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Abstract

It is generally agreed that the success of a Word
Sense Disambiguation (WSD) system depends,
in large, on having enough sense annotated data
available at hand, and a well-motivated sense
inventory into which the disambiguations are
made.

We report a Web-based approach to (1) con-
structing large sense tagged corpora by exploit-
ing agreement of Web users who contribute word
sense annotation, and (2) deriving a coarse-
grained sense inventory from a fine-grained in-
ventory by exploiting disagreements of indepen-
dent contributors about word senses. We investi-
gate the quantity and quality of the sense tagged
data collected with this approach over the past
year. We also present and evaluate an auto-
matic clustering algorithm able to derive sense
clusters that compare well with manually con-
structed clusters.

1 Introduction

One notoriously difficult problem in understanding
text is Word Sense Disambiguation (WSD). Ambiguity
is very common, especially among the most frequent
words. Humans, however, are so competent at figur-
ing out word senses from context that they usually do
not even notice the ambiguities. While a large num-
ber of efficient WSD algorithms have been designed
and implemented to date within the recent SENSEVAL
evaluation frameworks and elsewhere, recently there
has not been much progress on two related problems
which are known to have a strong impact on the qual-
ity of WSD systems.

One such problem is the availability of sense tagged
data. With a handful of tagged texts currently avail-
able, existing WSD systems are able to deal only with
few pre-selected words for which hand annotated data
was provided. The amount of sense tagged data avail-
able to date is limited to annotated examples for at
most 300-400 words,! out of the total of 20,000 words
that carry more than one possible meaning (in En-
glish).

The second problem is being able to make consis-
tent and reasonable sense distinctions. Fine grained
sense inventories such as WordNet make it hard even
for humans to reliably and consistently distinguish

'See http://www.senseval.org for currently available
sense tagged data.
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among word senses. For example, the description of
the Senseval-2 lexical sample task (Kilgarriff 02) com-
pared WordNet and HECTOR sense inventories and
concluded: An implication for future WSD research is
that it is time to turn our attention from algorithms,
and to sense distinctions.

The rest of the paper is organized as follows. In
Section 2, we describe the system used to collect an-
notated data from Web users. In Section 3 and 4 re-
spectively, we investigate the quantity and quality of
data collected over the Web, and evaluate the WSD
performance that can be achieved by relying on these
data. In Section 5 we present how the coarse-grained
clustering is created and its evaluation. We summarize
our contributions in Section 6.

2 Building Sense Tagged Corpora
with the Help of Web Users

To overcome the current lack of sense tagged data and
the limitations imposed by the creation of such data
using trained lexicographers, we designed a system
that enables the collection of semantically annotated
corpora over the Web.

Sense tagged examples are collected using a Web-
based application that allows contributors to anno-
tate words with their meanings. Tagging is organized
by word: for each ambiguous word for which a sense
tagged corpus is desired, contributors are presented
with a set of natural language (English) sentence-long
contexts each of which includes an instance of the am-
biguous word.

The overall process proceeds as follows. Initially,
example sentences are extracted from a large textual
corpus. If other training data is not available, a num-
ber of these sentences are presented to the users for
tagging in Stage 1. Next, this tagged collection is used
as training data, and active learning is used to identify
in the remaining corpus the examples that are “hard
to tag”. These are the examples that are presented to
the contributors for tagging in Stage 2.

For all tagging, users are asked to select the sense
they find to be the most appropriate in a given sen-
tence. The selection is made from a drop-down list
containing all WordNet senses of the current word,
plus two additional choices, “unclear” and “none of
the above.”

The results of any automatic classification or the



classification submitted by other users are not pre-
sented so as to not bias the contributor’s decisions.
Based on early feedback from both researchers and
contributors, a future version of the system will allow
contributors to specify more than one sense for a given
instance.

