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Introduction | Motivating Examples

Motivating Example 1

o Finding the lowest expected delay path through traffic using prior
observations.
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Introduction | Motivating Examples

Motivating Example 2

| 14 Good

@ Channel allocation for wireless links.
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Motivating Example 2
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Introduction ~ General Formulation: MAB with Linear Rewards

Online Learning for Stochastic Network Optimization

o Common theme: find an optimal network structure (best path / matching),
assuming the underlying edge weights are unknown random variables.
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t N
max E[ZZQ;(T)X[(T)}
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Introduction ~ General Formulation: MAB with Linear Rewards

Online Learning for Stochastic Network Optimization

e Common theme: find an optimal network structure (best path / matching),
assuming the underlying edge weights are unknown random variables.

@ Problem formulation:

t N
max  E[Y > ai(7)Xi(7)]

s.t. a(;; EITF (1)

where X;(7) are unknown random variables; a(7) is action at time 7; 7 is a
finite set.

General goal

@ Develop online learning algorithms for combinatorial network optimization
with restless Markovian rewards.
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Introduction | Preliminaries

Multi-Armed Bandits (MAB)

@ Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Multi-Armed Bandit Problem
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Multi-Armed Bandits (MAB)

@ Multi-armed bandit (MAB) problems provide a fundamental approach to learning under
stochastic rewards.

Classic Multi-Armed Bandit Problem

@ K slot machines (arms).

@ Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total
reward.

Multi-Armed Bandit Problem
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Introduction | Preliminaries

Multi-Armed Bandits (MAB)

@ Multi-armed bandit (MAB) problems provide a fundamental approach to learning under

stochastic rewards.
Classic Multi-Armed Bandit Problem

@ K slot machines (arms).

@ Each arm generates random reward by
i.i.d. sampling from an unknown
distribution.

The rewards are independent across arms.

Pull one arm at each time slot.

Objective: maximize long-term total

Multi-Armed Bandit Problem reward.

Trade-off

@ Exploration vs Exploitation
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Introduction | Preliminaries

Evaluation: Regret

Evaluation of learning algorithm performance:

Definition: the difference between the total expected reward, summed over times
1 to t, that could be obtained by a genie that can pick an optimal arm at each
time, and that obtained by the given algorithm.
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Introduction | Preliminaries

Evaluation: Regret

Evaluation of learning algorithm performance:

Definition: the difference between the total expected reward, summed over times
1 to t, that could be obtained by a genie that can pick an optimal arm at each
time, and that obtained by the given algorithm.

Two varieties of upper bounds on regret:

@ asymptotic: only achieved when t — oo

@ uniform: achieved for every t
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Problem Formulation

Problem Formulation: MAB with Markovian rewards
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Problem Formulation

Problem Formulation: MAB with Markovian rewards
@ Markovian rewards: the rewards are associated with finite-state Markov
chains, with unknown transition matrices.
o Restless Markovian rewards: MCs evolve every time slot.

o weak regret: optimal policy plays a static arm
(the problem is difficult and proved to be PSPACE-hard even when the

transition matrices are known)
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Introduction | Problem Formulation

Problem Formulation

Problem Formulation: MAB with Markovian rewards
@ Markovian rewards: the rewards are associated with finite-state Markov
chains, with unknown transition matrices.
o Restless Markovian rewards: MCs evolve every time slot.

o weak regret: optimal policy plays a static arm
(the problem is difficult and proved to be PSPACE-hard even when the
transition matrices are known)

@ Time is slotted, indexed by t.
o N edges.

Other notations:
@ i: index of edges (MCs)

@ a: index of an arm, an N-dimensional action vector
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Prior Work

e Thompson "33 (first work on MAB).

Yi Gai (USC) Online Learning Algorithms June 19, 2012 9 /26



Introduction | Problem Formulation

Prior Work

@ Thompson '33 (first work on MAB).
@ i.i.d. rewards:
o Lai & Robbins’'85:

o lower bound of regret: Kint
@ proposed a policy that achieves an asymptotical upper bound on regret
O(KInt)

o Anantharam et al.’87: extension from single play to multiple plays.
o Auer et al.’02 (UCBLI algorithm): an optimal logarithmic regret is achievable
uniformly over time

regret(t) < GKInt+ G for all t
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Prior Work

@ Thompson '33 (first work on MAB).
@ i.i.d. rewards:
o Lai & Robbins’'85:

o lower bound of regret: Kint

@ proposed a policy that achieves an asymptotical upper bound on regret
O(KInt)

o Anantharam et al.’87: extension from single play to multiple plays.

