
Unsupervised Graph-based Word Sense Disambiguation
Using Measures of Word Semantic Similarity

Ravi Sinha andRada Mihalcea
Department of Computer Science and Engineering

University of North Texas
ravisinha@unt.edu, rada@cs.unt.edu

Abstract

This paper describes an unsupervised graph-based
method for word sense disambiguation, and presents com-
parative evaluations using several measures of word seman-
tic similarity and several algorithms for graph centrality.
The results indicate that the right combination of similar-
ity metrics and graph centrality algorithms can lead to a
performance competing with the state-of-the-art in unsu-
pervised word sense disambiguation, as measured on stan-
dard data sets.

1 Introduction

Ambiguity is inherent to human language. In particular,
word sense ambiguity is prevalent in all natural languages,
with a large number of the words in any given language
carrying more than one meaning. For instance, the English
nounplant can meangreen plantor factory; similarly the
French wordfeuille can meanleaf or paper. The correct
sense of an ambiguous word can be selected based on the
context where it occurs, and correspondingly the problem
of word sense disambiguationis defined as the task of auto-
matically assigning the most appropriate meaning to a pol-
ysemous word within a given context.

In this paper, we describe a graph-based algorithm for
unsupervised word sense disambiguation. The algorithm
annotates all the words in a text by exploiting similari-
ties identified among word senses, and using centrality al-
gorithms applied on the graphs encoding these sense de-
pendencies. The paper provides a comparative evaluation
of several measures of word semantic similarity using a
graphical framework. Specifically, we experiment with
six knowledge-based measures of similarity and four graph
centrality algorithms. The results show that the right com-
bination of similarity measures and graph centrality algo-
rithms can lead to state-of-the-art performance on unsuper-
vised word sense disambiguation.

The paper is organized as follows. We first describe the
graph-based method for word sense disambiguation, fol-
lowed by a description of the similarity measures and graph-
centrality algorithms. Next, we present several comparative
evaluations carried out on the SENSEVAL data sets, and pro-
vide results obtained using each of the similarity measures
and centrality algorithms, as well as combinations of these.
Finally, we conclude with a discussion of the results.

2 Graph-based Centrality for Word Sense
Disambiguation

In this section, we describe the graph representation used
to model word sense dependencies in text, and show how
graph centrality algorithms can be used to determine the
most likely combination of word senses. This is a gener-
alization of the random-walk sequence data labeling algo-
rithm proposed in our previous work [11]; for the sake of
completeness, we reproduce the algorithm here.

Given a sequence of wordsW = {w1, w2, ..., wn},
each wordwi with corresponding admissible labelsLwi

=

{l1wi
, l2wi

, ..., l
Nwi
wi }, we define a label graph G = (V,E) such

that there is a vertexv ∈ V for every possible labelljwi
,

i = 1..n, j = 1..Nwi
. Dependencies between pairs of la-

bels are represented as directed or indirected edgese ∈ E,
defined over the set of vertex pairsV ×V . Such label depen-
dencies can be learned from annotated data, or derived by
other means, as illustrated later. Figure 1 shows an example
of a graphical structure derived over the set of labels for a
sequence of four words. Note that the graph does not have
to be fully connected, as not all label pairs can be related by
a dependency.

Given such a label graph associated with a sequence of
words, the likelihood of each label can be determined us-
ing a graph-based centrality algorithm, which runs over the
graph of labels and identifies the importance of each label
(vertex) in the graph. The graph-based algorithm results in
a set of scores attached to vertices in the graph, which are
used to identify the most probable label (sense) for each

1w

1

2

3

2

1 1 1

2

4

w 2 w 3 w 4

w1

w1

3

w1
l

l

l
w2

w2

l

l

w3
l

w4

w4

w4

w4
l

l

l

l

1.1

0.4
0.2

0.5

0.2

0.1

1.3

0.9

0.6

0.7

1.6

[1.12]

[1.39]

[0.86]

[1.13]

[1.38]

[1.56] [0.40]

[1.05]

[0.58]

[0.48]

Figure 1. Sample graph built on the set of
possible labels (shaded nodes) for a se-
quence of four words (unshaded nodes).
Label dependencies are indicated as edge
weights. Scores computed by the graph-
based algorithm are shown in brackets, next
to each label.

word. For instance, for the graph drawn in Figure 1, the
wordw1 will be assigned with labell1w1

, since the score as-
sociated with this label (1.39) is the maximum among the
scores assigned to all admissible labels associated with this
word.