2.1 Source corpora

The corpus from which we currently draw instances
for annotation is formed by mixing of three different
corpora, namely the Penn Treebank corpus, the Los
Angeles Times collection as provided during TREC
conferences, and Open Mind Common Sense?, a col-
lection of about 500,000 commonsense assertions in
English as contributed by volunteers over the Web
(Singh 02). We are currently in the process of inte-
grating the British National Corpus; we also plan to
integrate the American National Corpus as soon as it
becomes available.

2.2 Sense Inventory

The sense inventory used in the current system im-
plementation is WordNet (Miller 95). Users are pre-
sented with the current sense definitions from Word-
Net, and asked to decide on the most appropriate sense
in the given context. Future versions of the system
may adopt a new sense inventory, or use the coarse
sense classes derived from WordNet, since the current
fine granularity of WordNet was occasionally a source
of confusion for some contributors and sometimes dis-
couraged them from returning to the tagging task.

3 Quantity and Quality of Web-based
Sense Tagged Corpora

Collecting from the general public holds the promise of
providing much data at low cost. It also raises the im-
portance of two aspects of data collection: (1) ensuring
contribution quality, and (2) making the contribution
process engaging to the contributors.

To ensure contribution quality, we collect redundant
tagging for each item. The system currently uses the
following rules in presenting items to volunteer con-
tributors:

Two tags per item. We keep presenting an item for
tagging until two taggings for it have been ob-
tained.

One tag per item per contributor. We allow
contributors to submit tagging either anony-
mously or having logged in. Anonymous
contributors are not shown any items already
tagged by contributors (anonymous or not) from
the same IP address. A logged in contributor is
not shown items that this contributor has already
tagged.

In less than one year since the beginning of the activ-
ity, we collected almost 100,000 individual sense tags
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from contributors. Of these, approximately 16,500
tags came from using the system in the classrooms as
a teaching aid (the web site provides special features
for this). Future rate of collection depends on the site
being listed in various directories and on the contrib-
utor repeat visit rate. We are also experimenting with
prizes to encourage participation.

We measured the quality of the collected data in
two ways. One is inter-tagger agreement (including
K statistics), which measures agreement between the
tags assigned to the same item by two different an-
notators. The other is replicability, which measures
the degree to which an annotation experiment can be
replicated. According to (Kilgarriff 99), the capabil-
ity of recreating a set of annotated data is an even
more telling indicator of annotation quality than inter-
tagger agreement.

3.1 Inter-Tagger Agreement

We can directly compare the inter-tagger agreement
obtained so far with the agreement figures previously
reported in the literature. (Kilgarriff 02) mentions
that for the SENSEVAL-2 nouns and adjectives there
was a 66.5% agreement between the first two tags
collected for each item. About 12% of that tagging
consisted of multi-word expressions and proper nouns,
which are usually not ambiguous, and which are not
considered during our data collection process. So far
we measured a 62.8% inter-tagger agreement for single
word tagging, plus close-to-100% precision in tagging
multi-word expressions and proper nouns (as men-
tioned earlier, this represents about 12% of the an-
notated data). This results in an overall agreement of
about 67.3% which is reasonable and closely compara-
ble with previous figures.

3.2 Kappa Statistic

In addition to raw inter-tagger agreement, the kappa
statistic was also determined, which removes from the
agreement rate the amount of agreement that is ex-
pected by chance (Carletta 96).

We measure two figures: micro-average k, where
number of senses, agreement by chance, and  are de-
termined as an average for all words in the set, and
macro-average k, where inter-tagger agreement, agree-
ment by chance, and « are individually determined for
each of the 280 words in the set, and then combined in
an overall average. With an average of five senses per
word, the average value for the agreement by chance
is measured at 0.20, resulting in a micro-average K
statistic of 0.58. For macro-average k estimations, we
assume that word senses follow the distribution ob-
served in the Open Mind annotated data, and under
this assumption, the macro-average k is evaluated at
0.35.

