphs in our analysis, which may not show
as effectively in a black/white version.

Since gi1(1 + x) and gi0(1 + nimax − x) are non-increasing
and non-decreasing in x, respectively, we have that F i(x) is
non-increasing in x.

Define a threshold τi, which can be thought as the minimal
number of neighbors that i must have using resource 1, so that
i prefers to use resource 0. More precisely:

(a) If F i(x) ≥ 0, ∀x ∈ {0, . . . , nimax}, then let τi =
1 + nimax.

(b) If F i(x) < 0, ∀x ∈ {0, . . . , nimax}, then let τi = −1.
(c) Otherwise, we define τi to be the minimal value of

x ∈ {0, . . . , nimax} such that F i(x) < 0.
To see that τi is well defined, note that if (a) and (b) are
false we must have F i(0) ≥ 0 and F i(nimax) < 0 (because
F i is non-increasing). This means that τi, as described in (c),
must exist. Also note that when condition (c) holds, we have
∀x ∈ {0, . . . , nimax} that x < τi implies F i(x) ≥ 0 and x ≥ τi
implies F i(x) < 0. Consider the function

V (σ) = E1(σ)−
∑
j∈I

σjτj , (4)

where E1(σ) = 1
2

∑
i∈I:σi=1 |{j ∈ Ki : σj = 1}| equals

to the number of edges in the interaction graph which link
players of resource 1.

Consider a strategy profile σ, from which some player i
makes an improvement by changing its strategy. This improve-
ment leads to a new strategy profile σ′ such that σ′i 6= σi and
σ′j = σj for each j 6= i. There are only two possible scenarios:

Case 1: σi = 0 and σ′i = 1, i.e., the player switches
from resource 0 to resource 1. In this case we can conclude
E1(σ′) = E1(σ) + ni1(σ), since there will be ni1(σ) new
edges in σ′ linking players of resource 1. We also have∑
j∈I σ

′
j .τj = τi +

∑
j∈I σj .τj . From these it follows that

we have

V (σ′) = V (σ) + ni1(σ)− τi. (5)

Now we claim that we must also have ni1(σ) < τi. To see
this, note that in order for user i’s channel switching (i.e.,
switching from resource 0 to resource 1) to be an improvement
step, we must have gi1(1 + ni1(σ)) > gi0(1 + ni0(σ)), where
ni0(σ) = nimax − ni1(σ). This implies F i(ni1(σ)) > 0, which
means either condition (a) or condition (c), listed above, must
hold. If condition (a) holds, then ni1(σ) < τi = nimax + 1. If
condition (c) holds, then since F i(ni1(σ)) > 0 and τi is the
minimal value such that F i(τi) < 0, we must have ni1(σ) <
τi. We have therefore shown that ni1(σ) < τi, and thus proved
that V (σ′) < V (σ), for this scenario.

Case 2: σi = 1 and σ′i = 0, i.e., the player switches from
resource 1 to resource 0. In this case E1(σ′) = E1(σ) −
ni1(σ), since there will be ni1(σ) less edges in σ′ linking
players of resource 1. We also have

∑
j∈I σ

′
j .τj = −τi +∑

j∈I σj .τj . From these it follows that we have

V (σ′) = V (σ)− ni1(σ) + τi. (6)

Now we claim that we must also have ni1(σ) ≥ τi. To see this,
note that in order for user i’s channel switching (i.e., switching
from resource 0 to resource 1) to be an improvement step, we
must have gi1(1 + ni1(σ)) < gi0(1 + ni0(σ)), where ni0(σ) =
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nimax − ni1(σ). This implies F i(ni1(σ)) < 0, which means
either condition (b) or condition (c), listed above, must hold.
If condition (b) holds, then ni1(σ) > τi = −1. If condition (c)
holds, then since F i(ni1(σ)) < 0 and τi is minimal such that
F i(τi) < 0, we must have that ni1(σ) ≥ τi. We have therefore
shown that ni1(σ) ≥ τi, and thus proved that V (σ′) ≤ V (σ),
for this scenario.

With the above two cases, we have shown that for every
improvement step, either the value of the function V decreases,
or the value of V remains constant but the number of players
of resource 1 decreases. We next show that an improvement
loop (where a sequence of improvement steps leads to the
same state being visited more than once) is impossible. This
is done by contraction.

Suppose that a sequence of strategy profiles σ0,σ1, ...,σT

form an improvement loop, such that T > 0, σT = σ0, and
for each t ∈ {0, 1, ..., T −1} we have that σt+1 is obtained by
taking profile σt and having some player perform an improve-
ment step. Now, since V never increases during an improve-
ment step, we must have V (σ0) ≥ V (σ1) ≥ ... ≥ V (σT ).
At the same time, since σT = σ0 we have V (σT ) = V (σ0).
Therefore we must have V (σ0) = V (σ1) = ... = V (σT ).
But we have just proved that whenever V does not decrease
during an improvement step, the number of players of resource
1 must decrease. So this implies profile σT has less players
of resource 1 than σ0, which contradicts our assumption
that σT = σ0. This contradiction implies that, in fact, an
improvement loop does not exist.