o Auer et al.’02 (UCBLI algorithm): an optimal logarithmic regret is achievable
uniformly over time

regret(t) < GKInt+ G for all t
@ Restless Markovian rewards:
o Tekin and Liu'10: RCA algorithm with logarithmic weak regret
o Liu et al.’10: RUCB algorithm with logarithmic weak regret

o Dai et al."11: SPUDC algorithm for MCs with identical transition matrices
with near-logarithmic regret

@ These prior works do not consider dependencies across arms.
o MAB with Linear rewards: dependencies!
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Introduction | Applications

Application Examples

t N
max E[ZZB,’(T)X;(T)]

7=1 i=1

s.t. a(r)eF

where {X;(7)} are unknown
random variables.
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Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[Z Z a;(T)Xi(7)] t |E|
=1 j=1 N max R;WWM(t) = E[Z Z ai(T)W;(r)]
s.t. a(r)eF T=1j=1

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.
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Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.

cl C2 C3

P1 S1 0.7 0.4 0.1

T P2
S2 | 09 0.2 0.8

U<Sl v v S2 e

How to allocate channels to secondary users?
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7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
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Application: learning multiuser channel allocations in cognitive radio networks.
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Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.

cl C2 C3

S2

U<Sl v v S2 e

How to allocate channels to secondary users? arm 27

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction | Applications

Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.
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Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
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where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.

cl C2 C3

S2

U<Sl v v S2 e

How to allocate channels to secondary users? arm 47

Yi Gai (USC) Online Learning Algorithms June 19, 2012 10 / 26



Introduction | Applications

Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
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s.t. a(r) eF T
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v

Application: learning multiuser channel allocations in cognitive radio networks.
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Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T
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where {X;(7)} are unknown
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v

Application: learning multiuser channel allocations in cognitive radio networks.
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Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.

cl C2 C3

S2

1 P2

U<Sl v v S2 e

Q channels, M coordinated secondary users.
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Introduction | Applications

Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[ a;j(T)Xi(7)] t, JEl
7_2::1 ; N max RMWM(¢) = E[Z Z ai(T)Wi(7)]
s.t. a(r) eF T

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. where {W;(7)} are unknown edge weights.

v

Application: learning multiuser channel allocations in cognitive radio networks.

cl C2 C3

S2

P2

wr S1 v v S2 e

Q channels, M coordinated secondary users.— only Q X M unknown variables!
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Introduction | Applications

Application Examples
Stochastic Maximum Weighted Matching

(MWM)

t N
max E[Z Z ai(m)Xi(7)] t |E
=1 i=1 N max R;V’WM(t) = E[Z Z ai(T)W;(r)]
s.t. a(r)eF T=1 j=1

s.t. a(7) is a matching
where {X;(7)} are unknown

random variables. ) where {W;(7)} are unknown edge weights.

Application: learning multiuser channel allocations in cognitive radio networks.

c1T C2 @3

P1 S1
S2

P2

N

H‘Sli Hsz”v

Q channels, M coordinated secondary users.— only Q x M unknown variables!— P(Q, M)
matchings (arms)! (e.g. 9 x 5 = 45, however P(9,5) = 15120)
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Introduction | Applications

Application Examples

t N
max E[Z Z ai(7)Xi(1)]

=1 i=1

s.t. a(r)eF

where {X;(7)} are unknown
random variables.
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s.t. a(7) is an s-t path

where {X;(7)} are unknown

. where {D;(7)} are unknown link costs.
random variables. {Di(m)}
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Introduction | Applications

Application Examples
Stochastic Shortest Path (SP) Routing

t N
max EJ[ a;(7)Xi(7)] - _ - . .
;; . min Casp(t) —E[;;Q,(T)D,(T)]
s.t. a(r)eF

s.t. a(7) is an s-t path

where {X;(7)} are unknown

. where {D;(7)} are unknown link costs.
random variables. {Di(7)}

4

Application: motivating example #1.

Similarly, |E| edges— only |E| unknown variables!— # paths (arms): exponential in |E]|

Yi Gai (USC) Online Learning Algorithms June 19, 2012 11 /26



Introduction | Challenges

Challenges (1)

A K-armed classic MAB with single play (K = |F]):

Classic MAB with single play
MAB with Linear Rewards

t N
max ]E[ZZB,‘(T)X;(T)]

=1 i=1 s.t. a(r) e F
s.t. a(r) e F

max ]E[Z Ya(7)]

— where Ya(7) = XN: ai(T)Xi(T), K = |F|
=1
(e.g. K = P(N, M)).
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Challenges (1)

A K-armed classic MAB with single play (K = |F]):
MAB with Linear Rewards

t N
max ]E[ZZQ,‘(T)X;(T)]

T=1i=1
s.t. a(r) e F

max ]E[Zt: Ya(7)]
=1
s.t. a(r) e F
— where Y,(T) = XN: ai(T)Xi(1), K = |F|

(eg. K= P(N,i?/ll)).