Only few previous sense annotation experiments re-
port on the k statistic, and therefore it is hard to com-
pare the values we obtain with previous evaluations.



It is generally assumed that agreement above 0.80 rep-
resents perfect agreement, 0.60-0.80 represents signif-
icant agreement, 0.40-0.60 represents moderate agree-
ment, and 0.20-0.40 is fair agreement. While most
NLP applications seek data with an agreement that
is at least significant, this is rarely the case in the
task of sense annotation. Previous semantic annota-
tion experiments report a macro-average k for nouns
of 0.30 (Ng et al. 99), as measured on the intersec-
tion between SemCor and the DSO corpus; a value
of 0.49 for the annotation of 36,000 word instances in
a French corpus (Veronis 00); a value of 0.44 for the
Spanish SENSEVAL-2 task (Rigau et al. 01) (for the
last two k values, it is not clear whether they were
computed using micro or macro average)

We also measured the x statistic on the corpus con-
structed for the 29 nouns in the English lexical sample
task at SENSEVAL-2. The SENSEVAL-2 English lexical
sample data was constructed following the principle of
tag until at least two agree. To create a setting similar
to the Open Mind collection process, in this evaluation
we only consider the first two (chronologically) tags.
With an agreement by chance determined based on
sense distributions drawn from the corpus itself, the
macro-£ statistic for this sense tagged corpus is mea-
sured at 0.62, and the micro-x statistic is evaluated at
0.65. On the same noun set, the Open Mind data has a
macro-« value of 0.43, and a micro-« of 0.55. While &
statistics for the SENSEVAL-2 data are clearly higher,
the figures are not however directly comparable since
(1) SENSEVAL-2 data also includes multi-word expres-
sions, which are usually easy to identify, and lead to
high agreement rates; and (2) in Open Mind, the in-
stances to be tagged for this set of 29 nouns were se-
lected using an active learning process, and therefore
these instances are “hard to tag”.

3.3 Replicability

To measure the replicability of the tagging process per-
formed by Web users, we carried out a tagging ex-
periment for which annotation performed by “trusted
humans” already existed. We used the data set for
the noun interest, made available by (Bruce & Wiebe
94). Because this 2,369-item data set was originally
annotated with respect to LDOCE, we had to map
the sense entries from LDOCE to WordNet in order
to make a direct comparison with the data we collect.
The mapping was straightforward with one exception:
all six LDOCE entries mapped one-to-one onto Word-
Net senses. There was one additional WordNet entry
not defined in LDOCE; for this entry we discarded all
corresponding examples from the Open Mind annota-
tion.

Next, we identified and eliminated all the examples
in the corpus that contained collocations (e.g. interest
rate); these examples accounted for more than 35% of
the data. Finally, the remaining 1,438 examples were
displayed on the Web-based interface for tagging.

Number of [ Precision [ Error rate
training examples | baseline  STAFS | reduction
any 63.32% 66.23% 9%
> 100 75.88% 80.32% 19%
> 200 63.48%  72.18% 24%
> 300 45.51% 69.15% 43%

Table 1: Precision and error rate reduction for various
sizes of the training corpus.

Out of the 1,438 examples, 1,066 had two tags that
agreed, therefore a 74% inter-annotator agreement for
single words tagging.? Out of these 1,066 items, 967
had a tag that coincided with the tag assigned in the
experiments reported in (Bruce & Wiebe 94), which
leads to an 90.8% replicability for single words tagging
(note that the 35% monosemous multi-word expres-
sions are not taken into account by this figure). This
is close to the 95% replicability scores mentioned in
(Kilgarriff 99) for annotation experiments performed
by lexicographers.

In all, robustness of our data is also corroborated
by the experience of a similar volunteer contribution
project (Singh 02), which observed that the rate of
maliciously misleading or incorrect contributions has
been surprisingly low.

