
Classifier Stacking and Voting for Text Filtering

Rada MIHALCEA

University of North Texas
Denton, Texas, 76203-1366

rada@cs.unt.edu

Abstract
This paper summarizes the approach and the results of the TextCat system participating in the Filtering track in the Text
Retrieval Conference 2002. The system relies primarily on statistical methods, and was designed with the main purpose of
having a backbone system in which we can further integrate semantic components, and evaluate their relative performance
as compared to traditional statistical approaches. The system is therefore simple, and is based on techniques for keywords
extraction, and various classifier combinations including stacking and voting. TextCat participated in the Batch and
Routing tasks. In the Batch task, it achieved a score of 39.02% normalized utility, and 26.37% F-measure respectively,
averaged over all topics. The averaged uninterpolated precision for our best routing submission was 14.16%.

1. Introduction

The Filtering track has quite a long history in the
Text Retrieval Conference (TREC) series. The goal of
the track is to measure the ability of systems to clas-
sify new documents as relevant or irrelevant with re-
spect to a given topic. While there are three different
tasks organized within the Filtering track – adaptive,
batch, and routing – our Text Categorization (TextCat)
system participated only in the last two tasks. Few
changes in the system would have probably allowed
us to run TextCat on the adaptive filtering data as
well; however, we decided to focus on the classifi-
cation capabilities of the system, rather than on its
adaptability to new incoming data. This is mainly be-
cause the purpose for building TextCat was to have
a backbone text classification system, in which we
can further integrate semantic modules and evaluate
their relative performance as compared to the sim-
ple statistical approach. This follows up on our pre-
vious work in semantic-based Information Retrieval
(Mihalcea, 2002), where various degrees of seman-
tic knowledge where integrated into an existing Infor-
mation Retrieval system (SMART (Salton and Lesk,
1971)). To extend this work to the text classifica-
tion problem, we needed in the first place a basic text
categorization system, which could then be expanded
with more sophisticated modules. Since we were not
able to find such a tool (reliable, free for download,
with complete source code), we started building our

own text categorization system, which ultimately re-
sulted in the UNT TextCat system.

2. UNT TextCat

As stated in the title, TextCat relies on combina-
tions of simple text classifiers, which includes stack-
ing and voting. Starting with a basic ngram-based
classifier and a rule-based classifier, we generate a
range of new classifiers by making simple changes in
the value of their input parameters. First, stacking is
done by applying the rule-based classifier on the out-
put produced by the ngram-based classifier. Second,
classifier voting is performed using various degrees
of inter-classifier agreement. In turn, different voting
schemes generate new classifiers.

For the Batch task, we had a total of thirteen
stacked classifiers, which were then fed to the voting
scheme, such that ten more combined classifiers were
generated. Out of this total number of 23 classifiers,
one was chosen according to its performance during
cross validation runs performed on the training data.
This tuning on training data was done separately for
the normalized utility measure and for the F-measure,
resulting in two different submissions, UNTextCatSU
(run optimized for the T11SU measure), and UN-
TextCatF (run optimized for the T11F measure).

For the Routing task, we used a single combi-
nation of the thirteen stacked classifiers (run UN-
TextCatR), and a combination of the thirteen ngram-

based classifiers, with no prior stacking (run UN-
TextCatR1)

2.1. Data

This year, the text collection for the Filtering track
consisted in the Reuters documents published dur-
ing August 1996 - August 1997. To speed-up the
classification process, and avoid the overhead associ-
ated with the repetition of some initial transformation
procedures, there is a pre-processing phase where all
documents are transformed and saved in a format suit-
able for the text classifiers. During this phase, words
are stemmed using Porter stemmer (Porter, 1980), and
common words are eliminated based on a list of about
five hundreds words that comes with the SMART sys-
tem package. The output of this stage is a single large
training file that includes all training documents, one
document per line, each line being preceded by the
document identifier. Similarly, there is one large test
file that includes all test documents. Even though the
pre-processing procedure was designed for the spe-
cific format of Reuters documents, we expect to be
able to easily adapt it to new data formats, with a min-
imal number of changes.