@ arms #: exponentially in N
@ Exponential storage.
@ Exponential computation time.
@ The upper bound of regret
grows exponentially.
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Challenges

Challenges (1)

A K-armed classic MAB with single play (K = |F]):

MAB with Linear Rewards

t N
max ]E[ZZQ,‘(T)X;(T)]

T=1i=1
s.t. a(r) e F

@ a more efficient and better
algorithm is needed!

Yi Gai (USC)

Online Learning Algorithms

Classic MAB with single play

max ]E[Zt: Ya(7)]
=1
s.t. a(r) e F

where Ya(7) = XN: ai(T)Xi(T), K = |F|
i=1
(e.g. K = P(N, M)).

@ arms #: exponentially in N
@ Exponential storage.
@ Exponential computation time.
@ The upper bound of regret
grows exponentially.
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Introduction | Challenges

Challenges (2)

Challenges due to restless Markovian rewards:

@ transitions occur no matter played or not (every time slot)

@ the current state while starting to play a Markov chain depends not only on
the transition probabilities, but also on the policy

@ the policy design for the restless case is much more difficult

Yi Gai (USC) Online Learning Algorithms June 19, 2012 13 /26



Combinatorial Learning with Restless Markov Rewards (CLRMR)

Outline

e Combinatorial Learning with Restless Markov Rewards (CLRMR)
@ Contribution
@ Proposed Algorithms
@ Analysis of Regret
@ An Extension
@ Simulations

Online Learning Algorithms June 19, 2012 14 / 26




Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Contribution

Our Contribution

A new algorithm for this more general problem (parameterized by F):

Combinatorial Learning with Restless Markov Rewards (CLRMR)

@ only O(N) storage
@ achieves regret of O(N*Int) (uniformly)

@ polynomial running time whenever the underlying problem (which
corresponds to F) is in P (or admits approximation algorithms)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Contribution

Our Contribution

A new algorithm for this more general problem (parameterized by F):

Combinatorial Learning with Restless Markov Rewards (CLRMR)

@ only O(N) storage
@ achieves regret of O(N*Int) (uniformly)

@ polynomial running time whenever the underlying problem (which
corresponds to F) is in P (or admits approximation algorithms)

It is the first to show how to efficiently implement online learning for stochastic
combinatorial network optimization when edge weights are dynamically evolving as
restless Markovian processes.
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Key ideas

@ only use info. from regenerative cycle (of the multidimensional Markov chain

{X2(m)
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Key ideas
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compute index compute index compute index compute index
play arm a(n—1) play arm a(n) play arm a(n+1)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

Key ideas

@ only use info. from regenerative cycle (of the multidimensional Markov chain

{X2(m)

compute index compute index compute index compute index
play arm a(n—1) play arm a(n) play arm a(n+1)
SB1 SB2 SB3 SB1 SB2 SB3 SBI1 SB2 SB3
| I I
S B L I R
cee (8(7171) cee Ca(n—l) cee Ca(n) cee Ca(n) P .<a(n+l) Ca(n+l)

3 sub-blocks: SB1, SB2 and SB3

@ Utilize dependencies to improve efficiency

Storage

e store and use the observations for each MC
o for MC {X/(n)}, 3 N-dimensional vectors:

° 25': sample mean of observed values in SB2
o mj: # of observed times in SB2
o (': a pre-specified state (to determine the regenerative cycle)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

Algorithm 1 Combinatorial Learning with Restless Markov
Reward (CLRMR)
1+ // INITIALIZATION
1 :

¥ Vi=1,e Nomy=0,5=0;
sforb=10 N do
D B A

am a such that b € Ay:
ed state vector for arm a
Vi € Auay let ' be the fint state observed for

lenote (2,)ic.1, @

Markov chain 7 if ¢' has never been set; 2§ :=

5 do

9 s

o, Play arm a; denote (;);c.4, as the observed state
vector;

1 Vi € Aa(n), 3= L mh = mh +

12 end while

15 end for

13 // MAIN LOOP

15: while 1 do

16: // SBISTARTS

n t=t+l

18 Play an arm a which maximizes

e
where L is a constan

19: Denote (x)ic.1, as the observed state vector;

