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Abstract. Every year, millions of students apply to universities for admission to
graduate programs (Master’s and Ph.D.). The applications are individually eval-
uated and forwarded to appropriate faculty members. Considering human sub-
jectivity and processing latency, this is a highly tedious and time-consuming job
that has to be performed every year. In this paper, we propose several informa-
tion retrieval models aimed at partially or fully automating the task. Applicants
are represented by their statements of purpose (SOP), and faculty members are
represented by the papers they authored. We extract keywords from papers and
SOPs using a state-of-the-art keyword extractor. A detailed exploratory analysis
of keywords yields several insights into the contents of SOPs and papers. We
report results on several information retrieval models employing keywords and
bag-of-words content modeling, with the former offering significantly better re-
sults. While we are able to correctly retrieve research areas for a given statement
of purpose (F-score of 57.7% at rank 2 and 61.8% at rank 3), the task of matching
applicants and faculty members is more difficult, and we are able to achieve an
F-measure of 21% at rank 2 and 24% at rank 3, when making a selection among
73 faculty members.

Keywords: graduate application, statement of purpose, keyword extraction, informa-
tion retrieval

1 Introduction

Every year, millions of students worldwide apply for graduate education in the United
States. In Fall 2012 alone, US universities received 1.98 million graduate applications,
and more than 461,000 students enrolled in graduate studies for the first time between
Fall 2011 and Fall 2012.1 With such a high number of students applying to US univer-
sities for graduate studies, and that number increasing over the years,2 the problem of
processing this voluminous amount of applicant data into a more manageable and more
automated pipeline assumes paramount importance.

Ph.D. applicants in particular pose a greater challenge because they need to be
screened for funding offers and matched with potential advisors. While some appli-
cants do specify the group or the professor with whom they would like to work with,

1 https://www.cgsnet.org/us-graduate-schools-report-slight-growth-new-students-fall-2012
2 http://www.cgsnet.org/ckfinder/userfiles/files/R IntlApps12 I.pdf



many do not provide a selection. The problem is somewhat alleviated by having a sep-
arate survey in online application forms that allows applicants to mention which fac-
ulty members they would like to work with, and rank those faculty members in order
of preference. Still, it largely remains the university’s and ultimately the departments’
responsibility to ensure Ph.D. applicants are matched with appropriate faculty mem-
bers. Departments typically employ a faculty subgroup or separate staff members to
read through graduate applications, forward them to appropriate faculty members, and
create online “profiles” of applicants so that they could be matched more easily with
faculty members. The problem, however, is that not all faculty members toward whom
an applicant shows interest can offer financial support or have a matching interest in the
applicant.

Our goal in this project is to automate the process of matching applicants with
faculty members. In particular, we want to leverage the free text available as part of
the applications to aid us in the decision process. To showcase our approach, we use
the applicant data from the Computer Science and Engineering department at a large
Midwestern university that had over 1,100 graduate applications in Fall 2014. Manual
matching of Ph.D. applicants with appropriate faculty members was also available. We
designed several information retrieval systems that would:

1. Match applicants and research areas:
(a) given an applicant, retrieve the most likely research areas the applicant would

match;
(b) given a research area, retrieve from the pool of available applicants those most

likely to be a good match;
2. Match applicants and faculty:

(a) given an applicant, retrieve those faculty members with similar research inter-
ests;

(b) given a faculty member, retrieve the most likely applicants to possess similar
research interests;

(c) given an applicant, retrieve the most likely research areas the applicant would
match, and then from those, select faculty members with similar research in-
terests.

The rest of the article is organized as follows. We outline related studies in Section
2, followed by a description of our dataset in Section 3. Section 4 presents exploratory
analysis of the keywords extracted from faculty published work and applicants’ state-
ment of purpose, setting the stage for Section 5, where we describe information retrieval
systems and the importance of keywords in constructing them. Section 6 concludes the
paper, outlining future research directions.