4 Exploiting Agreement of Human
Annotators for WSD

We also carried out two sets of WSD experiments to
further evaluate annotation quality. For these experi-
ments, we used the items for which two Web annota-
tors agreed on the sense tag assigned. One set of ex-
periments disambiguated a held out subset of the col-
lected corpus, with evaluations performed using ten-
fold cross validations runs. This is the intra-corpus
experiment, were both training and test sets are from
the same source. The second set of experiments in-
volves inter-corpora evaluations, in which the training
corpus provided for the SENSEVAL-2 evaluation exer-
cise is augmented with the examples contributed by
Web users, and the performance is subsequently tested
on the SENSEVAL-2 test data.

4.1 Intra-corpus WSD

In this experiment, we employ STAFS, one of the best
performing WSD systems at SENSEVAL (Mihalcea 02).
In current experiments, we use only a small set of fea-
tures, consisting of the target word itself, its part of
speech, and a surrounding context of two words and
their corresponding parts of speech. The WSD per-
formance is evaluated during 10-fold cross validation
runs. We also compute a simple baseline, consisting
of a simple heuristic that assigns by default the most
frequent sense (also computed during 10-fold cross val-

3Addition of the 35% monosemous multi-word expres-
sions tagged with 100% precision leads to an overall 83%
inter-tagger agreement for this particular word.



‘Word Set size | Baseline WSD ‘Word Set size | Baseline WSD Word Set size | Baseline WSD

activity 103 90.00% 90.00% arm 142 52.50% 80.62% art 107 30.00% 63.53%
attitude 107 100.00% | 100.00% || bank 160 91.88% | 91.88% || bar 107 61.76% | 70.59%
bed 142 98.12% | 98.12% || blood 136 91.05% | 91.05% || brother 101 95.45% | 95.45%
building 114 87.33% 88.67% captain 101 47.27% 48.18% car 144 99.44% 99.44%
cell 126 89.44% | 88.33% || chance 115 56.25% | 81.88% || channel 103 84.62% | 86.15%
chapter 137 68.50% | 71.50% || child 105 55.33% | 84.67% || circuit 197 31.92% | 45.77%
coffee 115 95.00% 95.00% day 192 34.76% 44.76% degree 140 71.43% 82.14%
device 106 98.12% | 98.12% || doctor 133 100.00% | 100.00% || dog 130 100.00% | 100.00%
door 112 54.62% 45.38% eye 117 96.11% 96.11% facility 205 81.60% 74.40%
father 160 96.88% 96.88% function 105 24.67% 32.00% god 110 71.82% 81.82%
grip 239 45.94% 61.88% gun 143 94.71% 94.71% hair 147 96.67% 96.67%
horse 138 100.00% | 100.00% || image 120 36.67% 71.67% individual 103 96.15% 96.15%
interest 1066 39.91% | 71.08% || kid 106 83.75% | 84.38% || law 106 38.12% | 66.88%
letter 137 85.00% | 81.00% || list 102 100.00% | 100.00% || material 196 77.60% | 76.40%
mother 119 99.00% | 99.00% || mouth 151 74.38% | 77.50% | name 136 98.42% | 98.42%
object 183 96.19% | 96.19% || office 209 62.76% | 61.03% || officer 103 56.15% | 55.38%
people 120 99.17% | 99.17% || plant 126 98.89% | 98.89% || pressure 106 72.50% | 70.62%
product 216 80.74% | 81.48% || report 101 66.36% | 60.91% || rest 360 51.11% | 67.22%
restraint 204 22.92% | 46.25% || room 124 100.00% | 100.00% || sea 205 90.80% | 90.80%
season 102 92.50% | 92.50% || song 116 92.35% | 92.35% || structure 112 75.38% | 72.31%
sun 101 63.64% | 66.36% || term 125 71.18% | 90.59% || treatment 108 67.78% | 66.67%
tree 105 100.00% | 100.00% || trial 109 87.37% | 86.84% || type 135 92.78% | 92.78%
unit 108 54.44% | 46.67% || volume 103 63.85% | 54.62% || water 103 53.85% | 72.31%

Table 2: Words with more than 100 sense tagged examples: (1) set size, (2) precision attainable with the most
frequent sense heuristic, (3) precision attainable with the WSD system.

idation runs). Table 2 lists: all words for which we col-
lected sense tagged data with at least 100 annotated
examples available; the number of items with full inter-
annotator agreement; the most frequent sense baseline;
the precision achieved with STAFS.