A remarkable property that makes these graph-based
algorithms appealing is the fact that they take into account
information drawn from the entire graph, capturing rela-
tionships among all the words in a sequence, which makes
them superior to other approaches that rely only on local
information individually derived for each word.

Word Sense Disambiguation
Given a sequence of words with their corresponding admis-
sible labels, the disambiguation algorithm seeks to identify
a graph of label dependencies on which the centrality can
be measured, resulting in a set of scores that can be used
for label assignment. Algorithm 1 shows the pseudocode
for the labeling process. The algorithm consists of three
main steps: (1) construction of label dependencies graph;
(2) label scoring using graph-based centrality algorithms;
(3) label assignment.

First, a weighted graph of label dependencies is built by
adding a vertex for each admissible label, and an edge for
each pair of labels for which a dependency is identified.
A maximum allowable distance can be set (MaxDist),
indicating a constraint over the distance between words
for which a label dependency is sought. For instance, if
MaxDist is set to3, no edges will be drawn between la-
bels corresponding to words that are more than three words
apart, counting all running words. Label dependencies are
determined through theDependency function, which en-
codes the relation between word senses. We experiment

Algorithm 1 Graph Centrality for Word Sense Disambigua-
tion
Input: SequenceW = {wi|i = 1..N}
Input: Admissible labelsLwi

= {ltwi
|t = 1..Nwi

},i = 1..N

Output: Sequence of labelsL = {lwi
|i = 1..N}, with labellwi

corre-
sponding to wordwi from the input sequence.

Build graph G of label dependencies
1: for i = 1 to N do
2: for j = i + 1 to N do
3: if j − i > MaxDist then
4: break

5: end if
6: for t = 1 to Nwi

do
7: for s = 1 to Nwj

do
8: weight← Dependency(ltwi

, lswj
, wi, wj)

9: if weight > 0 then
10: AddEdge(G, ltwi

, lswj
, weight)

11: end if
12: end for
13: end for
14: end for
15: end for

Score vertices in G
1: for all Va ∈ V ertices(G) do
2: Score(Va)← Centrality(Va)
3: end for

Label assignment
1: for i = 1 to N do
2: lwi

← argmax{WP (ltwi
)|t = 1..Nwi

}
3: end for

with six different measures of word semantic similarity as a
means to derive the dependency between word senses (see
Section 3).

Next, scores are assigned to vertices using a graph-based
centrality algorithm. In this paper, we experiment with
four centrality algorithms, namely: indegree, Closeness,
Betweenness, and PageRank (see Section 4).

Finally, the most likely set of labels is determined by
identifying for each word the label that has the highest
score. Note that all admissible labels corresponding to the
words in the input sequence are assigned with a score, and
thus the selection of two or more most likely labels for a
word is also possible.

3 Measures of Word Semantic Similarity

There are a number of measures that were developed to
quantify the degree to which two words are semantically
related using information drawn from semantic networks –
see e.g. [3] for an overview. We present below several mea-
sures found to work well on the WordNet hierarchy. All
these measures assume as input a pair of concepts, and re-
turn a value indicating their semantic relatedness. The six
measures below were selected based on their observed per-
formance in other language processing applications, and for

their relatively high computational efficiency.
We conduct our evaluation using the following word

similarity metrics: Leacock & Chodorow, Lesk, Wu &
Palmer, Resnik, Lin, and Jiang & Conrath. We use the
WordNet-based implementation of these metrics, as avail-
able in the WordNet::Similarity package [14]. We provide
below a short description for each of these six metrics.

TheLeacock & Chodorow [7] similarity is determined as:

Simlch = − log
length

2 ∗D
(1)

wherelength is the length of the shortest path between two
concepts using node-counting, andD is the maximum depth
of the taxonomy.

The Lesk similarity of two concepts is defined as a func-
tion of the overlap between the corresponding definitions,
as provided by a dictionary. It is based on an algorithm
proposed by Lesk [8] as a solution for word sense disam-
biguation. The application of the Lesk similarity measure is
not limited to semantic networks, and it can be used in con-
junction with any dictionary that provides word definitions.