The fact that improvement loops cannot exist means that
every improvement path must be finite (because the set of
different possible profiles is finite, and no profile can be visited
more than once within an improvement path), so every finite
improvement path must eventually terminate at a profile from
which no further improvement steps can be performed. Such
a terminal profile must be a pure Nash equilibrium, hence our
system has the finite improvement property.

Theorem 1 establishes that when there are only two re-
sources, the FIP holds, and consequently a PNE exists. Note
that the above proof uses a potential function argument, but
technically the function V is not a “proper” potential function
because it does not (strictly) decrease with every improvement
step. However the function U(σ) = V (σ) + ε · H(σ) is a
proper potential function, which strictly decreases with every
improvement step. Here H(σ) is the number of players of
resource 1 in profile σ and ε > 0 is a real chosen to be
suitably small (smaller than the amount that V decreases by,
whenever V decreases due to an improvement step).

B. The Finite Improvement Property for Identical Resources
for Each player

The next theorem shows the second case in which the FIP
holds, when all resources are identical to each player, but
different players can have different payoff functions. In the
context of a multi-channel wireless system, this can represent
the case where all channels have the same bandwidth and
statistically similar channel quality to each player (e.g, either
with frequency flat fading or with proper channel interleaving

such as the IEEE 802.16d/e standard [25]), but from player to
player, their perceived channel conditions may vary.

Theorem 2: For an ACGG, if for all r ∈ R, i ∈ I, and
n ∈ {1, . . . , N}, we have gir(n) = gi(n), then the game has
the finite improvement property (FIP).

Proof: We prove this theorem by using a potential func-
tion argument. Recall that player i’s total payoff under the
strategy profile σ is given by gi(σ) = g(ni(σ) + 1), with
ni(σ) = |{j : σj = σi, j ∈ Ki}|, where σi ∈ R, and we have
suppressed the subscript r since all resources are identical.

Now consider the following function defined on the strategy
profile space:

φ(σ) =
∑
i,j∈K

1(i ∈ Kj)1(σi = σj) =
1

2

∑
i∈K

ni(σ) , (7)

where the indicator function 1(A) = 1 if A is true and 0
otherwise. For a particular strategy profile σ, this function φ
is the sum of all pairs of players that are connected (neighbors
of each other) and have chosen the same resource under this
strategy profile. Viewed on a graph, this function is the total
number of edges connecting nodes with the same color.

We see that every time player i improves its payoff by
switching from strategy σi to σ

′

i and thus reducing ni(σ−i, σi)
to ni(σ−i, σ

′

i) (as gi is a non-increasing function), the value
of φ(·) strictly decreases accordingly.5 Since our potential
function (which is equal to the number of edges linking a pair
of players of the same resource) takes values {0, 1, ..., n(n−1)2 }
and decreases with each asynchronous improvement step, our
game converges to a PNE in quadratic time, when it evolves
via asynchronous improvement steps. Hence the game has the
FIP.

VI. EXISTENCE OF A PURE STRATEGY NASH
EQUILIBRIUM

In this section, we examine what graph properties will
guarantee the existence of a PNE in the absence of the FIP.
Specifically, we show that a PNE always exists for ACGGs
defined on the following types of graphs: (a) a tree, (b) a
loop, and (c) a regular, bipartite graph with non-player specific
payoff functions.

A. Existence of PNE on a Tree Graph

We show that a PNE exists when the underlying graph
is given by a tree. We denote by GN the network (graph)
of the N -player ACGG ΓN . As before, the payoff functions
gir(n

i
r) are non-increasing, and nir(σ) denotes the number of

neighbors of player i (excluding i) using strategy r.
Lemma 1: If every N -player ACGG ΓN has at least one

PNE, then every (N + 1)-player ACGG ΓN+1 formed by
connecting a new player to an existing player in a N -player
network GN has at least one PNE.

Remark 1: Note that in this lemma, the network GN itself
does not have to be a tree. The lemma states that as long as a

5It’s easy to see that a non-increasing function G(
∑

i,j∈K 1(i ∈
Kj)1(σi = σj)) is an ordinal potential function of this game, as its value
improves each time a player’s individual payoff is improved (which decreases
the value of its argument).
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PNE exists for one class of networks, then by adding one more
node through a single link, a PNE exists in the new network.

Proof: By assumption ΓN has a PNE denoted by σ =
{σ1, σ2, · · · , σN}. Suppose ΓN is in such a PNE. Now connect
new player N + 1 to an arbitrary player j in GN . This is
illustrated in Figure 1.