For the total of 280 words for which data was col-
lected from Web users, the average number of exam-
ples per word is 87. The most frequent sense heuristic
yields correct results in 63.32% overall. When disam-
biguation is performed using STAFS, the overall pre-
cision is 66.23%, which represents an error reduction
of about 9% with respect to the most frequent sense
heuristic.

Moreover, the average for the 72 words which have
at least 100 training examples (the words listed in Ta-
ble 2) is 75.88% for the most frequent sense heuristic,
and 80.32% when using STAFS, resulting in an error
reduction of 19%. When at least 200 examples are
available per word, the most frequent sense heuristic
is correct 63.48% of the time, and the WSD system
is correct 72.18% of the time, which represents a 24%
reduction in disambiguation error. See Table 1 for pre-
cision and error rate reduction for various sizes of the
training corpus.

For the words for which more data was collected
from Web users, the improvement over the most fre-
quent sense baseline was larger. This agrees with prior
work by other researchers (Ng 97), who noted that ad-
ditional annotated data is likely to bring significant
improvements in disambiguation quality.

4.2 Inter-corpora experiments

In these experiments, we enlarge the set of training
examples provided within the Senseval evaluation ex-
ercise with the examples collected from Web users,
and evaluate the impact on performance of these new
training examples. Only examples pertaining to single
words are used (that is, we eliminate the SENSEVAL-2
examples pertaining to collocations).

There is only a small error rate reduction of 2%
for fine grained scoring.* A more significant error re-
duction of 5.7% was observed for coarse grained scor-
ing, found to be significant at a 0.2 level of signif-
icance using McNemar test. Notice that the exam-
ples used in our Web-based system are drawn from a
corpus completely different than the corpus used for
SENSEVAL-2 examples, and therefore the sense distri-
butions are usually different, and often do not match
the test data sense distributions (as is the case when
train and test data are drawn from the same source).
Previous word sense disambiguation experiments per-
formed across diverse corpora have shown that varia-
tions in genre and topic negatively affect performance
(Martinez & Agirre 00). The low error reductions ob-
tained in our own inter-corpora experiments confirm
these results.

5 Exploiting disagreement of human
annotators to derive coarse sense
clusters

For some items for which tags were collected, human
annotators agreed — resulting in sense annotated data,
but for other items they did not. We are exploiting
these disagreements in a clustering method that au-
tomatically derives a coarse grained sense inventory,
which compares well with manually constructed clus-
ters.

The agreements/disagreements of human annota-
tors can be reflected in a confusion matrix. As an
example, Figure 1 shows the WordNet 1.7 senses of
the word “presence” which were available to human
annotators during the sense tagging. Figure 2 shows
the resulting confusion matrix for this word.

4Fine grained scoring is a performance evaluation using
word senses as defined in WordNet. Coarse grained scoring
is an evaluation that relies on similar senses being grouped
in clusters (e.g. by lexicographers).



1) presence - (a kind of being) — the state of being present; current
existence; “he tested for the presence of radon”

2) presence, front - (a kind of prozimity) — the immediate proximity
of someone or something; “she blushed in his presence”; “he sensed
the presence of danger”; “he was well behaved in front of company”
3) presence - (a kind of spirit) — an invisible spiritual being felt to
be nearby

4) presence - (a kind of impression) — the impression that some-
thing is present; “he felt the presence of an evil force”

5) bearing, presence, mien, comportment - (a kind of manner) —
dignified manner or conduct

6) presence - (a kind of attendance) — the act of being present

Figure 1: Six senses of the noun “presence” in Word-
Net 1.7.