The Wu and Palmer [17] similarity metric measures the
depth of two given concepts in the WordNet taxonomy, and
the depth of the least common subsumer (LCS), and com-
bines these figures into a similarity score:

Simwup =
2 ∗ depth(LCS)

depth(concept1) + depth(concept2)
(2)

The measure introduced byResnik [15] returns the infor-
mation content (IC) of the LCS of two concepts:

Simres = IC(LCS) (3)

where IC is defined as:

IC(c) = − log P (c) (4)

andP (c) is the probability of encountering an instance of
conceptc in a large corpus.

The next measure we use in our experiments is the metric
introduced byLin [9], which builds on Resnik’s measure of
similarity, and adds a normalization factor consisting of the
information content of the two input concepts:

Simlin =
2 ∗ IC(LCS)

IC(concept1) + IC(concept2)
(5)

Finally, the last similarity metric considered isJiang &
Conrath [6]:

Simjnc =
1

IC(concept1) + IC(concept2)− 2 ∗ IC(LCS)
(6)

4 Graph-based Centrality Algorithms

The basic idea implemented by a graph centrality algo-
rithm is that the “importance” of a node in a graph can be

determined by taking into account the relation of the node
with other nodes in the graph. In our experiments, we use
four centrality algorithms: indegree, closeness, between-
ness, and PageRank.

The indegree of a vertex refers to the number of edges in-
cident on that vertex. For an undirected graph, as used in
our experiments, the “indegree” is equivalent to the degree
of the vertex; thus, an edge contributes towards the degrees
of the vertices at both its ends. For weighted graphs, we
calculate the indegree by taking into account the weights
on the edges, and adding them together into a score that re-
flects the centrality of the vertex. Thus, for an undirected
weighted graphG = (V,E), the indegree is defined as fol-
lows:

Indegree(Va) =
∑

(Va,Vb)∈E

wab (7)

wherewab is the weight on the edge betweenVa andVb.
The indegree is usually normalized by dividing the value

by the maximum degree in the graph [12]. Here, we adopt a
different strategy, where the weights on the edges are them-
selves normalized according to their ranges (see Section 3
for details).

Thecloseness of a vertex can be defined in multiple ways.
In our experiments, we define the closeness of a vertex as
the reciprocal of the sum of the shortest paths between the
vertex and all the other vertices in the graph:

Closeness(Va) =
1∑

Vb∈V

s(Va, Vb)
(8)

where s(Va, Vb) is used to denote the “shortest path” or
“shortest geodesic distance” between the nodesVa andVb.
Here the nodes represent the words. The shortest geodesic
distance can be computed using the Dijkstra’s algorithm.
The description of closeness can be found in [5]. In the
weighted graphs built in our experiments, we use a weighted
version of the closeness measure, which takes into account
the weights on the edges while computing the shortest path.

Thebetweenness of a node is defined in terms of how “in-
between” a vertex is among the other vertices in the graph
[4]. Formally:

Betweenness(Va) =
∑

Vb∈V,Vc∈V

σVb,Vc
(Va)

σVb,Vc

(9)

where σVb,Vc
represents the total number of shortest

geodesic paths betweenVb andVc, while σVb,Vc
(Va) means

the number of such paths that pass throughVa.
Closeness and betweenness are usually regarded as ex-

tremely computationally expensive methods owing to the
number of shortest paths that need to be calculated. For be-
tweenness, we use a simplified algorithm found to approxi-

mate well the original definition of betweenness, while be-
ing significantly more efficient [1].

Finally, the last graph centrality algorithm we consider is
PageRank. The main idea implemented by PageRank is
that of “voting” or “recommendation.” When one vertex
links to another one, it is basically casting a vote for that
other vertex. The higher the number of votes that are cast
for a vertex, the higher the importance of the vertex. More-
over, the importance of the vertex casting a vote determines
how important the vote itself is, and this information is
also taken into account by the ranking algorithm. Although
PageRank was originally defined on directed graphs, it can
also be applied on undirected graphs. The PageRank score
associated with a vertexVa is defined using a recursive
function:

PageRank(Va) = (1− d) + d ∗
∑

(Va,Vb)∈E

PageRank(Vb)

|degree(Vb)|
(10)

whered is a parameter that is set between 0 and 1. The
typical value ford is 0.85 [2], and this is the value we are
using in our implementation.