2.2. Ngram-Based Classifier

The first classifier consists of a simple ngram-
based classification scheme. Specifically, we have
a module that generates candidate ngram keywords
starting with the training files. So far, the candidate
keywords consisted only of unigrams and bigrams.
In future work, we plan to investigate the impact of
longer ngrams on the quality and efficiency of the
TextCat classifier.

Shortly, the ngram-based classifier proceeds as
follows. First, we select an initial large set of ngrams
from the training files, based on their frequency in
the documents considered relevant for the given topic.
Next, for each such ngram, we calculate several pa-
rameters, including frequency in each relevant doc-
ument, ratio between relevant and irrelevant docu-
ments that can be extracted with the ngram, cor-
relation coefficient, number of relevant documents
that include the ngram. A fixed number of ngram-
keywords is selected from this large list, based on
their relative value with respect to some threshold val-
ues set for their parameters. Finally, if more than a

certain number of keywords fulfill the minimum re-
quirements, the highest ranked ngrams are selected.
This list of ngram-keywords is then adjusted through
several loops, where the number of keywords may be
increased or decreased, based on the total number of
test documents that are extracted. This is based on the
intuition that a fixed number of keywords may not be
satisfactory for all topics. An efficient classification
for a certain topic may be performed with only 5 key-
words, whereas another topic may need as many as
15 keywords or even more. We also set a maximum
over the number of loops that may be executed, to
avoid excessive running times for certain topics. Fi-
nally, once the list of ngram-keywords is selected, all
documents from the test set that contain any of these
keyword are classified as relevant, and all remaining
documents are classified as irrelevant.

There are several parameters that may influence
the number and the ranking of the ngram keywords.
Consequently, the settings made for these parameters
may also influence the number of documents classi-
fied as relevant or irrelevant to the given topic. In
TREC 2002, TextCat included thirteen different set-
tings, which therefore resulted in thirteen different
classifiers. The list below details the various parame-
ters that may be set for the ngram-based classifier.

TOP NGRAMS Maximum number of ngrams pre-
selected from the training files. Final set of key-
words is selected from this preliminary list.
Default value: 200

RATIO RELEVANT IRRELEVANT The ratio be-
tween relevant and irrelevant documents in the
set of documents used for ngrams pre-selection.
Default value: 512

TOP NGRAM KEYWORDS Initial num-
ber of ngram-keywords that is extracted from the
preliminary list of ngrams. This number is sub-
sequently adjusted through several loops.
Default value: 10

MIN FREQUENCY The minimum value acceptable
for the frequency of a ngram in each relevant
training document, for the ngram to be selected
as a keyword.
Default value: 3

MIN DOCSREL The minimum number of relevant
documents that should include the ngram, such
that the ngram is selected as a keyword.
Default value: 2

MIN CORRELATION The minimum value accept-
able for the correlation coefficient associated
with each ngram, such that the ngram is selected
as a keyword. The correlation coefficient was
defined in (Ng et al., 1997):

�����������
	������	���������� �
� �������������	�����������������	�������������������� �����!	�������	��

(1)

where "$# � ("$% �) is the number of relevant (ir-
relevant) documents containing the given ngram,
and " # � (" % �) is the number of relevant (irrel-
evant) documents that do not contain the given
ngram.
Default value: 0.02

MIN DOCS Minimum number of documents to be
extracted from the test files. This is the lower
bound in the loop that selects keywords. If the
number of documents extracted is lower than
this threshold, than the number of selected key-
words is increased, so that additional documents
are extracted from the test set.
Default value: 1000

MAX DOCS Maximum number of documents to be
extracted from the test files. This is the upper
bound in the loop that selects keywords. If the
number of documents extracted is larger than
this threshold, than the number of selected key-
words is decreased, so that fewer documents are
extracted from the test set.
Default value: 2000