2 Related Work

The problem of matching graduate students with faculty members has three close analogs
in natural language processing: authorship attribution, author profiling, and author-topic
modeling.



In authorship attribution, the goal is to predict who authored a particular docu-
ment. The problem is usually cast as a classification task, where we have a large set
of training documents with known authors, and a smaller set of test documents with
unknown authors. Machine learning models are trained on the training documents, and
then deployed on test documents to predict the unknown authors. For details on au-
thorship attribution, please see the surveys by Juola [1], Stamatatos [10], and Koppel
et al [3]. In some flavors of authorship attribution, test documents are used as search
queries against training documents, and the author of the top-ranked (training) docu-
ment is considered predicted label [10]. In our study, we consider papers written by
faculty members as “training documents”, and statements of purpose written by stu-
dents as “test documents”. Performance on the test set is judged based on the ground
truth faculty-applicant pairing we have. A potential limitation of this approach comes
from the fact that in authorship attribution, we would like to uncover the writing style of
an author, whereas in this case, we are interested in the content match between a paper
written by a faculty member, and a statement of purpose authored by an applicant. We
resolve this issue by using keywords (cf. Sections 4 and 5).

Author profiling is very similar to authorship attribution, except that the goal here is
to build a “stylistic profile” of an author instead of predicting a class label. The profile
is usually a vector of words and/or phrases frequently used by the author, and may
also include grammatical constructs and parse tree fragments. An author is represented
by several vectors that are built on documents written by him/her. These vectors can be
used to identify the author’s unique writing style (fingerprint) and to extract other useful
properties such as gender, age, education, and personality traits. Author profiling has
been discussed in depth in the survey by Stamatatos [10]. In our case, author profiling
could serve as a fundamental building block where papers written by faculty members
are used to create their authorship profiles, and then a statement of purpose that is most
similar to a faculty member’s profile, is assigned the corresponding faculty member.
This approach, albeit sound in principle, has the same important drawback as authorship
attribution; it focuses on stylistic rather than content information, and is therefore not
very useful.

Content information of authors can be explicitly incorporated in a probabilistic set-
ting, where documents are modeled as a collection of topics, and topics are modeled as
a collection of words. Topic generation depends on authors represented as (observed)
random variables in the model [8]. An unseen document can be assigned a probabil-
ity distribution over authors and topics, thereby helping find out which authors are the
most likely to have written that document. In our case, we could use the set of papers
written by faculty members to train an author-topic model, and then the statements of
purpose could be “folded in” the model to extract their most representative author and
topic probability distributions.

While all the above ideas are good, we did not find an approach that closely matches
our purpose. The only similar study we found comes from IBM India Research Lab
[9]. They designed a system called “PROSPECT” to screen candidates for recruitment.
Their system combines elements from recommender systems, information retrieval, and
author profiling to come up with a software and graphical user interface that improves
candidate ranking by 30% and provides faceted search functionality to conduct fine-



grained analyses such as highest degree of the candidate, relevant and total work expe-
rience, skills, and his/her city of residence. Since companies like IBM receive thousands
of job applications for many job postings, it becomes crucial to augment the slow and
cumbersome manual candidate-screening process with an automated decision-making
tool such as PROSPECT. Our use case is also very similar, in that we want to screen
hundreds of graduate applicants and match them with potential advisors. In our case,
faculty members serve the same purpose as human resources staff screening job post-
ings, and graduate applicants are similar to job candidates. Inspired by PROSPECT, we
pursued five keyword-based approaches to tackle this problem. All approaches use in-
formation retrieval techniques, and stand to benefit from learning to rank, given enough
data [5].