N

N

GN+1

N+1

j+1

2
j−1

j

1

G

Fig. 1. Adding one more player to the network GN with a single link.

Let player N + 1 select its best response strategy:

σN+1 = ro = argmaxr∈Rg
N+1
r

(
nN+1
r (σ) + 1

)
,

where nN+1
r (σ) is defined on the extended network GN+1,

and it counts the (N + 1)-th node’s neighbors using resource
r under σ. We now consider three cases depending on j’s
strategy change in response to the network expansion from
GN to GN+1.

Case 1: σj 6= ro. In this case, player N + 1 selected a
resource different from j’s, so j has no incentive to change its
strategy in response to the addition of player N + 1. In turn
player N + 1 will remain in ro as this is its best response,
and no other players are affected by this single-link network
extension. Thus the strategy profile (σ1, · · · , σN , ro) is a PNE
for the game ΓN+1.

Case 2: σj = σN+1 = ro, and player j’s best response to
the network expansion remains σj = ro. That is, even with
the additional interfering neighbor N + 1, the best choice for
j remains ro. In this case again we reach a PNE for the game
ΓN+1 with the same argument as in Case 1.

Case 3: σj = σN+1 = ro, and player j’s best response to
this network expansion is to move away from strategy ro. In
this case more players may in turn change strategies. Suppose
we hold player (N + 1)’s strategy fixed at ro. Consider now
a new N -player ACGG Γ̄N , defined on the original network
GN , but with the following modified payoff functions for r ∈
R and i ∈ I:

ḡir(n
i
r + 1) =

{
gir(n

i
r + 2) if i = j, r = ro

gir(n
i
r + 1) otherwise .

In words, the game Γ̄N is almost the same as the original
game ΓN , the only difference being that the addition of player
(N + 1) and its strategy ro is built into player j’s modified
payoff function. By the assumption of Lemma 1, this game
with N players has a PNE and we denote that by σ̄. Suppose
σ̄ is reached in the network GN with player (N + 1) fixed

at σN+1 = ro. If we have σ̄j = ro, then obviously player
(N + 1) has no incentive to change its strategy because as far
as it is concerned its environment has not changed. In turn
no player in GN will change its strategy because they are
already in a PNE with player (N + 1) held at ro. If σ̄j 6= ro,
then player (N + 1) has no incentive to change its strategy
because j moved away from ro which does not decrease player
(N + 1)’s payoff on this resource, and at the same time its
payoff for using any other resource is no better. Again ro is
player (N + 1)’s best response. In either case, strategy profile
(σ̄, ro) is a new NE for the game ΓN+1.

Theorem 3: Any ACGG defined over a tree has at least
one PNE.

Proof: The proof is easily obtained by noting that any
tree can be constructed by starting from a single node and
adding one node (connected through a single link) at a time.
Formally, we prove this by induction. Start with a single player
indexed by 1. This game has a PNE, in which the player selects
σ1 = argmaxr∈Rg

1
r(1) for any payoff functions. Assume that

any N -player game ΓN over a tree GN with any set of non-
increasing payoff functions has at least one PNE. Any tree
GN+1 may be constructed by adding one more leaf node to
some other tree GN by connecting it to only one of the players
in GN . Lemma 1 guarantees that such a formation will result
in a game with at least one PNE.

B. Existence of PNE on a Loop

Theorem 4: Any ACGG defined over a loop network has
at least one PNE.

Proof (Sketch): The complete proof, which is lengthy,
can be found in [26]. Here we only provide a sketch.

We begin this proof by assuming that every player on the
loop always has a unique best response. In the event of a tie
where gir(n) = gir′(n

′) for some n and n′, we can impose
a unique best response by assuming that each player has a
preference order among colors when the payoffs are the same.6

Note that this assumption does not affect the validity of the
proof, because relaxing it only widens the set of PNE a given
game on the loop has.

Under our assumption, we show that every player i can be
associated with a triple (a(i), b(i), c(i)) ∈ R3 of possible best
responses to different scenarios. The triple has the following
properties.

1) If i has no neighbors playing a(i), then i’s best response
is a(i), where a(i) = argmaxi∈R(gir(1)).

2) If i has one neighbor playing a(i), with the other neighbor
not playing b(i), then i’s best response is to play b(i).

3) If i has one neighbor playing a(i) and one neighbor
playing b(i), then i’s best response is c(i).