MAX LOOPS Maximum number of loops that can
be executed for keyword selection. Starting with
the initial set of TOP NGRAM KEYWORDS,
keywords are added or removed from this set,
until the number of documents that are ex-
tracted falls in the range of MIN DOCS -
MAX DOCS. This loop will stop after is exe-
cuted for MAX LOOPS times, regardless of the

number of documents retrieved.
Default value: 10

2.3. Rule-Based Classifier

The rule-based classifier used by TextCat is Rip-
per, an off the shelf system available from AT&T (Co-
hen, 1995). The reason for choosing Ripper as our
rule-based classifier was twofold. First, it was pre-
viously shown that Ripper is an efficient classifica-
tion scheme for text categorization problems (Cohen
and Singer, 1996). Second, Ripper handles set-valued
features, and therefore we can feed the entire docu-
ment as a single attribute, and let the machine learn-
ing algorithm decide upon the contribution of various
keywords for the relevance classification.

2.4. Classifiers Stacking

The first method that we employ for classifier
combination is stacking, where the rule-based clas-
sifier is applied on the output produced by the ngram-
based classifier. The documents considered rele-
vant by the ngram-based classifier are therefore the
only documents seen and classified by the rule-based
learner. This stacking procedure is also meant as a
speed-up in the classification of large text collections,
since the rule-based learner does not handle very well
collections that exceed a certain size. Systems par-
ticipating in the filtering task had to deal with collec-
tions of over 800,000 documents, and consequently
the single use of the rule-based learner was not a fea-
sible solution.

2.5. Classifiers Voting

Besides stacking, additional classifier combina-
tions are performed through a simple voting scheme,
where the number of inter-classifier agreements is
collected, starting with a set of thirteen base classi-
fiers. Basically, for each document that is considered
relevant by any of these base classifiers, we count
the number of votes the document receives from the
remaining classifiers. Next, a minimum acceptable
value is set for this vote, and only those documents
that have a total vote exceeding the given threshold
remain in the final classification. There are ten differ-
ent threshold values considered in the TREC 2002 ex-
periments, ranging from 0 (meaning that at least one
base classifier should find a document to be relevant,

for the document to be considered relevant in the fi-
nal classification) to 10 (meaning that a document is
classified as relevant only if at least ten of the base
classifiers give a relevance vote to that particular doc-
ument). These ten different threshold values resulted
in ten additional classifiers. Hence, the final number
of classifiers used in this task was 23, that is thirteen
base classifiers, plus ten combined classifiers.

3. UNT TextCat at TREC 2002

In TREC 2002, TextCat participated in the Batch
and Routing. All filtering systems were evaluated
based on: (1) normalized utility measure, which re-
lates the relevant and irrelevant documents in the set
of retrieved documents (" # � and " % �); the normal-
ized utility is intended as a measure of the number
of irrelevant documents that a user can tolerate in a
given set of retrieved documents; (2) the F-measure,
which is a standard measure in Information Retrieval
(Van Rijsbergen, 1979), and combines the precision
and recall figures obtained for a certain topic. Pre-
cision and recall were also measured individually for
each topic.

In the Batch task, TextCat achieved a score of
39.02% normalized utility, and 26.37% F-measure,
averaged over all topics. The normalized precision
for our best routing submission was 14.16%.

3.1. The Batch task

In the Batch task, thirteen base classifiers are built
by varying the relative ratio between relevant and ir-
relevant training documents. The first classifier uses
all training documents provided in the QRels judg-
ment file, with their corresponding relevance judg-
ments. The second classifier adds to this initial
set of documents an equal share of irrelevant docu-
ments. The third, and all subsequent classifiers, dou-
ble each time the number or irrelevant documents,
up to the thirteen classifier, which trains on all N
documents listed in the QRels file, plus an addi-
tional number of 2048*N irrelevant documents. As
a rule of thumb, classifier � includes all " docu-
ments listed in the QRels file, plus an additional set
of ���

����� " irrelevant documents, all of them ex-
tracted from the training collection. If not enough
irrelevant documents are found in the training set,
the ratio ���

���
reflects a maximum, rather than the

actual rapport between relevant and irrelevant docu-
ments. In all these classifiers, all parameters except
the RATIO RELEVANT IRRELEVANT were used
with their default values. New classifiers can be eas-
ily generated by changing the values of these input
parameters.