3 Data Description

Since our problem formulation involves the ranking of faculty members against appli-
cants (and vice versa), we need a convenient textual representation for both. We opt
to represent applicants by their statements of purpose (SOP), and faculty members by
the papers they have (co-)authored in the prior 12 years (between 2004 and 2015).
Anonymized statements of purpose are available for all applicants in the Fall 2014 co-
hort at the Computer Science and Engineering department at the university in question.
Note that SOPs usually talk about what the applicant has achieved in the past, what
(s)he is doing at present, what (s)he would like to do/be in the future, and how all these
connect with the particular department and its faculty.

Papers were collected for 73 faculty members from their Google Scholar Citations3

and DBLP4 profiles. We collected 4,534 papers authored between 2004 and 2015, and
converted their PDFs into text using UNIX pdftotext utility. Sometimes multiple fac-
ulty members collaborate on a single paper; we counted those papers multiple times,
once for each participating faculty. Authorship statistics of the 5 most prolific authors
are shown in Table 1. Note that a few of the most prolific authors wrote over 200 pa-
pers between 2004-2015, or almost 17 papers a year. This data follows a power-law
distribution with exponent α = 3.45 (statistically significant with p-value = 0.999).

Faculty Member Number of Papers
Tommy M. Rosenbalm 331
Thomas M. Burns 300
Ali H. Salgado 212
Richard G. Meza 146
Nicole L. Thompson 140

Table 1: Number of papers (co-)written by several faculty members (anonymized) be-
tween 2004 and 2015.

3 http://scholar.google.com/
4 http://www.informatik.uni-trier.de/ ley/db/



Faculty Member Number of Applicants
Richard C. Hardy 45
George E. Ford 45
Robert S. Peters 42
Jeff L. Jurgens 41
Dennis R. Salisbury 38

Table 2: Number of applicants assigned to several faculty members (anonymized).

Research Area
Number Applicant % of

of to Faculty Applicants
Faculty Ratio in Area

Artificial Intelligence 29 7.03 67.11
Chip Design, Architecture, and Emerging Devices 22 3.41 24.67
Databases and Data Mining 6 16.00 31.58
Embedded and Mobile Systems 12 6.67 26.32
Human-Computer Interaction 8 6.63 17.43
Languages, Compilers, and Runtime Systems 13 3.54 15.13
Networking, Operating Systems, and Distributed Systems 16 4.56 24.01
Robotics in CSE 7 11.71 26.97
Secure, Trustworthy, and Reliable Systems 22 4.32 31.25
Theory of Computation 10 5.4 17.76
Warehouse-Scale and Parallel Systems 19 4.16 25.99

Table 3: Research areas at the Computer Science and Engineering department at a large
Midwestern university. Highest value in each column is boldfaced. Applicants are from
Fall 2014 pool.

We also obtained a pairing of Ph.D. applicants (Fall 2014 cohort) with faculty mem-
bers, constructed manually by a small group of faculty. Note that each applicant is iden-
tified by a numeric ID and may be matched with multiple faculty members. On the other
hand, a faculty member is represented by his/her username, and may be matched with
(or express interest in) several different applicants. There were 1107 applicants in total,
of which 304 were matched with a faculty member. Different faculty members received
a different number of applications. Faculty members receiving the highest number of
applications in Fall 2014 cohort are shown in Table 2.

The faculty conducts research in 11 different areas, as shown in Table 3. The areas
vary in terms of number of faculty, percentage of applicants, and applicant-to-faculty
ratio. Artificial Intelligence (AI), for example, has the highest number of faculty mem-
bers and the highest percentage of applicants. Databases and Data Mining, on the other
hand, comprises the lowest number of faculty and the second highest percentage of
applicants, which leads to the highest applicant-to-faculty ratio across all research ar-



eas. These observations could be helpful in identifying areas where additional faculty
members need to be recruited.

4 Exploratory Analysis of Keywords

To represent the SOPs and papers by their content rather than style, we use an automatic
system to extract keywords. We employ a state-of-the-art system previously used in the
email domain [4]. Keyword statistics are provided in Table 4; note that we also include
the counts for filtered keywords using Wikipedia article titles to obtain a more salient
listing of keywords.