The main idea of the proof is to show the existence of
PNE given the existence of players with various kinds of
triples. We start by showing that if there exists a player i∗

such that a(i∗) = b(i∗), then a PNE exists. This is done by
holding i∗ fixed at a(i∗) and letting the other players alter
their strategies freely. Since the other players are essentially

6For example, a player with a color preference of “red>blue>green” will
pick red if the payoffs of choosing red or blue are the same.
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playing on a line graph (which is a type of tree graph) we use
Theorem 3 to construct a strategy configuration within which
each player in I − {i} employs their best response. We then
show that allowing i∗ to employ its best response under this
configuration constitutes a PNE.

Next we show that if no such player i∗ exists (so that
a(i) 6= b(i),∀i), a PNE must also exist. This is done by con-
structing an algorithm which produces strategy configurations
that satisfy many of the players around the loop. The algorithm
begins by assigning player 1 a strategy σ1 ∈ {a(1), b(1)}.
After this, the algorithm continues to allocate strategies σi
to i ∈ {2, 3, ..., N} in such a way that σi = a(i) unless
a(i) = σi−1 in which case σi = b(i). We use this algorithm
repeatedly to demonstrate the existence of PNE under several
cases. The entire set of cases we consider exhausts all possible
games where a(i) 6= b(i),∀i.

C. Existence of PNE on a Regular Bipartite Graph

A graph is regular when all its vertices have the same
number of connections. A graph is bipartite when its vertices
can be numbered 1 and 2 (only two numbers) so that no edge
connects a pair of vertices with the same number. Many well
known graphs are regular and bipartite including hypercubes
and rectangular lattices.

 

(1) 

(1) 

(1) 

(1) 

(2) 

(2) 

(2) 

(2) 

Fig. 2. The cube graph is regular and bipartite. (The numbers in the brackets
near each player represents the resource selected by that player.)

Theorem 5: Any ACGG defined over a regular and bipar-
tite network, with non-player specific payoff functions, has at
least one PNE.

Proof: As payoff functions are not player-specific, we will
suppress the superscript i in the function gir(·). Suppose each
vertex has degree d (so d denotes the number of connections
each vertex has, e.g., d = 3 in Fig. 2). Without loss of gen-
erality, we order the resources such that the payoff functions
satisfy g1(1) ≥ g2(1) ≥ ... ≥ gR(1). If g1(d + 1) ≥ g2(1),
then resource 1 dominates and we can trivially construct an
NE by allowing each player to use resource 1.

Now consider the case where g1(d + 1) < g2(1). Since
our graph is bipartite, we may assign the vertices numbers 1
and 2 in such a way that no edge connects a pair of vertices
with the same number. We can think of this numbering as a
resource allocation σ. Under this allocation each employer of
2 will receive payoff g2(1) (because they have no neighbors
employing 2) whereas they would get g1(d + 1) ≤ g2(1) if
they played 1, which is no better. So each employer of 2 is
playing its best response under σ. In a similar way, the fact

that g1(1) ≥ g2(1) ≥ g2(d+ 1) implies that each employer of
1 is playing its best response.

D. Existence of PNE for Complete Graphs and a Dominant
Resource

We end this section by stating that an ACGG defined over
a fully connected graph always has a PNE: ACGG over a
complete graph simply reduces to the standard CG with player-
specific payoff functions. The result has been given in [24].

Theorem 6: Any ACGG defined over a complete graph has
at least one PNE.

We also note that regardless of the type of graphs, whenever
there is a dominant resource r, i.e., its payoff function is
such that gir(Kd + 1) ≥ gir′(1), where Kd = max{|Ki|, i =
1, 2, · · · , N}, for all r′ ∈ R and all i ∈ I, then a PNE
obviously exists where all players share the same dominant
resource.

VII. COUNTER EXAMPLES

In this section we present counter examples on the existence
of a PNE and the FIP. Our main result in this section is
Theorem 7 which shows that a PNE does not always exist
in an ACGG.

A. ACGG with 3 Resources

Theorem 7: For an ACGG with 3 resources: a PNE does
not always exist. Moreover, the FIP may not hold even when
a PNE exists.

In Example 1 we give two instances of ACGG which justify
Theorem 7.

Example 1: Consider the network topology given in Figure
3. Assume that the following set of inequalities holds for
decreasing payoff functions.

g1r(1) < g1b (2); g2b (2) < g2r(2); g3r(2) < g3p(3);

g4p(2) < g4b (2); g5p(2) < g5b (2); g1b (3) < g1r(2);

g2r(2) < g2b (1); g3p(1) < g3r(1); g4b (1) < g4p(1);

g5b (1) < g5p(1).

According to this set of inequalities, a best response loop
exists which is given in Table I. Moreover, one can check7

that a PNE does not exist for the payoff vectors gij =
(gij(1), . . . , gij(n

i
max + 1)) given below, where nimax is the

number of neighbors of i. They satisfy the above set of
inequalities:

g1b = (12, 11, 8, 6), g1r = (10, 9, 7, 5), g1p = (4, 3, 2, 1)

g2b = (8, 6, 4), g2r = (9, 7, 5), g2p = (3, 2, 1),

g3b = (6, 5, 3, 2), g3r = (12, 8, 4, 1), g3p = (11, 10, 9, 7),

g4b = g5b = (8, 7, 3), g4r = g5r = (5, 4, 2),

g4p = g5p = (9, 6, 1).