1 213415 6 | unclear | other
1 1216 | 2|4 ]3] 12 5 3
2 11 132 |2]16 4 1
3 412 3 1 1
4 712 4 3
5 6 8 3
6 19 4 2
unclear
other

Figure 2: A confusion matrix (C) summarizing the
tagging of the noun “presence.” The rows and columns
for tags “unclear” and “other” (unlisted sense) are
presented here, but are not used in deriving coarse-
grained sense inventory.

5.1 Computing similarity from confusion
matrices

To cluster a fine-grained sense inventory, we first com-
pute pairwise similarities of senses from the original
confusion matrix. This step yields a matrix of pairwise
similarities. As the next step, we apply a clustering al-
gorithm that takes a matrix of pairwise similarities as
input.

There are different ways to derive a similarity ma-
trix from a confusion matrix. For example, (Godbole
02) utilizes the Ly measure to assess similarity of two
entries. That is,

Simp, (i,7) = Z |Cir — Cjl (1)
&

where C; is the confusion matrix entry for senses i
and j. However, this approach performs poorly with-
out additional normalization when one sense has sig-
nificantly more data than another. Alternatively, one
could compute from the entries in the confusion matrix
the conditional probabilities p(j|é) of an item’s second
annotator tagging it with sense j given that the first
annotator tagged it with sense i. Then, for each sense i
we have a vector P; of conditional probabilities p(k|7),
where k runs through all possible senses. Over these
vectors, another approach widely used in information
retrieval community — cosine similarity — could be
deployed. That is, similarity of senses 7 and j could
be measured by computing the inner product between
Pi and P]'.

Rather than use the above, we compute the similar-
ity of two senses ¢ and j in a way that is independent of
entries that involve values other than ¢ or j. Such local

similarity measure allows us to avoid double-counting
of similarity in later clustering of the senses.

Specifically, we compute similarity of i and j as the
number of times these senses confused with each other,
divided by the total number of times both annotators
chose a sense from the set {i,j} (the total number of
times there could have been a confusion). For i # j
this definition can be stated as:

o Cij
Szm” - Cii + Cij + ij ’ (2)
and for i = j it simplifies to:

When no data are available (Cy; = Cy; = Cj; =
0, and 7 # j) we presume that there is no similarity

(Simg; def 0). When Cj; = 0 we still posit perfect self-

similarity (Sim;; def 1). This similarity measure has
the following properties:

Simij € [0, 1],

Simi; = Simj; (symmetry),
Szm” 2 Szm” s

Sim;; = 1.

Note that similarity of senses ¢ and j does not con-
strain similarity of senses ¢ and k or k¥ and j, and thus
a distance measure defined based on this similarity
would not necessarily obey the triangle inequality.

5.2 Clustering

The task is to take similarity measures and create a
partitioning of senses into clusters, each cluster repre-
senting a coarse sense.

Agglomerative clustering (see, for example, (Jain
& Dubes 88; Rasmussen 92)) is a clustering method
which iteratively finds two most similar clusters and
merges them. At initialization, each element is treated
as a cluster of one element. Throughout the cluster-
ing process, the similarity (or distance) between pairs
clusters needs to be computed.

We use complete linkage agglomerative clustering,
in which similarity between two clusters A, B is
taken to be the minimum of all the distances be-
tween elements of the two clusters, Sim(A,B) =
MingeabeBSim(a,b). This requires no recalculation
as clustering goes on, and is known to result in more
spheroid clusters (in our case, the hope is that the
clusters will be centered around the coarse meanings).

In addition to the issue of measuring the distance
between clusters when merging them, there is also the
issue of selecting a stopping criterion. The process
of agglomerative clustering, if run to completion, will
merge less and less similar clusters, terminating with
all elements eventually being merged into a single large
cluster.