Keyword Type SOPs Keyword Count Papers Keyword Count
All keywords 53,166 123,171
Multi-word keywords 44,473 98,470
All keywords after filtering 13,472 27,563
Multi-word keywords after filtering 6,022 10,170

Table 4: Keyword statistics.

machine learning 1166.78
computer vision 713.66
computer science and engineering 706.06
artificial intelligence 679.31
computer architecture 651.95
data mining 562.43
electrical engineering 516.14
natural language 493.75

Table 5: Top multi-word keywords from SOPs, ranked by tf.idf.

We first want to see what students talk about most in their SOPs in terms of key-
words. Table 5 shows that the most salient keywords in SOPs are general and trendy
terms such as “machine learning,” “artificial intelligence,” “data mining,” and “com-
puter vision.” Other terms are even more generic, such as “computer science and en-
gineering,” and “electrical engineering.”. These keywords indicate that students are in-
deed familiar with the trendy terms and buzzwords in Computer Science and Engineer-
ing, and most students want to go to those areas. In comparison, when we look at what
the faculty talk about most in their papers (cf. Table 6), we observe highly technical
terms and domain-specific keywords such as “nash equilibrium” and “episodic mem-
ory.” This observation leads support to the fact that students are usually not sufficiently



aware of the publication records of different faculty members (information gap), and
students usually apply to “hot” areas rather than established areas (where there are more
papers), perhaps because of increased media attention to those areas. This information
gap further shows that our problem is complex, as we need to match texts from students
and texts from faculty containing disparate sets of keywords.

2004 2005 2006 2007
test set file system file system natural language
ubiquitous computing sensor network natural language file system
power management error rate data set data race
computer science virtual machine error rate ad hoc
lower bound power management ad hoc energy consumption
2008 2009 2010 2011
file system network virtualization power consumption data race
control logic control logic file system shared memory
power consumption power consumption reward function episodic memory
energy consumption data set computer science error rate
computer science virtual machine signal processing medical device
2012 2013 2014 2015
energy consumption electrical engineering social media homomorphic encryption
energy efficiency data center anomaly detection data mining
nash equilibrium computer science power consumption anomaly detection
computer science natural language data mining data science
electrical engineering energy efficiency computational linguistics reinforcement learning

Table 6: Most important keywords from papers published in different years. Importance
was measured by tf.idf. Top keywords that are unique to each year are shown in bold-
face.

An intriguing question at this point is to explore how the keywords change over
the years. We analyzed the publications of all faculty members by year and ranked the
keywords used by tf.idf. Table 6 shows that there is a distinct trend in the top-ranked
keywords, in the sense that each year seems to focus on some particular problems (per-
haps at the expense of others), and each year has some new problems that were not
salient before. Year 2014, for example, introduces “social media” as a salient keyword,
whereas year 2015 introduces “data science.” It is important to note that graduate appli-
cants are often not aware of such subtle variations and trends going on in the research
community and thus cannot prepare accordingly.

We next explore how the faculty members rank according to their diversity and fo-
cus of research topics, as related to applicants. While diversity is usually defined as
the opposite of similarity in Information Retrieval [7], we measured diversity in the
context of keywords by Jaccard Similarity5 between all keywords of a faculty and key-
words from all applicants, whereas focus was measured by Jaccard Similarity between
all keywords of a faculty and keywords from applicants assigned to him/her. Table 7

5 https://en.wikipedia.org/wiki/Jaccard index



Diversity Focus Content Density
Nicole L. Thompson Stephen M. Evans Jack J. Santoro
Francis G. Okelley Richard C. Hardy Rodolfo C. Hayes
John L. Wheatley Kevin D. Llanes Nicole L. Thompson
Tommy M. Rosenbalm George E. Ford James C. Rhinehart
Ali H. Salgado Michael M. Lewis Francis G. Okelley

Table 7: Ranking of faculty members (anonymized). Top faculty members that are
unique to a particular ranking are shown in boldface.

shows that these two rankings are substantially different. Furthermore, looking at con-
tent density (total number of keywords as a fraction of total number of words – averaged
over papers), we see that the ranking changes again. It is important to note such subtle
differences, because they help applicants make an informed decision.