We also provide a counter example where a PNE exists
but there is a best response loop. Simply let g5r(1) = 10

7The checking unfortunately can only be done numerically and exhaustively
to the best of our knowledge.
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time step 1 2 3 4 5
0 r b r p p
1 r → b
2 b → r
3 r → p
4 p → b
5 p → b
6 b → r
7 r → b
8 p → r
9 b → p

10 b → p

TABLE I
A BEST-RESPONSE LOOP IN THE 3-RESOURCE PNE COUNTER EXAMPLE.

while keeping all other payoffs the same. Then one can easily
check that (b, r, p, b, r) is the unique PNE. Since the set
of inequalities above does not include g5r(1), they are still
satisfied, thus a best response loop exists.

 

1 2 

3 4 

5 

Fig. 3. A PNE counter example of 3 resources.

B. ACGG with 3 Resources and Non-Player Specific Payoffs
Proposition 2: In an ACGG with non-player specific pay-

offs, the FIP does not always hold even when a PNE exists.
Remark 2: Recall that the existence of FIP is sufficient but

not necessary for the existence of a PNE. Both Theorem 7 and
Proposition 2 are negative results. Theorem 7 implies the FIP
does not generally hold in an ACGG with 3 resources, because
otherwise a PNE would exist. Proposition 2 is a slightly
weaker negative result; it says that in the special case with
non-player specific payoff functions the FIP does not hold,
i.e., there may be improvement loops. This however does not
suggest a PNE does not exist either in this case, for the latter
can exist without the former. Indeed it remains an intriguing
open question whether a PNE always exists in an ACGG with
non-increasing, non-player specific payoff functions.

In Example 2 we give an instance of ACGG which justifies
Proposition 2.

Example 2: Suppose we have three colors to assign, de-
noted by r, p, and b. Consider a network topology shown in
Figure 4, where we will primarily focus on nodes A, B, C and
D. In addition to node C, node A is also connected to Ar, Ap
and Ab nodes of colors red, green and blue, respectively. Br,
Bp, Bb, Cr, Cp, Cb, and Dr, Dp, Db and similarly defined
and illustrated in Figure 4. Note that these sets may not be
disjoint, e.g., a single node may contribute to both Ar and Br,
and so on.

Ab

D

C

A

B

Br

Bp

Bb

Dr Dp

Db

Cr

Cp

Cb

Ar

Ap

Fig. 4. An FIP counter example of 3 resources and non-player specific
payoffs.

Consider now the sequence of improvement updates shown
in Table II involving only nodes A, B, C, and D, i.e., within
this sequence none of the other nodes change color (note that
this is possible in an asynchronous improvement path), where
the notation s1 → s2 denotes a color change from s1 to s2.
At time 0, the initial color assignment is given.

time step A B C D
0 b p p b
1 b → r
2 p → r
3 b → r
4 p → r
5 r → p
6 r → b
7 r → b
8 r → b
9 p → b

10 b → p
11 b → p

TABLE II
A BEST-RESPONSE LOOP IN THE 3-RESOURCE FIP COUNTER EXAMPLE.

We see that this sequence of color changes form a loop. If
we can show that such loop is feasible, then we have found a
counter example. For this to be an improvement loop such that
each color change results in an improved payoff, it suffices for
the following sets of conditions to hold. Since we assume all
players have the same payoff function, we have suppressed
the superscript i in gir(·), and the notation “>k” denotes that
the improvement occurs at time k.

gr(Ar + 1) >1 gb(Ab + 1) > gb(Ab + 2)

>9 gp(Ap + 1) >5 gr(Ar + 2) ;

gr(Br + 1) >2 gp(Bp + 2) >11 gb(Bb + 1)

>7 gr(Br + 2) ;

gb(Cb + 3) >8 gr(Cr + 1) > gr(Cr + 4)

>4 gp(Cp + 1) >10 gb(Cb + 4) ;

gr(Dr + 1) >3 gb(Db + 1) >6 gr(Dr + 2)

It is straightforward to verify the sufficiency of these condi-
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tions by following a node’s sequence of changes.
To complete this counter example, it remains to show that

the above set of inequalities are feasible given appropriate
choices of Ax, Bx, Cx and Dx, x ∈ {r, p, b}. There are
many such choices; one example is Ax = 5, Bx = 3, Cx =
7, Dx = 1, for all x ∈ {r, p, b}. With such a choice, and
substituting them into the earlier set of inequalities and through
proper reordering, we obtain the following single chain of
inequalities:

gr(2) > gb(2) > gr(3) > gr(4) > gp(5) > gb(4)

> gr(5) > gr(6) > gb(6) > gb(7) > gp(6) > gr(7)

> gb(10) > gr(8) > gr(11) > gp(8) > gb(11) (8)

It should be obvious that this chain of inequalities can be
easily satisfied by the right choices of non-increasing payoff
functions. It is easy to see how if we have more than 3 colors,
this loop will still be an improving loop as long as the above
inequalities hold. This means that for 3 colors or more the
FIP does not hold in general. Note that the updates in this
example are not always best response updates; they can be
better responses which still result in payoff improvements.