20 while (:)ica, # (i, do

2 ti=t 1

2 Play an arm a and denote (:);c.4, as the observed
state vector;

25 end whi

24 // SB2STARTS

E

2 timt4 Lty i=ty + 1

» Play an arm a and denote (z;);c 4, as the observed
state vector;
30: Vi € Aagn). S mb =+ 1

3 end w

3 // SB3 IS THE LAST PLAY IN THE WHILE LOOP.
THEN A BLOCK COMPLETES

B bi=b+l b=t

34 end while
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

Algorithm 1 Combinatorial Learning with Restless Markov
Reward (CLRMR)
12 // INITIALIZATION
Vi=1oo Nomh=0,5=0;
for b= 110 N do
fi=t+

ny arm a such that b € Ay denote (z,)c.4, as
the observed state vector for arm a;
Wi € Au. let C' be the first state observed for

Markov chain 7 if ¢* has never been set;

Initialization: play arms s.t. each MC is observed at least once. J

mh = mj + 1

5 while (2)iea, # ((')ica, do

o L=t 1ty =+ 1:

0 Play am a; denote (1;)c.4, as the observed state
veetor;

" Vi € Aagn) 1

12 end while

13: end for

142 // MAIN LOOP.

15: while 1 do

16 // SBISTARTS

D +1;

1 n arm a which maximizes
where L is a constant.

19: Denote (i)ic., as the observed state vector;

2. while ()i, # ((ica, do

21 ti=t 1

2 Play an arm a and denote (:)ic.4, as the observed
state vector:

2 whil

24 // SB2STARTS

B’ dy=tytl

W Vi€ Agu E

27 while (1)ica, # (C')ica, do

28 =ttty =t 1

2 Play an arm a and denote (;)c 4, as the observed
state vector: »

30: ¥i € Aagnys S = )+

31 end while B

32 // SB3 IS THE LAST PLAY IN THE WHILE LOOP.

THEN A BLOCK COMPLETES
W bi=bal =4l
34 end while
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SC) Online Learning Algorithms June 19, 2012 17 / 26



Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

Algorithm T Combinatorial Learning with Restless Markov
Reward (CLRMR)

1- /7 INITIALIZATION

=1t
vi=1 N,y =0, =0;
forb=1m] \' do

t2+1
P ny arm a such that b € Au; denote (x,);c.4, 4
Uhe observed stae vector for am a:

J

K Vi € Aa(n)s let ¢' be the first state obwnud Im’
Markov eain 116G s never ben st Initialization: play arms s.t. each MC is observed at least once.
1= mh + i

§: whlle(r Jieas # (¢ thA‘. do

9, t + 1,1 t2 +

10: Phy am a; denote (1);c.4, as the observed state l
vector:

n i € Aun)

12 end while .

13 end for Main loop:

14 // MAIN LOOP
15: while 1 do

16 // SBISTARTS

D +1

1 n arm a which maximizes
where L is a constan

19: Denote (i)ic., as the observed state vector;

200 while (2)ica, # (C')ica, do

21 =t 1

2 Play an arm a and denote (1;)c 4, as the observed
state vector:

25 end whi

24 /[ SB2STARTS

Y

z:, wye,xm,”. z

2 2

P Play an arm a and denote (x;),c.4, as the observed
sate vector:

30: i € Aggn) Tl = +

3l end while :

2 // SB3 IS THE LAST PLAY IN THE WHILE LOOP.

THEN A BLOCK COMPLETES
W bi=b+lti=t41
34 end while

vy
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

ite inde
Algorithm T Combinatorial Learning with Restless Markov compute index

Reward (CLRMR)

1- /7 INITIALIZATION
2t=1t=1

% Vi=1 N,y =0, =0;

sforb=110N do

S t=tt b=t
arm & such that b € Aa: denote (r,);c.4, a5
the observed state vector for arm a;

7 Vi € Aug, let ¢ be the first state observed for

Markov chain i if ¢’ has never been set; 2
mi = mj + 1
8 while (2;)ic.a, # ((')ica, do
t

Initialization: play arms s.t. each MC is observed at least once. J

5 G =t 5 T

10: Play arm a: denote («;);c., as the observed state l
vector

u Vi € Augn :

12 end while .

13- end for Main loop:

14 // MAIN LOOP

15: while 1 do //SBl

16: // SBI1 STARTS

ot @ decide which arm to play in this block:
an arm a which maximizes . . . . .
pick a which solves the maximization problem

where L is a constant.