Intriguingly, we find focus to be highly positively correlated with popularity (Spear-
man’s ρ = 0.8), where the latter is measured by how many students are assigned to a
faculty (cf. Table 2). Diversity and popularity are only moderately correlated (Spear-
man’s ρ = 0.28), whereas the correlation between diversity and focus is even lower (ρ
= 0.12). Very low correlation is observed between content density and focus (ρ = 0.04).
Similarly low values are obtained for correlations between content density and popu-
larity.

5 Information Retrieval Models

The objective of our study is to help academic departments match applicants with fac-
ulty members. We cast this problem as an information retrieval-like task, where given
an applicant as query, our system retrieves research areas and faculty members. The
system is also able to retrieve applicants with respect to faculty members as queries.
We consider the following use cases:

1. match applicants and research areas
(a) consider an applicant’s statement of purpose as a query, while all publications

in a given research area form a single document, and retrieve the most similar
of these documents; retrieval is done among 11 research areas. We will call this
variation SOP as query, research areas as documents.

(b) consider all publications in a research area as a query for which we seek to
retrieve the strongest matching statement of purpose pertaining to the appli-
cants; retrieval is done among 304 applicants. We will refer to this variation as
research area as query, SOP as documents.

2. match applicants and faculty
(a) consider an applicant’s statement of purpose as a query, while all publications

pertaining to a given faculty as a single document; the retrieval is done for the
most similar documents. This variation is represented as applicant as query,
faculty members as documents; retrieval is done among 73 faculty members.



(b) consider the cumulative publications of a faculty member as query, while each
applicant is represented through his / her statement of purpose. This variation is
referred to as faculty as query, applicants as documents. Retrieval is performed
among 304 applicants.

(c) consider an applicant’s statement of purpose as a query. Retrieval of the most
relevant faculty members is performed hierarchically, first with respect to the
best matching research groups (represented through the totality of articles pub-
lished by faculty in that group), and then with respect to the best matching
faculty members from within the top groups. We will refer to this variation
as applicant as query, faculty members as documents – hierarchical; retrieval
is first performed against the 11 research areas, and then against the faculty
members in the top research areas.

While applicant publications and/or data gathered from application forms could po-
tentially be used to match applicants with faculty, we considered such an approach to
be problematic because of the difficulty in gathering data, lack of prior publications
(esp. for Master’s applicants), and penalizing applicants that mostly have industry ex-
perience.

5.1 Vector Generation

For each one of the approaches mentioned above, vectors are generated for different
feature types, filtering, and weighting options.

Feature types. Two types of vectors are derived to represent a query or a document:
using the vocabulary of single words encountered in the text (unigrams), or using the
keywords encountered in the same text (mwe6). While the first technique is straight-
forward, for the second technique we extract keywords from applicant statements of
purpose (SOPs) using a state-of-the-art supervised keyword extractor [4] trained on
two keyphrase extraction corpora. The first corpus consists of a set of 211 academic
papers with keyword annotations [6], while the second corpus was released as part of
the SEMEVAL 2010 Keyphrase Extraction Task [2] and also encompasses a set of 184
academic papers annotated for keywords. The extractor uses noun phrases and named
entities as candidates, as well as surface, frequency, phraseness, and graph-based fea-
tures; it performs shallow post-processing after extraction to remove punctuation.

Filtering. The unigrams and the keywords mentioned above are referred to in the ensu-
ing experiments as all, since they do not undergo filtering. A second instance of these
features is derived, based on whether they are associated with a Wikipedia article7; this
list is referred to as filtered, and retains fewer, higher quality and more salient entries.

