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ABSTRACT
This paper lays the grounds for a new methodology for

detecting thermal discomfort, which can potentially reduce the
building energy usage while improving the comfort of its inhab-
itants. The paper describes our explorations in automatic human
discomfort prediction using physiological signals directly col-
lected from a buildings inhabitants. Using infrared thermogra-
phy, as well as several other bio-sensors (galvanic skin response,
heart rate tracker, respiration rate tracker), we record a building’s
inhabitants under various thermal conditions (hot, cold, neutral),
and consequently build a multimodal model that can automati-
cally detect thermal discomfort.

The paper makes two important contributions. First, we in-
troduce a novel dataset, consisting of sensorial measurements
of human behavior under varied comfort/discomfort conditions.
The change in physiological signals of the human body are mon-
itored for several subjects, for different comfort levels in an in-
door environment. Second, using the dataset obtained in the first
step, we build a model that identifies the relationship between
human factors, as tracked through infrared thermography and
other bio-sensors, and environmental conditions related to dis-
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comfort. Third, we measure the correlation between sensorial
measurements collected from the user and self-reported levels of
discomfort, and hence identify the sensorial measurements that
are predictive of human discomfort. The final goal is to auto-
matically predict the level of discomfort of a building inhabitant
without any explicit input from the user.

This human-centered discomfort prediction model is ex-
pected to enable innovative adaptive control scenarios for a built
environment conditions in real time, as well as a significant re-
duction in building energy usage directly related to human occu-
pancy and their desired comfort levels.

INTRODUCTION
Recent statistics indicate that over 41% of the U.S. primary

energy is consumed by the buildings sector [1], with resident
buildings accounting for 54% of this energy consumption, and
the remaining 46% for commercial buildings. Effective energy
management in the buildings is one of the key factors impacting
the overall energy consumption, and thus has important conse-
quences on climate and the environment. The increased energy
consumption is related for the most part to the process of achiev-
ing thermal comfort by the buildings’ occupants. This increase
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contributes directly to the problem of global warming and is pre-
dicted to increase along with carbon dioxide emissions in the
next years [2, 3].

The trade-off between achieving thermal comfort and reduc-
ing energy consumption encouraged the construction of energy-
efficient buildings. Construction of these buildings aims at con-
trolling the thermal conditions in order to ensure a proper ther-
mal comfort level for their occupants while minimizing heat
loss. Otherwise, occupants can seek other means to restore com-
fort, such as adjustment of furnaces, air conditioners and fans
or adding space heaters, which will further increase energy con-
sumption. The reduction in energy consumption would have use-
ful consequences on the climate and the environment. Human
behavior studies have shown that individuals spend more than 90
% of their time indoors as compared to 10% of their time out-
doors during the summer, and 4% during the winter [4]. Hence,
early detection of thermal discomfort and automatic restoration
of thermal comfort can potentially lead to significant reduction
in the energy consumption of buildings.

Effective energy management strategies can be used to de-
sign energy-efficient buildings and furthermore impact the over-
all energy consumption. Following this line of research, this
paper proposes a new methodology for detecting thermal dis-
comfort, which can potentially reduce the building energy usage
while improving the comfort of its inhabitants. In particular, we
focus on automatically detecting human discomfort using ther-
mal features obtained from an infrared thermal camera and col-
lected from a building’s occupants.

The paper contributes a novel dataset consisting of senso-
rial measurements of the human body and a multimodal model
that automatically detects thermal discomfort based on thermal
measurements physiological measurements obtained from the
occupants. The data was collected using a thermal camera that
records thermal videos of the face area of the subject, and several
bio-sensors including galvanic skin response, heart rate tracker,
and respiration rate tracker. These measurements were collected
from the occupants at different levels of comfort. In addition
to the collected data, self-reported levels of discomfort were ob-
tained using the Predicted Mean Vote (PMV) model.

To identify the relationship between the measurements ob-
tained and thermal discomfort of the occupants, we introduce a
multimodal system that automatically predicts the level of dis-
comfort of the building’s occupants without any explicit action
from the user. The system relies mainly on the thermal features
obtained from the thermal camera owing to its advantage as a
noninvasive and noncontact method. Moreover, the collected
physiological measurements are first compared to the results ob-
tained by the existing system and then integrated into the system
to observe whether or not it enhances the system. A possible
application for this system is to maintain the thermal comfort of
building occupants without any manual actions from the occu-
pant, while keeping the environmental parameters at the value

that yields minimum building energy consumption.