190 Denote (x7);e.4, as the observed state vector; —f Llint,
20 while ()i a, # (C)ic, do max ai |z + 4 — |
21 ti=t4 1 acF | mj
P Play an arm a and denote (-, ),c.4, s the observed i€ Ay 2
state vector
23 end whil
24: // SB2 STARTS
25: ty=ty+ 13
% Vi€ Aaguy, 5

= mh 4 1

1 end while

20 // SB3 IS THE LAST PLAY IN THE WHILE LOOP.
THEN A BLOCK COMPLETES

W bi=b+lti=t41

34 end while
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Combinatorial Learning with Restless Markov Rewards (CLRMR)

Proposed Algorithms

How the CLRMR Algorithm Works

Algorithm T Combinatorial Learning with Restless Markov
Reward (CLRMR)

1- /7 INITIALIZATION
2t=1t=1

% Vi=1 N,y =0, =0;

sforb=110N do

5 b=t lbi=bt ]
arm & such that b € Aa: denote (r,);c.4, a5
the observed state vector for arm a;

K ¥i € Aagu) let ' be the first state observed for
Markov chain i if ' has never been set; 2} 1=~
m = mj +1:

8 while (x,)ica, # ((')ica, do

o, Li=t+ Lty = ta + 13

10: Play arm a: denote («;);c., as the observed state
vector;

I i € Aagy 1

12 end while

13 end for

14 // MAIN LOOP
15: while 1 do

16: // SBISTARTS
+1;

an arm a which maximizes

where L is a constant.

19: Denote (z;)ic.4, as the observed state vector:

20 while (2)iea, # (C')ic, do

21 t=t+1:

2 Play an arm a and denote (;);< 4, as the observed
state vecto

23 end whil

24: // SB2 STARTS

25: ty=ty+ 13

W Vi€ Aauye 3

= mh 4 1

1 end while

20 // SB3 IS THE LAST PLAY IN THE WHILE LOOP.
THEN A BLOCK COMPLETES

W bi=b+lti=t41

34 end while

Yi Gai

SC)

compute index

play arm a(n)

Initialization: play arms s.t. each MC is observed at least once.

J

!

Main loop:
//SB1
@ decide which arm to play in this block:
pick a which solves the maximization problem

_j Llint,
max ai | z, + _—

i
i€ Aa )

@ keep playing a

Online Learning Algorithms June 19, 2012
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

ite inde
Algorithm T Combinatorial Learning with Restless Markov compute index

Reward (CLRMR)

play arm a(n)

12 // INITIALIZATION
nt=1t=1 sBI B2
3 V=1 Nomh=0,3=0;
4 for =11 N do
Sttt ; -

2 )
6 Play any arm a such that b € Ay; denote (2;)ic 4, a5

state vector for arm a;
7 Vi € Aug, let ¢ be the first state observed for

Markov chain i if ¢* has never been set; 2§ :=

Initialization: play arms s.t. each MC is observed at least once. J

7 ((iea, do
1

denote ()i 4, as the observed state l

it Yi € Aau), 2 mh =y + 1

ot Main loop:

e ao” //SB1

P @ decide which arm to play in this block:

ay an arm a which maximizes

Lt
il

where L is a constant. Ll
190 Denote (x7);e.4, as the observed state vector; —i nty
20 while (2)icn, £ (C')ica, do max ai | z, + = | 5
21 ti=t 1 acF . m}
P Play an arm a and denote (-, ),c.4, s the observed i€Aa 2

state vector;

pick a which solves the maximization problem

23 end while

24: // SB2 STARTS

S .

e, e e @ keep playing a

2 ¢ do

B Chmty i SB2

2 Play an arm a and denote (x,),c 4, s the observed / / a i i i i

v . | @ when ¢? = (¢')ica, occurs, keep playing a, update z;, m;
¥i € Aagnys . +1;

3 end while ’ after each play

/] SB3 IS THE LAST PLAY IN THE WHILE LoOP

THEN A BLOCK COMPLETES
W bi=b+lti=t41
34 end while

vy
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

ite inde
Algorithm T Combinatorial Learning with Restless Markov compute index

Reward (CLRMR)

play arm a(n)

I+ // INITIALIZATION

2t=1Lt= SBI SB2 SB3
3 Vi=1 N.mj =0, %= 0; I I

4 for h* 110 N do

5: +1Ltai=t2+1; eee  (aln) e a(n)
p ny arm a such that b € Ay; denote (z;);c.4, as ¢ ¢

the observed state vector for arm a;
7 Wi € Ag let ¢ be the first state observed for

Markov chain i if ¢* has never been set; 2§

Initialization: play arms s.t. each MC is observed at least once. J

5 while (1)cq, # (e, do
t+

, / et

10: Play arm a; denote (r; ],; A, as the observed state l/
vector:

i i € Aage.