We should emphasize that all the vectors are constructed on keywords/unigrams
extracted from SOPs rather than those appearing in the published articles. The SOP-
derived keyword list / vocabulary tends to be more generic and concise, as applicants
do not yet have an in-depth grasp of various research areas and their SOP is shorter than

6 “mwe” stands for multi-word expressions.
7 Listing of article titles retrieved from https://dumps.wikimedia.org/



an article, thus allowing the vectorial space to model applicants more closely while also
being more efficient.
Weighting options. The above feature types are weighted using three common weight-
ing schemes: binary, term frequency (tf ), and term frequency inverse document fre-
quency (tf.idf ).
Information retrieval framework. Using a query vector, document vectors are ranked
with respect to their cosine similarity computed against the query vector, and the top
k are retrieved by the system. The system predictions are evaluated against ground
truth faculty-applicant pairings that were manually derived by a small group of faculty
members. Performance was measured using standard precision, recall, and F-score at
different ranks (k).

Overall, we construct 12 vector space models encompassing all the combination
of parameters detailed above. The most robust results are obtained using: keywords
and unigrams (for vocabulary), tf.idf (for feature weighting), and all and filtered (for
filtering). As such, in the subsequent discussions we will focus on these variations. The
baseline is represented through the combination unigram all tf.idf, namely using all the
vocabulary encountered in the SOPs as unigrams with tf.idf weighting.

5.2 Matching Applicants and Research Areas

Our first use case scenario matches applicants and research areas. This scenario allows
departmental faculty or staff to be provided with the best research areas for a given
candidate, and then manually assign candidates to faculty in those areas, thereby sim-
plifying the matching process. We explore two venues:

1. Applicant as query, research areas as documents.
2. Research area as query, applicants as documents.

Figure 1a shows the interpolated precision-recall curve for the first approach (SOP
query, area documents), while Figure 1b shows the same metrics for the second ap-
proach (area query, SOP documents) all of these derived for rank k = 5 . We note
that the first approach performs significantly better, achieving an interpolated precision
level of over 80%, compared to the best performing variation falling under the second
approach, which achieves an interpolated precision level of approximately 60%. Focus-
ing on the first approach, the best performing variation is mwe all tf.idf, but is closely
followed by mwe filtered tf.idf. Given that the former uses approximately 44 thousand
dimensions, while the latter uses only 6,022 dimensions, we can conclude that (1) mod-
eling via multi-word keywords is significantly better than accounting for the entire vo-
cabulary, and (2) filtering these keywords for saliency achieves a more compact and
efficient model, without a meaningful drop in performance.

Figure 2 shows the corresponding F-score curve for the two approaches, this time
for different ranks. We notice that the best F-score of 61.8% occurs at rank 3 (21.2%
higher than the corresponding baseline), while the second best F-score of 59.9% is
encountered at rank 4 (where the baseline F-score is the highest, yet the prediction still
surpasses it by 17.5%). A higher F-score is to be expected in this scenario compared
to results achievable for matching students and faculty, since here we are limiting our
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Fig. 1: Interpolated precision-recall curves (at k = 5) showing two approaches for
matching applicants and research areas, each with four variations. X-axis shows the
recall level (%), while Y-axis shows the interpolated precision level (%).

match to 11 research areas.8 We should stress that the optimal usability outcome for
this task is represented through high performance at low ranks, i.e. the system should
correctly retrieve a few matching research groups for a given SOP; as shown, the system
achieves very high performance for ranks 2 through 4. This should accurately guide the
process of assigning professors from those top retrieved groups and reduce the amount
of manual work involved.

5.3 Matching Applicants and Faculty

The second and more desirable scenario consists of matching applicants and faculty.
This allows the entire task to be automated, and therefore provides most savings in
terms of financial and human resources for a department. We identify three venues:

1. applicant as query, faculty members as documents
2. faculty member as query, applicants as documents
3. applicant as query, faculty members as documents – hierarchical

The first two are similar to those proposed in the previous section, but this time the
match is done directly with the faculty member, while the third consists of a hierarchical
approach, where the match is first performed in regards to the best matching research
group, and then the faculty is retrieved from within that group.