RELATED WORK
Thermal comfort can be defined from psychological,

thermo-physiological, and heat-balance perspectives [5]. Ac-
cording to the psychological definition, thermal comfort is “That
condition of mind which expresses satisfaction with the thermal
environment” [6]. From the thermo-physiological perspective,
thermal comfort is the minimum rate of nervous signals from the
thermal receptors in the skin [7]. According to the heat-balance
definition, thermal comfort is reached when the heat flow from
and to the skin due to metabolism is balanced [8].

Measuring thermal comfort is challenging due to the sub-
jective assessment and the psychological aspects [9, 10]. Addi-
tionally, the rate of metabolism differs from one individual to the
other. The ASHRAE 55- standard defines metabolic rate as the
rate of transformation of chemical energy into thermal energy
and mechanical work due to metabolic activities.

In general, there are six main factors that indicate thermal
comfort. They can be divided into personal and environmental
factors. Personal factors include metabolic rate and clothing in-
sulation. In this paper, we limit the effect of personal factors
by controlling the activity rate and clothing. The environmen-
tal factors include air temperature, mean radiant temperature,
air velocity, and relative humidity. Air temperature is measured
from the immediate surrounding environment of the occupants.
Mean radiant temperature expresses the effect of the temperature
of the surrounding objects on the thermal comfort of the occu-
pants [11]. Air velocity describes the rate of air movement across
the occupant and has an important contribution to the (convec-
tive) heat transfer from the body. Relative humidity is the ratio
between the actual water vapor present in the air to the maximum
amount of water vapor needed for saturation at a given tempera-
ture.

Thermal imaging is a non-contact non-invasive mean to
capture thermal measurements from heat-emitting sources with
many applications in a variety of fields such as the military and
medical fields [12–14]. It was recently used as a mean to de-
tect discomfort of human owing to its advantage as a contact
free method. Based on a study on infrared thermography in hu-
mans [15], Oliveira et al. [16] used infrared thermal imaging to
extract thermal regions of interest from the faces and applied fast
Fourier transform to analyze these regions to assess thermal dis-
comfort. Oliveira and Moreau [17] assessed the thermal sen-
sation using different airflow temperatures and airflow fluctua-
tions. They conducted their experiments using thermal imaging
and concluded that airflow temperature influenced the sensation
of thermal discomfort. Zeiler et al. [18] analyzed the critical in-
dicators of the human sensation of comfort in mild cool office
environments by including the human body as a sensor using in-
frared imaging. Maia et al. [19] proposed a decision-tree model
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to evaluate the thermal comfort of horses using infrared thermog-
raphy imaging.

Experiments have been conducted to analyze the thermal
comfort of individuals considering both environmental and per-
sonal factors in indoor environments. Freire et al. [20] introduced
two control algorithms, one to achieve thermal comfort optimiza-
tion while the other to achieve energy consumption minimiza-
tion while maintaining the indoor thermal comfort using only-
one-actuator system. Haldi and Robinson [21] applied proba-
bilistic modeling using logistic regression to study the action
of occupants sensing thermal discomfort in an indoor environ-
ment. Huizenga et al. [22] surveyed over 30,000 occupants in
215 buildings and concluded that high rates of thermal discom-
fort occurred in most buildings. Fang et al. [23] analyzed the ef-
fect of air temperature, humidity, and ventilation on the thermal
comfort of office workers. Zheng et al. [24] studied the relation
between thermal comfort and the air quality and ventilation in
indoor office buildings. Balaras et al. [25] investigated hospital
operation rooms in order to achieve energy conservation with-
out sacrificing the thermal comfort and the quality of services
provided for patients. Ye et al. [26] investigated the thermal sen-
sation of occupants in naturally ventilated buildings, where they
applied an adaptive comfort model. Bessoudo [27] studied the
impact of climate, glazing type, and shading properties on ther-
mal comfort in an office environment in order to design energy-
efficient buildings. Homod et al. [28] used PMV/PPD to detect
thermal discomfort and combined a fuzzy model with a Gauss-
Newton method for nonlinear regression algorithm in order to
effectively control indoor thermal comfort. Hamdy et al. [29]
studied the energy usage as well as the size of the cooling equip-
ment required to achieve thermal comfort in an office building.

The effect of thermal comfort on individuals in an outdoor
environment was evaluated for applications such as pedestrian
comfort. Stathopoulos et al. [30] analyzed the integrated effect
of air temperature, air velocity, relative humidity, and solar ra-
diation on the human thermal comfort in an urban environment.
Zhang and He [31] suggested strategies such as usage of solar
shading in order to improve the thermal sensation of pedestrians
in streets. Toudert and Mayer [32] conducted thermal experi-
ments to show the effect of shading and surrounding surfaces
on reducing thermal stress on individuals in an outdoor environ-
ment.