Remark 3: The topology of Figure 4 can easily be made
to represent a tree topology (i.e., any neighbor of A has A
as the only neighbor, and so on). Then by Theorem 3, there
exists at least one PNE of this game. However, we have just
shown that the FIP does not hold.

C. ACGG with non-Monotonic Payoffs or Directed Interaction
Graph

We further identify two cases where a PNE does not
necessarily exist (and thus the FIP does not hold) with non-
player specific payoff functions: when the payoffs are non-
monotonic, and when the graph is directed; these are given in
Examples 3 and 4, respectively.

Example 3: Consider a 3-player, 2-resource network given
in Figure 5 with non-monotonic, non-player specific payoffs
given as g1(1) = 2, g1(2) = 5, g1(3) = 3, g2(1) = 4, g2(2) =
6, and g2(3) = 1. One can easily check that there is no PNE
from the game matrix corresponding to these payoff functions
are given in Table III.

3

1 2

Fig. 5. Counter example of non-monotonic payoff functions.

Example 4: Consider the 3-player, 2-resource network
given in Figure 6. Assume that the payoffs are g1(1) =
3, g1(2) = 2, g2(1) = 4, g2(2) = 1, which are non-player
specific and non-increasing. It is easy to check that PNE does
not exist by the game matrix given in Table IV.

VIII. APPLICATIONS OF ACGG
In this section we illustrate some applications of the ACGG

model, and give example scenarios which can be modeled by

U 3/ U 1,2 (1, 1) (1, 2) (2, 1) (2, 2)
1 5,5,3 (3) 5,4,5 (3) 4,5,5 (3) 4,4,2 (1)
2 2,2,4 (2) 2,6,6 (1) 6,2,6 (2) 6,6,1 (3)

TABLE III
COUNTER EXAMPLE FOR PNE FOR NON-MONOTONIC PAYOFFS (FOR EACH

MATRIX ENTRY a, b, c (d), FIRST THREE NUMBERS REPRESENT THE
PAYOFFS TO PLAYERS 1, 2, 3 RESPECTIVELY WHILE (d) REPRESENTS THE

INDEX OF THE PLAYER WHO CAN IMPROVE HIS PAYOFF BY DEVIATING
FROM HIS STRATEGY).

U 3/ U 1,2 (1, 1) (1, 2) (2, 1) (2, 2)
1 2,2,2 (3) 3,4,2 (3) 4,2,3 (2) 1,4,2 (1)
2 2,3,4 (1) 3,1,4 (2) 4,3,1 (3) 1,1,1 (3)

TABLE IV
PNE COUNTER EXAMPLE FOR DIRECTED GRAPH (FOR EACH MATRIX

ENTRY a, b, c (d), FIRST THREE NUMBERS REPRESENT THE PAYOFFS TO
PLAYERS 1, 2, 3 RESPECTIVELY WHILE (d) REPRESENTS THE INDEX OF
THE PLAYER WHO CAN IMPROVE HIS PAYOFF BY DEVIATING FROM HIS

STRATEGY).

the special interaction graphs studied in Section VI. We then
discuss in more detail two applications in wireless networks:
power control in multi-channel CDMA wireless network and
IEEE 802.11 channel contention. We end this section with
some numerical results on the convergence in an ACGG.

As mentioned in the introduction, in addition to networking
applications, the ACGG can model the following scenario of
business competition, where each vertex in a graph represents
a different shop/business premise; two business premises are
linked if they are close to one another; and resources represent
business ventures (or average foot traffic per unit area). In a
similar way the ACGG can be used to model how industrial
organizations decide which natural resources (e.g., lumber,
coal, gold) to harvest within their vicinity. More broadly,
the ACGG can be used to model a congestion game with
incomplete information. In a congestion game with incomplete
information, all players in reality compete with everyone else,
but a player is only aware of the presence of its neighbors on
the graph.

Within the context of wireless networks, topologies like tree
and loop may correspond to wireless devices deployed in a
subway system, mine or along highways, while a bipartite
network may correspond to a scenario where nodes are located
in two separated areas with transmitter and receiver of the
same user on different areas with directional antennas. An
example of a regular bipartite graph topology is a wireless
sensor network spaced out regularly to form a 2 dimensional
grid.