We have chosen the following simple stopping cri-
terion: of all the non-zero pairwise similarity weights,



excluding self-similarities, we select the median one;
we stop merging clusters when the similarity between
the best candidates for a merge drops below this me-
dian similarity.

Figure 5.2 presents the symmetric matrix of simi-
larities of senses of presence, computed from the con-
fusion matrix according to Egs. (2) and (3). Ounly the
similarities exceeding the median cutoff are shown.

1 2 3 4 5 6
1 1 0.410 0.174 0.279
2 | 0.410 1 0.167 0.348
3 0.167 1 0.154
4| 0.174 0.154 1 0.682
5 1 0.242
6 | 0.279 | 0.348 0.242 1

Figure 3: Similarity of senses for the noun presence,
derived from the confusion matrix in Figure 2 accord-
ing to Eq. 2.

The resultant agglomerative clustering for the noun
“presence” exactly matches the clustering provided by
human experts:

Cl(presence) = {{1,2,6},{3,4},{5}}.

5.3 Clustering Results

We present results of comparing our confusion ma-
trix based clustering to the “correct,” human-created
clustering provided in conjunction with the Senseval
competition. To further evaluate the performance, we
also present two baselines obtainable by clustering ele-
ments randomly (with different assumptions). We also
present the x (kappa) values of the amount of improve-
ment over the performance obtainable with random
clusterings.

In the information retrieval community, important
yardsticks for measuring the quality of results are pre-
cision and recall. They can be combined into a single
score (the F-measure) in a principled way as detailed
in (Van Rijsbergen 79, pp. 129-134). When applied to
measuring the quality of a clustering (see, for exam-
ple (Strehl 02, p. 109, eq. 4.24)), the F-measure (which
takes an additional parameter 5 indicating relative im-
portance of precision and recall) can be computed for
a given “correct” cluster by computing how well the
best attempted cluster replicates (captures) this cor-
rect cluster. The F-measure for the entire clustering is
then computed by taking the weighted average of the
F-measure for one correct cluster across all the correct
clusters, as follows:

el B2+ IANC
B0 = 2 N B 0] + AT @

ec

where C is the set of clusters in the correct (human
expert created) clustering, A is the set of clusters in
the attempted clustering (which is being evaluated)
and Nyt = ) ccc [|C]| is the total number of elements
(senses) being clustered. As is frequently done, we use

the Fi-measure (i.e., § = 1), which weights precision
and recall equally.

We compared our automatically derived clusters
against manual coarse-grained clustering provided by
lexicographers for the SENSEVAL-2 competition for
the English all words and English lexical sample tasks.

The average Fj-measure of agreement between the
agglomerative clustering and the manual clustering is
0.787. To better gauge this performance, we compare
it to two baselines.

One baseline we compute is the “exhaustive cluster-
ings” baseline. For a word with IV senses, it calculates
the average Fj-measure across all possible clusterings
of N senses. Each clustering is treated as equally likely
and each one is compared to the provided “correct”
clustering C. This baseline has the advantage of not
being dependent on our particular attempted cluster-
ing, and thus can be used as a common baseline for
other approaches.

Comparing solely to the “exhaustive clusterings”
baseline, however, leaves open the possibility that clus-
tering based on the confusion matrices outperforms
the baseline by simply “guessing clusters of reason-
able sizes.” To investigate whether this is the case, we
constructed a “same cluster size” baseline, employing
a methodology similar to that of (Tomuro 01).

In the “same cluster size” baseline, clusters of
the same size as in the attempted (confusion-matrix
based) clustering are used, but senses are assigned to
these clusters at random. For each word, 5000 same-
cluster-size clusterings are generated and the mean Fj-
measure for them is reported.

The “exhaustive clustering” baseline yielded an av-
erage F-measure of 0.666 across all words. The “same
cluster size” baseline, which incorporated informa-
tion about the attempted cluster sized, yielded an F-
measure of 0.694. The F-measure for confusion matrix
based clustering (0.787) improved on either baseline.