Next, the rule-based classifier is combined with
each of these initial classifiers through stacking. As
noted earlier, ten additional classifiers are built by
combining the thirteen base classifiers using a voting
scheme.

To select one classifier out of the total set of 23
different classifiers, cross validation runs were per-
formed on the initial training set, with the ratio be-
tween training and test documents set to 90%-10%.
There were two TextCat submissions in the Batch
task, one optimized for the utility measure – UN-
TextCatSU – where the classifier leading to the high-
est normalized utility score during cross validation
runs is the one that is selected, and one optimized for
the F-measure – UNTextCatF.

Table 1 lists the thirteen base classifiers and the
ten combined classifiers, with their corresponding av-
erage utility and F-measure, as well as the averaged
precision and recall. Moreover, the last two columns
list the number of times each classifier was selected
in the cross validation phase, for each run (optimized
for normalized utility or for F-measure).

As seen in the last two columns in Table 1,
the classifier selection is quite uniformly distributed
among the 23 different classifiers; however, base clas-
sifiers one and thirteen seem to be selected more of-
ten, as compared with the selection frequency for the
other classifiers. In terms of performance, base classi-
fier thirteen has an utility measure of 33.87%, which
is 5% smaller than the score for the final classifier;
in real world applications, this relatively small dif-
ference may not fully justify the additional running
time brought by the cross validation phase, and there-
fore in some applications this could be the only clas-
sifier employed for the filtering task. The maximum
F-measure that can be achieved with a single classi-
fier (base or combined, with no selection) is 18.28%.

Figure 3.1. plots the scores obtained by all clas-
sifiers for the four different measures. For the base
classifiers, a steady growing tendency is observed for
the utility measure, which suggests that the larger the

Times selected
Classifier T11SU T11F Prec. Recall (opt.SU) (opt.F)

Base classifiers
1 (N) 2.01% 2.13% 2.28% 29.53% 17 12
2 (N + N irrel.) 16.00% 7.34% 10.14% 13.05% 2 1
3 (N + 2N irrel.) 17.96% 10.26% 14.31% 13.06% 3 3
4 (N + 4N irrel.) 17.38% 12.30% 16.06% 14.25% 4 6
5 (N + 8N irrel.) 20.29% 12.62% 16.65% 13.52% 4 5
6 (N + 16N irrel.) 21.03% 13.92% 19.37% 14.33% 2 4
7 (N + 32N irrel.) 21.79% 15.02% 19.97% 14.12% 3 4
8 (N + 64N irrel.) 24.13% 15.58% 20.77% 13.86% 4 5
9 (N + 128N irrel.) 24.94% 15.89% 20.17% 14.25% 5 3
10 (N + 256N irrel.) 25.80% 16.00% 22.98% 13.35% 6 9
11 (N + 512N irrel.) 30.50% 18.08% 25.41% 13.93% 4 6
12 (N + 1024N irrel.) 31.89% 16.02% 23.12% 10.98% 0 2
13 (N + 2048N irrel.) 33.87% 14.82% 22.95% 9.89% 19 12