12 end while

mh o= mi + 1
Main loop:
//SB1
@ decide which arm to play in this block:
pick a which solves the maximization problem

where L is a constant.
19: Denote (x:)ic.a, as the ub\srwd state vector; Llin tz
20: wlnle <t g max aj 22
2 +1; acF . m
P Pl.\\ an arm a and denote (z a i€Aa 2

state vector;

25 end while
24 // SB2STARTS
25

@ keep playing a

bt //5B2

2 Play an arm a and denote (z:)se.4, as the abserved a ; . i i
state vectors @ when ¢? = (¢')ica, occurs, keep playing a, update z;, m;

0 Vi€ Ay = B = mh+ 1

W e whie e after each play

.
//SB3

W bi=b+lti=t41

w: end while @ when ¢* = ((i)ieAa occurs again, stop playing

vy
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Proposed Algorithms

How the CLRMR Algorithm Works

ite inde te inde ite inde

Algorithm T Combinatorial Learning with Restless Markov compute index computg index compure index
Reward (CLRMR) play arm a(n) play arm a(n+1)

1- /7 INITIALIZATION

st e sBI B2 B3 SBI Sz SB3

3 Vi= e N, b =0, =0; I I
4heo=1w N do

5 =tt+lbi=t+1 cee calm caln+1)

o PIn) ny arm a such that b € Ay; denote (r,);c., as

the observed state vector for arm a;
K ¥i € Aagu) let ' be the first state observed for

Markov chain i if ¢* has never been set; 2§

Initialization: play arms s.t. each MC is observed at least once. J

5 whllur y,,‘ #((ica, do

P ' i

10: PL!V arm a; denote (r; ],; A, as the observed state l
vector;

1n; Vi € Aagn)s m = mh + 1

12 end while 5

15 end for Main loop:

14 // MAIN LOOP //SBI

@ decide which arm to play in this block:
pick a which solves the maximization problem

where L is a constant.
19: Denote (x;)ic.a, as the observed state vector: Llin tz
200 while (x; # ((ica, do max a; 22 N
21 ti=t 1 acF . mi
. Play an arm a and denote (i a i€Aa 2

state vector;

25 end while
24 // SB2STARTS
25

@ keep playing a

, //5B2

2 Play an arm a and denote (z;);e 4, as the observed a ; . i i
state vectors @ when ¢? = (¢')ica, occurs, keep playing a, update z;, m;

0 Vi€ Ay L

W end whie e after each play

.
//SB3

W bi=b+lti=t41

w: end while @ when ¢* = ((i)ieAa occurs again, stop playing

vy
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Analvsis of Regret

Upper Bound of Regret

@ Traditional approach:
bound expected # times each non-optimal arm is played & sum over all arms — bound on
regret
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Analvsis of Regret

Upper Bound of Regret

@ Traditional approach:
bound expected # times each non-optimal arm is played & sum over all arms — bound on
regret

Bound is linear in # arms

But: in CLRMR, we have exponentially many arms!

Can we do better?

Yes! We prove a tighter bound: O(N*Int) (or O(N3LInt)).
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Upper Bound of Regret

Theor
When using any constant L > 56(H + 1)S2 . r

max max max

/€min, the regret of CLRMR

IS at most
CLRMR
R (t)§Z3|nt+Z4
where 22
ANLH2 3 1 7 NHSmax
z3:zl+2527'“ax, Zy = Zp + v (—— + Mmax + 1) + Zg(N + ———
min Tmin 3Tmin
and 5.5
1 4NLH< a; 1 7 NHSmax
leAmax<7+Mmax+1) 27maxy ZzzAmax(7+Mmax+1> (N+7 s
MNimin ‘min MNmin 3T min
A 1 1
Z5 = Yioax(—— + Mmax +1 — ——) + "M},
Mmin Tmax
y
. ; @ N3: steady state distribution for state z of {X3(n
Notations: Q@ i minel z’ Sy s 2 of (X%n))
i @ ma. . min N2
@ H: max|Aal| Notethat H < N Py . i min- ;csa
a Smax: max |S'|
P i i i @ Mpip: min_ M3
Al max{m, 1 - e} @ e max i a,z€sa
@ Amax:  max R ixesi o 'yA : max a
ixesi MR yalyx
’ . @ apax: . max aj Ry
@ 7ax: max | L i€Aa,ac€F ("] Mgl 2} mean hitting time of state z, starting from an
i i LA a ’
. ixes Q@ Aa:y* - o initial state z for {X@(n)}
@ /. cigenvalue gap, defined as 1 — Ao, @ Apin: _ min  Aa @ M . max M3
where X\ is the second largest eigenvalue 1< max* 21,2p€5 Z1,22
of the multiplicative symmetrization of P’ @ Amax: ’Yamﬁail* Aa ")