This vertex scoring scheme is based on a random-walk
model, where a walker takes random steps on the graphG,
with the walk being modeled as a Markov process – that is,
the decision on what edge to follow is solely based on the
vertex where the walker is currently located. Under certain
conditions, this model converges to a stationary distribution
of probabilities, associated with vertices in the graph.

In a weighted graph, the decision on what edge to fol-
low during a random walk is also taking into account the
weights of outgoing edges, with a higher likelihood of fol-
lowing an edge that has a larger weight. Given a set of
weightswab associated with edges connecting verticesVa

andVb, the weighted PageRank score is determined as:

PageRank(Va) = (1−d)+d
∑

(Va,Vb)∈E

wba∑
(Vc,Vb)∈E

wbc

PageRank(Vb)

(11)

5 Experiments and Results

Several experiments are run using the algorithm de-
scribed in Section 2. The graph-based word sense disam-
biguation method is implemented using the WordNet-based
similarity measures and the graph centrality algorithms de-
scribed before.

The graph construction works as follows. For each word
to be disambiguated, a window is constructed using a few
words before and a few words after the word. All the senses
of these words are listed and whenever there is a relation-
ship between these senses based upon the different similar-
ity measures, an edge is drawn between them. The edge
weights are normalized so that an uniform range is used for
all the similarity measures.

Each word thus has a window associated with it, includ-
ing several words before and after that word, which in turn
means that each word has a corresponding graph associated
with it, and it isthat word that gets disambiguated after the
centrality measures are run on that graph. The values that
each node in the graph receives as a result of the centrality
algorithm are collected, and the node that has the highest
value is assigned as the sense for the word.

5.1 Data

The experiments are primarily carried out on the
SENSEVAL-2 [13] and SENSEVAL-3 [16] English all-words
data sets. Specifically, we use the SENSEVAL-3 as a de-
velopment data set, and the entire SENSEVAL-2 corpus as
a test set. The decision for using SENSEVAL-2 as our fi-
nal test set is motivated by two main reasons. First, the
SENSEVAL-2 all-words data set is significantly larger than
the SENSEVAL-3 data set, and thus more appropriate as a
test set. Though this might appear counter-intuitive from a
supervised training point of view, this is reasonable in our
experiments because no training is involved. Our system
is unsupervised, and thus we try to determine the optimal
value for the parameters on as little data as possible and test
on as large a dataset as possible. Second, there is a larger
body of previous work on unsupervised word sense disam-
biguation that was evaluated on the SENSEVAL-2 data set,
which can be used as a base of comparison.

5.2 Evaluation of Word Similarity Mea-
sures

We started by evaluating the individual disambiguation
performance of each similarity measure, using graphs built
using one part-of-speech at a time. In these experiments,
since the goal is to determine the performance of the simi-
larity measures, and consequently decide on the best com-
bination of measures, we only use one graph-centrality al-
gorithm, namely the indegree algorithm.

Several comparative evaluations were run on a subset
of the development data set, namely the first file from
SENSEVAL-3; the best results, obtained using a window
size of 6, are shown in Table 1. Note that all the measures,
except forlesk, work only on nouns and verbs, and thus the
results are reported only for these parts-of-speech. As seen
in the table, the results indicate thatjcn tends to work best
for nouns andlch tends to work best for verbs. The method
with the highest coverage islesk, which is the only metric
that can address adjectives and adverbs.

Normalization
Given that different methods are better for different parts
of speech, a natural next step would be to combine sev-
eral methods into a common graph representation. Before

part-of-speech lesk jcn res lin lch wup
Noun 83 85 53 49 58 62
Verb 53 63 17 21 66 59

Table 1. Noun and verb true positives re-
turned by the different similarity measures;
results obtained on the development data set
using a window size of 6.

this step can be performed, we need to address aspects con-
cerned with the normalization of the measures.

We perform extensive experiments for normalizing the
scores provided by the different similarity measures. As
these metrics are fundamentally different, they return val-
ues within different ranges. Thus, a vertex in the graph has
incoming edges with weights that cannot be directly com-
pared and combined. In the following, we concentrate our
attention on thelch, jcn and leskmeasures; the other mea-
sures can be normalized using a similar approach.