Combined classifiers
1 (min.1 vote) 4.24% 7.42% 6.76% 34.93% 0 0
2 (min.2 votes) 13.47% 13.88% 14.50% 26.15% 2 1
3 (min.3 votes) 19.13% 16.47% 19.17% 22.14% 2 0
4 (min.4 votes) 24.45% 18.28% 24.30% 18.04% 0 0
5 (min.5 votes) 25.78% 17.12% 26.19% 14.01% 3 3
6 (min.6 votes) 25.80% 16.56% 27.12% 11.78% 4 6
7 (min.7 votes) 23.00% 14.91% 27.31% 9.93% 3 4
8 (min.8 votes) 20.46% 12.66% 26.83% 8.03% 4 2
9 (min.9 votes) 16.19% 9.64% 23.57% 6.27% 4 2
10 (min.10 votes) 13.95% 8.68% 22.52% 4.34% 5 3

Table 1: Individual results obtained with each base/combined classifier

number of irrelevant documents, the better. The re-
call is relatively constant across different base clas-
sifiers, with the only exception being classifier one,
which has a significantly higher recall. Precision
and F-measure achieve a maximum for base classifier
eleven, followed by a decrease in classifiers twelve
and thirteen. In the case of combined classifiers, there
is a peak in utility, F-measure, and precision, for com-
bined classifiers four through six, followed again by a
sharp decrease. As expected, the highest recall is ob-
tained with combined classifier one. What this figure
suggests is that new system settings may eventually
lead to even higher scores for various measures (e.g.
larger number of irrelevant documents for higher util-
ity score, larger number of base classifiers in the vot-
ing scheme for higher recall, etc.).

3.2. The Routing task

In the Routing task, two different TextCat runs
were submitted. The first submission, UNTextCatR,
consists in the top 1000 documents returned by the
combined stacked classifier with a minimum vote of
one (i.e. combined classifier one). The second sub-
mission, UNTextCatR1, consists in the top 1000 doc-
uments returned by a combined classifier, again with
a minimum vote of one, but this time with no prior
stacking (that is, only the ngram-based classifier is
employed during this run). The average normalized
precision was 14.16% for UNTextCatR, and 8.15%
for UNTextCatR1.

4. Conclusions
This paper has described the approach and the re-

sults obtained with TextCat – a simple text filtering
system that relies on various classifier combination

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12

S
co

re
 (

%
)

Classifier id

Scores for base classifiers

Utility
F-beta

Precision
Recall

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

S
co

re
 (

%
)

Classifier id

Scores for combined classifiers

Utility
F-beta

Precision
Recall

Figure 1: Utility, F-measure, Precision and Recall obtained with various classifiers

schemes. In the Batch task, the average utility score
achieved with TextCat was 39.02%, and the average
F-measure was 26.37%. In the Routing task, the two
TextCat submissions achieved an average uninterpo-
lated precision of 14.16% and 8.15% respectively. As
a next step, we plan to integrate semantic modules
into TextCat, and evaluate their relative performance
as compared to the simple statistical-based approach.

5. References

W. Cohen and Y. Singer. 1996. Context-sensitive
learning methods for text categorization. In Pro-
ceedings of the 19th Annual International ACM SI-
GIR, Conference on Research and Development in
Information Retrieval, pages 307–315, Zurich, CH,
July.

W. Cohen. 1995. Fast effective rule induction. In
International Conference on Machine Learning,
pages 115–123, Tahoe City, CA, July.

R. Mihalcea. 2002. Going beyond explicit knowl-
edge for improved semantic based information re-
trieval. International Journal on Tools with Artifi-
cial Intelligence, 11(4), December.

H.T. Ng, W.B. Goh, and K.L. Low. 1997. Feature
selection, perceptron learning, and a usability case
study for text categorization. In Proceedings of the
20th Annual International ACM SIGIR Conference

on Research and Development in Information Re-
trieval, Philadelphia, PA, July.

M. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

G. Salton and M.E. Lesk, 1971. Computer evaluation
of indexing and text processing, pages 143–180.
Prentice Hall, Ing. Englewood Cliffs, New Jersey.

C.J. Van Rijsbergen. 1979. Information Retrieval.
London: Butterworths. available on-line at
http://www.dcs.gla.ac.uk/ Keith/Preface.html.