: a
Mimax: 2% Minax
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Upper Bound of Regret

Analvsis of Regret

Theorem

When using any constant L > 56(H + 1)S2..r2_.

Afax/ €Emin, the regret of CLRMR

IS at most
y
. : @ N3: steady state distribution for state z of {X3(n
Notations: Q@ < i minel ° m Y o )
1 .0 min
@ H: max|Aa| Notethat H < N o i mn’ zesa ?
a = Smax: max |S' |
@ #i. i i i @ Npi: min_ M2
i max{m, 1 - T} @ e max i a,zesa
Q@ Amax: max ) ixest o 'yA ;o omax A2
ixesi maxt ja<y*
) @ amax: . max__a; =
@ 7max: max | L3 i€Agq,aceF o M‘z’1 ¢ Mean hitting time of state z, starting from an
i 1 Y a ’
. Ixes QO £aiv* =y initial state z; for {X?(n)}
@ i eigenvalue gap, defined as 1 — Ay, O Apin: _min _ Aa @ M . max M
where X is the second largest eigenvalue sy max’ L ,zp€Sa 172
of the multiplicative symmetrization of P’ ° Amax: am<ax * Aa [+] Mmax: _max M2
YT ~A <~y * max
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An extension of CLRMR

When (a bound of) Smax, fmax, fmax OF €min is unknown, L cannot be determined.
What shall we do?
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An extension of CLRMR

When (a bound of) Smax, fmax, fmax OF €min is unknown, L cannot be determined.
What shall we do?

An extension of CLRMR: using any arbitrarily slowly diverging non-decreasing

sequence L(t) such that L(t) < t for any t.
(replacing the maximization in CLRMR accordingly with

i L(n(t2)) In t;
maxa (7 4 | L) It
acF m;,

where n(t) is the time when total number of time slots spent in SB2 is t,)
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An extension of CLRMR

When (a bound of) Smax, fmax: fmax OF €min is unknown, L cannot be determined.
What shall we do?

An extension of CLRMR: using any arbitrarily slowly diverging non-decreasing

sequence L(t) such that L(t) <t for any t.
(replacing the maximization in CLRMR accordingly with

(_,. \/L(n(tQ)) In t2>
maxa; | z, + _—
acF mj

where n(t,) is the time when total number of time slots spent in SB2 is t,)

The expected regret under the CLRMR policy with using L(t) is at most

RELRMR—LN (1) < ZoL(t)Int + Z4 (2)

where Zg and Z; are constants.
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An extension of CLRMR

When (a bound of) Smax, fmax: fmax OF €min i unknown, L cannot be determined.
What shall we do?

An extension of CLRMR: using any arbitrarily slowly diverging non-decreasing

sequence L(t) such that L(t) < t for any t.
(replacing the maximization in CLRMR accordingly with

_i L(n(tz)) Inty
maxaj | z, + 4/ ————
acF m;

where n(t,) is the time when total number of time slots spent in SB2 is t,)

The expected regret under the CLRMR policy with using L(t) is at most

O(N3L(t)Int)
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Simulations

Simulation Results (1)

Application: Stochastic Shortest Path

@ 19 links, 260 acyclic paths

—6— RCA Policy, L = 1512
—e— CLRMR Policy, L = 1512|
= = = RCA Policy, L = 50
CLRMR Policy, L = 50
RCA Policy, L = 2

10° .= CLRMR Policy, L = 2 .