Our first attempt at normalization was to use the tech-
nique proposed by Budanitsky and Hirst [3], and classify
the similarity measures as either “connected” or “not con-
nected.” In order to achieve this, the values of the different
measures were extracted from the graph and plotted indi-
vidually. Threshold values were then selected in the ranges
of the measures; below these thresholds, the similarities are
considered 0, i.e. “not connected,” and above them, they are
considered 1, i.e. “connected.” The results obtained using
this normalization technique were not satisfactory, perhaps
mainly due to the fact that they depend on the value selected
for the threshold [3]. As done in the past, we used the mean
values as thresholds, but this technique did not yield favor-
able results.

Our next attempt was to normalize the results individ-
ually according to their ranges. For theleskmeasure, we
observed that the edge weights were in a range from 0 up
to an arbitrary large number. Consequently, values greater
than 240 were set to 1, and the rest were mapped onto the
interval [0,1]. Similarly, thejcn values were found to range
from 0.04 to 0.2, and thus the normalization was done with
respect to this range. Finally, since thelch values ranged
from 0.34 to 3.33, they were normalized and mapped to the
[0,1] scale using this interval. This normalization procedure
resulted in a 10% increase in recall on the development data.

Combination of Similarity Measures
Given a normalization technique, the next step was to im-
plement a combination of the similarity measures, which
accounts for the strength of each individual metric. We
build a graph where we use the similarity metricjcn to draw
similarity values between nouns and the similarity metric
lch to draw similarity values between verbs. All the other
edges in the graph, including links between adjectives and
adverbs, or links across different parts-of-speech, are drawn

using thelesk measure. The results obtained on the en-
tire development data set using this combination graph are
shown in Table 2.

noun verb adj adv all
P 61.10 43.31 53.02 100.00 53.43
R 61.10 43.31 52.87 100.00 53.43
F 61.10 43.31 52.94 100.00 53.43

Table 2. Results obtained using a combina-
tion of similarity methods.

To assess the performance of the combined similarity
measure, as compared to the individual metrics, three sep-
arate evaluations were run on the development data set,
where the graph was constructed using the individual met-
rics jcn, lch or lesk. Table 3 shows the results obtained in
each of these experiments. As seen in the table, the combi-
nation performs significantly better than the best perform-
ing measure, i.e.lesk. Note that, when the graphs are built
for all the parts of speech and individual similarity mea-
sures are used,leskoutperforms any other one measure be-
cause it returns similarity values between all the permu-
tations of part-of-speech pairs (e.g., adjective-noun, verb-
adverb), while the other metrics fail to do so. However,
Table 3 proves that a combination of the three measures can
be even better than simply usinglesk. Moreover, the com-
bination makes the entire system faster, asjcn andlch both
tend to perform faster thanlesk.

jcn lch lesk combined
P 51.57 41.47 51.87 53.43
R 19.12 16.02 44.97 53.43
F 27.89 23.11 48.17 53.43

Table 3. Results obtained using individual or
combined similarity metrics

5.3 Evaluation of Graph Centrality Algo-
rithms

All the experiments so far have been carried out using the
indegree centrality algorithm. Our next set of experimentsis
thus concerned with the identification of the best graph cen-
trality algorithm. The algorithms are run on graphs obtained
from our previous experiments, namely those obtained by
combining the three semantic similarity measureslesk, jcn
andlch. Table 4 shows the results obtained with PageRank,
closeness, and betweenness; for comparison purposes, we
also include the results obtained using the indegree. Follow-
ing comparative experiments run on the development data
set, we selected a window size of 6 that was found to lead
to the best results, and only these results are reported.

Given the diversity of the results obtained with the graph
centrality algorithms, as the final step in our experiments,

noun verb adj adv all
indegree

P 61.10 43.31 53.02 100.00 53.43
R 61.10 43.31 52.87 100.00 53.43
F 61.10 43.31 52.94 100.00 53.43

PageRank
P 60.50 41.74 53.71 100.00 52.82
R 60.23 40.85 53.71 100.00 52.30
F 60.36 41.29 53.71 100.00 52.55

closeness
P 32.39 14.63 41.54 100.00 28.01
R 32.39 14.63 41.42 100.00 28.01
F 32.39 14.63 41.47 100.00 28.01

betweenness
P 49.43 20.73 50.00 100.00 39.48
R 49.43 20.73 50.00 100.00 39.48
F 49.43 20.73 50.00 100.00 39.48

Table 4. Results obtained using different
graph centrality algorithms.

we implemented a voting scheme among these four mea-
sures. Specifically, we obtain the sense predictions from the
individual methods, and then apply a voting among these
predictions. We also keep track of which metric has pre-
dicted which sense. If two or more metrics return the same
sense, we consider that the voting system has addressed the
word, and hence the sense selected by most of the methods
is assigned.