A. Power Control in multi-channel CDMA wireless network

In the multi-channel CDMA wireless power control prob-
lem, the utility/rate player/user i gets for using channel k is
often taken to be (see e.g., [27]).

log

(
1 + γ

hkiiP
k
i

No +
∑
j 6=i h

k
jiP

k
j

)
,
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1 

2 3 

Fig. 6. Counter example for directed graphs.

where hkji is the channel gain between the transmitter of user j
and the receiver of user i, P kj is the transmit power of user j on
channel k, No is the noise power, and γ > 0 is the spreading
gain. Suppose we adopt the assumptions that (a) each user can
only choose a single channel to transmit on at full power, and
(b) any user j with hkjiP

k
j < ε, for some ε > 0 does not cause

interference to user i, and (c) hkjiP
k
j is (approximately) the

same for all users j 6= i who does not cause interference to
i. The latter two assumptions validates the graph based model
used here. Then the resulting power control problem can be
modeled as an ACGG. Note that if we assume there are only
two channels, then by Theorem 1 this game possesses the FIP
and a PNE can be reached in a distributed way.

B. IEEE 802.11 Channel Contention

Another application of an ACGG is to analyze the random
access scheme under the collision model such as IEEE 802.11.
In this case only a single user can access a channel at each time
slot, and the reward a user obtains from selecting a channel
is the probability of accessing the channel multiplied by the
rate that channel offers to the user. Suppose we assume, as
is commonly done, that users sufficiently far apart from each
other do not interfere with each other, and thus can access the
same channel in the same slot. Let pij(n) be the probability that
user i accesses channel j when the number of i’s neighbors
competing for channel j is n, and Rij be the rate of channel
j seen by user i. Then the resulting channel contention can
be modeled as an ACGG with user-specific payoff functions
given by gij(n) = Rijp

i
j(n).

C. Numerical Results

We now present some numerical results on the expected
number of asynchronous improvement steps needed to con-
verge to a PNE (Tc) over random graphs, in a context similar
to that of channel contention described above. Consider three
resources (or channels) indexed 1, 2, 3, and the following
two cases. The first case is the random access scheme with
identical channels and non-user specific payoffs. We assume
that the payoff a user i gets from using a channel k when
there are ni(k) neighbors using channel k is g(ni(k) + 1) =
1/(ni(k) + 1); this can model a fair share of the channel
among all users contending for the same channel under random
access. The second case is the random access scheme with
non-identical channels and non-user specific payoffs, where
payoffs of user i are given by gk(ni(k) + 1) = k/(ni(k) + 1),
k ∈ {1, 2, 3}; this would model the scenario that each

competing user may get a different data rate when it has
successfully obtained the right to use the channel due to
different modulation/coding schemes, and so on. We have
shown that in the first case FIP exists, therefore users will
converge to a PNE in finite time by improvement steps. In the
second case, we have a counter-example showing that better
response loops may exist, but we have not shown an instance
for which a PNE does not exist. Thus, we only consider best
response updates, and for the second case we also check if the
players ever enter a best-response loop (Tc = ∞ if this ever
happens).

For each simulation, we consider 20 users randomly placed
on a 10 by 10 square area. For each random placement of
users, we generate the interference graph based on a threshold
γ. If the distance between two users is greater than γ, we
assume that they do not interfere with each other. We calculate
Tc for each γ by averaging over 100 random placements
of users and 100 runs for each random placement of users,
where each run starts with a random strategy profile and
the improving user in each step is randomly selected among
all users who can improve their payoff by changing their
strategies. We plot the average value of Tc for each threshold
γ ∈ {1, 2, . . . , 10} for both cases in Figure 7, where the unit
of Tc is the number of improvement steps. The results shows
that the convergence is fairly fast. In the case of identical
channels, convergence tends to be fast when the network is
either sparsely connected (low threshold), or when the network
is approximately fully connected (high threshold).

These observations are intuitively satisfying: when the net-
work is sparsely connected (or even disconnected), smaller
number of interconnected users leads to fewer number of
updates; when the network is near fully connected, the impact
of any update is immediately known to the users, which again
leads to fewer number of updates needed. In between these
two extremes, when the network is connected but not densely
connected, an update can potentially impact all users in the
network, but this impact may take much longer to propagate
through the network. The non-identical channel case is more
complex; however, it does follow the same trend except at
very low thresholds. In addition, it generally takes longer to
converge in this case than in the case of identical channels
when all other parameters are the same.

We also note for all 10000 simulations we did not observe a
single case where the users enter a best response loop. This is
consistent with the difficulty we had in searching for counter
examples (see Remark 2): in general, the instances in which
a PNE or best-response FIP does not exists for ACGGs with
non-user specific payoffs are very rare.