We present the detailed per-word results of the
confusion-matrix based clustering, the two baselines,
and the improvement provided by the clustering over
the baselines in Table 3.

6 Summary

We proposed approaches to two problems in enabling
WSD: the construction of large sense tagged corpora
and the creation of coarse-grained sense inventories. In
both cases, our solutions rely on data collected through
a Web-based system where users can contribute their
knowledge of sense annotations.

We evaluated the quantity and quality of the data
collected from Web users, and showed how these data
can be used to improve WSD performance. We also
investigated methods of clustering fine-grained word
senses based on confusion matrices of inter-annotator
agreement.

The former result points to a promise of large, inex-
pensive, and potentially well-focused (through active



Word F of F of same | F of ex- Word F of F of same | F of ex- Word F of F of same | F of ex-

agglom size haustive agglom size haustive agglom size haustive

clust baseline baseline clust baseline baseline clust baseline baseline
area 0.611 0.665 0.648 art 0.733 0.733 0.707 attention 0.556 0.621 0.657
authority 0.762 0.686 0.632 bank 0.773 0.620 0.575 bum 0.850 0.713 0.715
cell 0.900 0.733 0.654 chair 0.667 0.723 0.707 channel 0.771 0.674 0.628
child 0.833 0.721 0.707 church 0.778 0.778 0.767 circuit 0.667 0.702 0.657
claim 0.739 0.716 0.657 concentration 0.738 0.604 0.628 day 0.623 0.627 0.587
degree 0.905 0.662 0.628 detention 0.667 0.667 0.833 door 0.611 0.709 0.657
education 0.889 0.740 0.666 effect 0.722 0.756 0.657 example 0.548 0.666 0.642
extent 1.000 1.000 0.833 facility 1.000 0.702 0.670 family 0.694 0.586 0.615
fatigue 0.750 0.779 0.717 feeling 0.722 0.644 0.657 function 0.889 0.742 0.666
grip 1.000 0.726 0.640 growth 0.595 0.561 0.610 holiday 1.000 1.000 0.833
home 0.537 0.597 0.587 hope 0.722 0.656 0.646 importance 1.000 1.000 0.833
interest 0.633 0.590 0.640 lady 0.800 0.800 0.780 level 0.691 0.641 0.628
material 1.000 0.678 0.679 matter 0.849 0.652 0.651 meeting 0.706 0.653 0.646
mind 0.771 0.604 0.628 mouth 0.925 0.690 0.614 name 0.833 0.817 0.666
nation 0.750 0.775 0.717 nature 0.800 0.679 0.679 post 0.717 0.629 0.607
presence 1.000 0.652 0.646 process 0.694 0.650 0.654 reason 0.905 0.659 0.642
report 0.776 0.612 0.630 rest 1.000 0.844 0.648 restraint 0.694 0.650 0.654
school 0.762 0.672 0.628 sense 0.722 0.743 0.666 series 0.918 0.635 0.622
source 0.724 0.607 0.610 spade 0.778 0.778 0.767 story 0.905 0.655 0.651
stress 0.867 0.728 0.679 surface 1.000 0.671 0.654 term 0.667 0.705 0.657
test 0.571 0.644 0.628 text 1.000 0.720 0.715 type 0.778 0.634 0.651
unit 0.629 0.605 0.628 use 0.810 0.618 0.622 water 0.880 0.708 0.679
work 0.914 0.611 0.620 AVERAGE 0.787 0.694 0.666

Table 3: Per-word clustering results: (1) F-measure of correctness of agglomerative clustering; (2) baseline A: F of
random clustering with clusters of same size as in (1); (3) baseline B: mean F across all possible clusterings.

learning) sense inventories; the latter result supports
the broader notion that disagreement of human con-
tributors, as well as their agreement, can carry useful,
extractable information.
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