As an example for the voting process, consider for in-
stance the word “unambiguous” from the SENSEVAL data
set. The indegree, PageRank and betweenness algorithms
selected sense #2 (defined in WordNet asadmitting of no
doubt or misunderstanding), while the closeness algorithm
chose sense #1 (defined in WordNet ashaving or exhibiting
a single clearly defined meaning). Since most of the meth-
ods selected the sense #2, this is also the sense predicted by
the our system, which in this case happens to be correct.

The results obtained using the voting scheme are re-
ported in Table 5. Note that in this table the precision and
the recall are not identical, since there are cases when the
algorithms do not agree with one another and thus no pre-
diction can be made.

noun verb adj adv all
P 61.22 45.18 54.79 100.00 54.86
R 60.45 40.57 54.14 100.00 52.40
F 60.83 42.75 54.46 100.00 53.60

Table 5. Results obtained using voting over
several graph centrality algorithms.

5.4 Results on Test Data

The final system, providing the best results on the devel-
opment data set, integrates three similarity measures (jcn
for nouns,lch for verbs,leskfor the other parts of speech)
and combines in a voting scheme four graph centrality algo-
rithms (indegree, PageRank, closeness and betweenness).

As a final experiment, the system was evaluated on the
test data, consisting of the SENSEVAL-2 data set. The re-
sults are shown in Table 6.

noun verb adj adv all
P 67.73 36.05 62.21 60.47 58.83
R 65.63 32.30 61.42 60.23 56.37
F 66.24 34.07 61.81 60.35 57.57

Table 6. Results on the test set using the final
system.

A comparison of these results with other methods is pro-
vided in Table 7, which shows the results obtained using:
(1) only theleskmeasure with an indegree algorithm; (2)
a combination of similarity measures with an indegree al-
gorithm; (3) a combination of similarity measures with a
PageRank algorithm; (4) the final system, consisting of a
combination of similarity measures and a voting over four
centrality algorithms.

lesk combined combined combined
indegree indegree PageRank voting

P 56.86 57.72 56.58 58.83
R 50.02 56.54 55.14 56.37
F 53.22 57.12 55.85 57.57

Table 7. Comparison of results on the test set

6 Comparison with Previous Work

Our work is related to the evaluations reported by Nav-
igli and Lapata in [12]. In their work, the graphs are built
directly from WordNet, and thus include links explicitly en-
coded in the structure of WordNet, rather than accounting
for semantic similarities, as we do. Given a sentence and the
list of senses for all the words in the sentence, for each sense
they traverse the WordNet graph using a depth-first search
strategy, and if a new node is found in the WordNet graph
that also exists in the list of the word senses for the current
sense, all the intermediate edges and nodes from WordNet
are added to the graph. Since the edges in the WordNet
graph are semantic relations and not numerical quantities,
the graph built in their method is unweighted.

In contrast, our approach, although formulated in a
similar graph-based setting, does not disambiguate on a
sentence-by-sentence basis, but on the basis of the target

word and a number of words before and after the target
word; we thus construct separate graphs for each word to
be disambiguated. Our approach yields almost identical re-
sults for nouns, and considerably better results for verbs
on the Senseval-3 data. They obtain a precision and recall
of 61.90, 36.10 and 62.80 for nouns, verbs and adjectives
respectively, compared to a precision of 61.22, 45.18 and
54.79 and a recall of 60.45, 40.57 and 54.14 for the same
parts of speech, as obtained by us.

On Senseval-2, most of the results reported are in the
range of 45–53% [11]. In particular, the best performing
unsupervised system at Senseval-2 [10] had an overall pre-
cision and recall of 45.10%. Hence, our system with its
58.83% precision and 56.37% recall represents a significant
improvement.