IX. DISCUSSION

In this section, we discuss the relevance and limitations of
the ACGG model and the results obtained in the context of
wireless applications, and point to directions of further studies.

Two results obtained in this paper are of particular interest
in the context of wireless networking, namely Theorem 1 and
Theorem 2. Theorem 1 showed that when users are limited to
only two channels, the finite improvement property holds over
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Fig. 7. Tc value depending on the threshold γ.

arbitrary graphs with user-specific payoff functions. Theorem 2
showed that when channels are of equal width and propagation
characteristics for each user (as is the case when a contiguous
block of bandwidth is evenly sliced into smaller channels),
the finite improvement property holds. This is true even if the
channels are of different quality to different users, e.g., due to
the use of different modulation schemes. This latter scenario is
a very realistic one, as this is the case with multiple channels
in WiFi, bluetooth, and so on. The finite improvement property
suggests that in such systems greedy user updates (i.e., using
best-reply dynamics) will lead, in a finite number of steps,
to a PNE, which is also the local minimizer of the explicit
potential function (Eqn (7) in this case). This means that we
not only have an easy way of obtaining a PNE, but also have
a sense of the (local) efficiency of this NE.

In the weaker case where the existence of PNE is estab-
lished, as shown in Theorems 3-5, players can similarly reach
a PNE with probability one by using the uncoupled dynamics
with 2-recall given in Theorem 3 of [28].

Our primary focus in this paper has been the existence of
PNE and not its performance. As noted above, when the FIP
holds, we can attain a PNE which is also a local optimal
solution to the potential function, but there may be multiple
PNE that result in different objective function values. In
general the performance of a reached PNE is not guaranteed.
It’s also worth noting that although convergence to a PNE
implies stationary behavior, even when the players cycle there
can be cases where the average reward of all the players during
a cycle will be higher than when they play at a PNE. Thus if
the cost of switching is negligible, this type of cycling behavior
may indeed be better than a PNE in terms of the objective
function. An example of such a situation is given in [29],
where the authors show that a natural learning algorithm cycles
but this results in social welfare higher than that achieved at
the unique (mixed) NE.

One limitation of the ACGG model is that it treats all
interference relationships equally, i.e., the underlying network
graph is unweighted (see e.g. the power control problem
illustrated in Section VIII-A). In reality the channel quality
perceived by a user depends not only on who else is using

the same channel and can potentially interfere, but also its
distances to these interfering users. One way to address this is
to define the congestion game over a weighted network graph,
and define the user payoff as a function of the weights on
links connecting interfering users who use the same channel.
Analysis along this line will be very interesting yet challeng-
ing.

Throughout our discussion, we have limited our attention to
the case where each user can access one resource/channel at a
time. In reality it’s also possible for a user to access multiple
channels at a time. As mentioned earlier, if all users can access
all channels simultaneously and the available transmission
power is decoupled across the channels, then the resulting
congestion game is not particularly interesting, as an obvious
PNE is where all users use all resources. A more interesting
case is when users are limited to the number of channels they
can access simultaneously. An additional feature may be that
different users have different sets of channels they are allowed
to access, i.e., user i’s strategy space σi ⊂ 2Ri , whereRi ⊂ R
is user i’s set of allowed channels. Finally, a user may need
to spread the communication resource such as transmission
power among multiple channels, thus transmitting over one or
multiple channels implies different payoff functions for each
channel. All these features will make the resulting game much
more complicated and are subjects of future study.

X. CONCLUSION

In this paper, we considered an extension to the classical
congestion games by allowing resources to be reused among
non-interacting or non-interfering users. This extension is ap-
plicable in the context of wireless network, including spectrum
sharing in multi-channel wireless systems, where spatial reuse
is frequently exploited to increase spectrum utilization due to
decay of wireless signals distance.

The resulting game, the atomic congestion game on graphs
(ACGG), is a generalization of the original congestion game.
We showed that the finite improvement property (FIP) holds
when there are only two resources or the resources are identi-
cal to each user (but may be different between users). The FIP
guarantees the existence of a pure strategy NE. We provided
a negative result on the existence of FIP in the general case.
We also showed that a pure strategy NE exists without the
FIP if the network can be modeled by a tree, a loop, a regular
bipartite graph, or with a dominant resource.

This work represents the first step in understanding how
spatial relationship affects the properties of congestion games
and its potential applications in networking. There are several
ways of extending this work. One possibility is to consider
more general directed weighted graphs, where the users have
asymmetric interference relationship (both in direction and
weight). The other direction is to understand how users will
interact in these games with limited information, for example,
through learning or imitation algorithms. Some preliminary
work along these directions can be found in [30]–[32].
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