RegretLog(t)

Link | po1, p1o || Link | po1, pio || Link | po1, pio

el 02,08 | e8 03,08 || e15 | 0.1,08 , ) ] ) ) ) ) ] ] ]

e2 03,00 || e9 0.1,09 || e16 | 08 0.1 0 1 2 3 n 5 s 7 3 ) 10
¢3 02,07 || e10 | 09,01 | ed7 | 02,07 Time «10°
o4 0.7,0.1 [[ ell | 03,08 [[eI8 | 09,01

e5 03,09 [[el2 | 02,07 |[ el9 | 03,08

c6 02,07 || e13 | 08,01

7 02,08 || e14 | 04,08
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Combinatorial Learning with Restless Markov Rewards (CLRMR) ' Simulations

Simulation Results (2)

Application: Channel Allocations in CRN

—— RCA Policy, L
—— CLRMR Policy, L= 2

@ 9 orthogonal channels, 5 secondary users
_— Opportunities
— —_— —
Channel 7 -
s rog
— :
Channel N E
1 2 n t
ch.l | ch2 | ch3 | ch4 | chs5 ch.7 | ch.8 | ch.9
u.1]0.5,0.6{0.2,0.7{0.2,0.9(0.8,0.1]0.2,0.7 0.2,0.9]0.2,0.7]0.1,0.9
u.2]0.3,0.8/0.1,0.9]0.2,0.8{0.3,0.7|0.3,0.6 0.4,0.7]0.2,0.8]0.9,0.2
u.3]0.8,0.1]0.2,0.7{0.3,0.7{0.2,0.8|0.5,0.6{0.2,0.7{0.2,0.7{0.2,0.8| 0.1,0.9 ‘020 0‘5
u.4]0.3,0.9]0.2,0.8{0.2,0.9{0.4,0.6/0.9,0.20.2,0.9{0.2,0.9]0.2,0.9]0.2,0.9
u.50.5,0.6]0.2,0.7{0.3,0.9{0.2,0.7]0.5,0.5[0.2,0.7{0.8,0.1]0.3,0.9]0.3,0.9
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Conclusion

Conclusion

More Works on MAB with Linear Rewards:

Problems Random Process Proposed Algorithms Regret Bound:
MAB with Linear Rewards  i.i.d. LLR O(N*In t)
LLR-K O(N*In t)

LLR with B-approximation ~ O(N*In t)*

Notes:
«. Upper bounds on regret are achieved uniformly.
f. [B-approximation regret.
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Problems Random Process Proposed Algorithms Regret Bound:
MAB with Linear Rewards  i.i.d. LLR O(N*In t)
LLR-K O(N*In t)
LLR with B-approximation ~ O(N*In t)*
MAB with Linear Rewards Rested Markovian MLMR O(N*In t)*
Rested Markovian O(L(t)N®Int)T
Notes:
*. Upper bounds on regret are achieved uniformly.
f. [3-approximation regret.
fi. weak regret; an upper bound on L is known.
t.

L(t) is any arbitrarily slowly diverging non-decreasing sequence.
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More Works on MAB with Linear Rewards:

Problems Random Process Proposed Algorithms Regret Bound:
MAB with Linear Rewards  i.i.d. LLR O(N*In t)
LLR-K O(N*In t)
LLR with B-approximation ~ O(N*In t)*
MAB with Linear Rewards Rested Markovian MLMR O(N*In t)*
Rested Markovian O(L(t)N®Int)T
MAB with Linear Rewards Restless Markovian ~ CLRMR O(N*In t)*

Restless Markovian

O(L(t)N® Int)"

Notes:

*. Upper bounds on regret are achieved uniformly.

f. [B-approximation regret.

fi. weak regret; an upper bound on L is known.

t. L(t) is any arbitrarily slowly diverging non-decreasing sequence.
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Conclusion

More Works on MAB with Linear Rewards:

Problems Random Process Proposed Algorithms Regret Bound:

MAB with Linear Rewards  i.i.d. LLR O(N*In t)

LLR-K O(N*In t)

LLR with B-approximation ~ O(N*In t)*

MAB with Linear Rewards Rested Markovian MLMR O(N*In t)*
Rested Markovian O(L(t)N®Int)T

MAB with Linear Rewards Restless Markovian ~ CLRMR O(N*In t)*
Restless Markovian O(L(t)N® Int)"

Notes:

*. Upper bounds on regret are achieved uniformly.

f. [B-approximation regret.

fi. weak regret; an upper bound on L is known.

t. L(t) is any arbitrarily slowly diverging non-decreasing sequence.

Papers and Collaborators:
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@ joint work with Bhaskar Krishnamachari, Mingyan Liu, Rahul Jain.
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Conclusion

Conclusion (2)

Broad applications:

@ Sensor Networks
Cognitive Radio Networks
Web Search

Internet Advertising

Energy Distribution Networks

Social Economical Networks
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Conclusion

Thanks!

ygai@usc.edu
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