Probing further into the behavior of our system and baseline, we plotted the in-
terpolated precision-recall curve, averaged over all search queries at a rank k=5. The
resulting graphs are shown in Figure 3. We observe that similarly to the equivalent
variations in Section 5.2, the SOP (applicant) query-based retrieval outperforms faculty

8 The random baseline in this scenario is 9.1%.
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Fig. 2: F-score curves for two approaches for matching applicants and research areas,
each with four variations. X-axis shows the Rank, while Y-axis shows the F-score (%).

query-based retrieval under all variations (see Figures 3a and 3b). This is to be expected,
since in the first scenario the retrieval is made among 73 faculty members, while in the
second scenario, it is made among 304 applicants. Enacting a hierarchical based ap-
proach which generates an intermediary mapping to research areas and then retrieves
the strongest matching faculty candidates from within the returned areas, achieves a
similar performance to the first approach directly mapping to faculty. (see Figure 3c).
As in the previous subsection, the best variation remains mwe all tf.idf, with a perfor-
mance of approximately 40% interpolated precision level, 35% higher than the unigram
all tf.idf baseline achieving slightly below 5% interpolated precision level. This shows
that keywords rather than vocabulary offer a lot more plasticity and bring more value
for this task.

Figure 4 showcases the performance of the three approaches matching applicants to
faculty at different ranks. Here as well, the SOP query, faculty documents represents the
highest performing use case, retaining its high performance at low k values by achieving
a F-score higher than 19% for ranks 2 through 10 using the best performing mwe all
tf.idf variation, and reaching a maximum of 24.4% for rank 3. The hierarchical system
displays a similar performance, as it is able to attain an F-measure above 19% starting
at rank 2 as well, but since it is a two step system, it is too inefficient compared to a
one step system to motivate its usage. The random baseline accuracy for matching an
applicant to a faculty member is 1.4%.

Considering all the use cases, however, we can say that we are able to successfully
retrieve research areas and faculty members against SOP queries. Our system always
surpasses the baseline by a wide margin, and using the mwe all tf.idf variation con-
sistently achieves the best results. This is a great boon for the faculty members and
staff members, because instead of manually sifting through hundreds of applications,
they can now use our system to screen applicants before starting the laborious manual
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Fig. 3: Interpolated precision-recall curves (at k = 5) showing three approaches for
matching applicants and faculty, each with four variations. X-axis shows the recall level
(%), while Y-axis shows the interpolated precision level (%).
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checking process. Anecdotal evidence from faculty members in our department showed
that this was indeed the case, and they were happy with the search results produced by
our system.

6 Conclusion

In this paper, we introduced a new task – matching graduate applicants with faculty
members using text-based features. The problem is complex, given that there are no
standard annotated datasets, not much relevant related work, and content disparity be-
tween the textual materials authored by applicants and those authored by faculty mem-
bers. We created our own dataset comprising 4,534 papers authored by 73 different
faculty members at the Computer Science and Engineering department of a large Mid-
western university. We further considered an in-house set of 1,107 statements of pur-
pose, and a set of 788 faculty-applicant pairings constructed manually. Keywords were
extracted from papers and SOPs, and a detailed exploratory analysis was performed
leading to insights regarding the content depth and subtlety of documents. We obtained
encouraging results using standard information retrieval techniques using five different
use cases, concluding that keywords offer a significantly better representation (more ef-
ficient and better results) compared to bag-of-words variations. Overall, we are able to
match students to research groups with an F-score of 62%, while for the more difficult
task of matching students to faculty, we are able to achieve a 24% F-score. Our future
work includes obtaining more data (especially applicant data), more reliable faculty-
applicant annotations, and more sophisticated models that take into account the sparsity
of the task.
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