Our approach builds on a method similar to the one used
in [11], which uses, instead of the semantic similarity mea-
sures being experimented with here, a measure of simi-
larity based on sense definitions computable on any ma-
chine readable dictionary. That approach yielded an overall
score of 54.20% on the Senseval-2 dataset. In comparison,
the present approach improves significantly over those re-
sults, leading to a relative error rate reduction of 8.7%. The
Senseval-3 results reported in [11] consisted of a precision
and recall of 52.2%, and thus the current system gives a rel-
ative error rate reduction of 5.7%.

7 Conclusions

In this paper, we described an unsupervised graph-based
word sense disambiguation algorithm, which combines sev-
eral semantic similarity measures and algorithms for graph
centrality. To our knowledge, no attempt has been made in
the past to address the problem of word sense disambigua-
tion by comparatively evaluating measures of word similar-
ity in a graph theoretical framework.

Through experiments performed on standard sense-
annotated data sets, we showed that the right combination
of word similarity metrics and graph centrality algorithms
can significantly outperform methods proposed in the past
for this problem. Specifically, our proposed method was
found to lead to relative error rate reductions of 5–8% as
compared to state-of-the-art methods proposed in previous
work.

Acknowledgments

This work was supported in part by a research grant from
the Texas Advanced Research Program (#003594).

References

[1] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[2] S. Brin and L. Page. The anatomy of a large-scale hyper-
textual Web search engine.Computer Networks and ISDN
Systems, 30(1–7), 1998.

[3] A. Budanitsky and G. Hirst. Semantic distance in Word-
Net: An experimental, application-oriented evaluation of
five measures. InProceedings of the NAACL Workshop on
WordNet and Other Lexical Resources, Pittsburgh, 2001.

[4] L. C. Freeman. A set of measures of centrality based on
betweenness.Sociometry, 40(1):35–41, 1977.

[5] L. C. Freeman. Centrality in social networks: Conceptual
clarification I. Social Networks, 1:215–239, 1979.

[6] J. Jiang and D. Conrath. Semantic similarity based on corpus
statistics and lexical taxonomy. InProceedings of the Inter-
national Conference on Research in Computational Linguis-
tics, Taiwan, 1997.

[7] C. Leacock and M. Chodorow. Combining local context and
WordNet sense similarity for word sense identification. In
WordNet, An Electronic Lexical Database. The MIT Press,
1998.

[8] M. Lesk. Automatic sense disambiguation using machine
readable dictionaries: How to tell a pine cone from an ice
cream cone. InProceedings of the SIGDOC Conference
1986, Toronto, June 1986.

[9] D. Lin. An information-theoretic definition of similarity. In
Proceedings of the 15th International Conference on Ma-
chine Learning, Madison, WI, 1998.

[10] K. Litkowski. Use of machine readable dictionaries in word
sense disambiguation for Senseval-2. InProceedings of
ACL/SIGLEX Senseval-2, Toulouse, France, 2001.

[11] R. Mihalcea. Large vocabulary unsupervised word sense
disambiguation with graph-based algorithms for sequence
data labeling. InProceedings of the Human Language Tech-
nology / Empirical Methods in Natural Language Process-
ing conference, Vancouver, 2005.

[12] R. Navigli and M. Lapata. Graph connectivity measures
for unsupervised word sense disambiguation.ICJAI, pages
1683–1688, 2007.

[13] M. Palmer, C. Fellbaum, S. Cotton, L. Delfs, and H. Dang.
English tasks: all-words and verb lexical sample. InPro-
ceedings of ACL/SIGLEX Senseval-2, Toulouse, France,
2001.

[14] S. Patwardhan, S. Banerjee, and T. Pedersen. Using mea-
sures of semantic relatedness for word sense disambigua-
tion. In Proceedings of the Fourth International Conference
on Intelligent Text Processing and Computational Linguis-
tics, Mexico City, February 2003.

[15] P. Resnik. Using information content to evaluate semantic
similarity. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, Montreal, Canada,
1995.

[16] B. Snyder and M. Palmer. The English all-words task. In
Proceedings of ACL/SIGLEX Senseval-3, Barcelona, Spain,
July 2004.

[17] Z. Wu and M. Palmer. Verb semantics and lexical selection.
In Proceedings of the 32nd Annual Meeting of the Associa-
tion for Computational Linguistics, Las Cruces, New Mex-
ico, 1994.