Multiple measurements are often taken to be able to accu-
rately determine the main contributors to the sensation of dis-
comfort. Ismail et al. [33] used thermal comfort multi-station
to measure air temperature, air speed, relative humidity, illumi-
nation, and metabolism of students in a lab and determined that
humidity and indoor air speed have the largest effect on sensing
discomfort.

Physiological measurements can be also used to analyze the
human body in order to determine how it is affected by thermal
discomfort. It has been shown that temperature and skin conduc-

FIGURE 1. ZERO ENERGY BUILDING, WHERE THE EXPERI-
MENTS TOOK PLACE.

tance are important indicators of human thermal response [34].
Other measurements such as blood flow plays also a critical role
in heat transfer between the body core and the skin. In cold
weather, vasoconstriction occurs, which results in narrowing the
blood vessels in the body to decrease the blood flow and keep
the heat. On the other hand, in hot weather, vasodilation occurs,
which results in increasing the width of the blood vessels. Ac-
cordingly, adapting thermally to hot weather is faster than cold
weather [5]. Overall it turns out that physiological measurements
are fundamental in detecting thermal discomfort.

Multimodal environmental sensors have been recently used
to detect discomfort. Dang et al. [35, 36] constructed pedestrian
navigation systems that choose passes to reduce thermal discom-
fort for pedestrians. The research organized the massive data
generated by the sensors using a multi-factor cost model and a
data fuser in order to integrate multimodal data together in terms
of thermal discomfort cost.

EXPERIMENTAL SETUP
Measurement Apparatus and Data Collection

Experiments were conducted in an area which was set-up as
a typical living room in the Zero Energy Laboratory shown in
Fig. 1, located at the University of North Texas (UNT). Fourteen
(14) graduate students from the College of Engineering partici-
pated in the experiments. The sample consisted of 3 female and
11 male participants with ages ranging between 22 and 35 years.

Thermal and visual videos, in addition to physiological and
environmental measurements, were collected for all participants
as described in the next few paragraphs. An overview of the
measurement system and procedure is presented in the diagram
shown in Fig. 2.

The thermal videos were recorded using a Flir Thermovision
A40 thermal camera at a rate of 60 frames per second. Sample
thermal frames can be seen in Fig. 3, where different ranges of
colors indicate different temperatures (higher temperatures are
represented by lighter colors). The feature extraction process
from the thermal videos is described below. Visual videos of the
occupants were also recorded simultaneously with the thermal
videos.

Physiological measurements were collected using four type
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FIGURE 2. AN OVERALL VIEW OF OUR MULTIMODAL
SYSTEM, WHICH INCLUDES THE COLLECTION OF THER-
MAL IMAGING OF FACIAL FEATURES AND PHYSIOLOGICAL
AND ENVIRONMENTAL MEASUREMENTS IN ADDITION TO A
THERMAL SENSATION SURVEY.

FIGURE 3. EXAMPLES OF THERMAL FRAMES.

of Thought Technology’s FlexComp Infiniti sensors, shown in
Fig. 4, that were attached to the non-dominant hand of the par-
ticipants. Two skin conductance electrodes were placed on the
second and third fingers whereas the skin temperature and blood
volume pulse sensors were placed at the thumb and index fingers
respectively. A respiration rate sensor (belt over chest design)
was also used. Measurements included: blood volume pressure
(BVP), skin temperature (ST), respiration rate (R), and skin con-
ductance (SC). The output of each sensor was obtained from a
multimodal encoder connected to the main computer using an
USB interface device. We recorded the combined output with the
Biograph Infinity Physiology suite software, which allowed us to
visualize and control the data acquisition process. We decided to
take all the physiological measurements at a rate of 2048/sec,
which was the maximum rate allowed by the device, in order to
collect as much raw data as possible for accurate processing.

Environmental measurements were collected using HOBO
Data Loggers sensors and included the building’s air temperature
and relative humidity. The wall temperature was also recorded
using Newport True RMS super meter and the air speed inside
the room was measured using an Omega HHF1000 sensor ac-
cording to ASHRAE standard 55. The air and wall temperatures
were recorded to make sure that they are in a fixed range of 73 ◦F
to 76 ◦F during the experiments. This range was preset in order
to have a controlled environment in the room to avoid external

FIGURE 4. PHYSIOLOGICAL SENSORS.

temperature effect on the participants and devices. Moreover, we
wanted the default room temperature to be in a comfortable range
to the participants as recommended by the WestMidlands Public
Health Observatory.

Relative humidity was in the percentage range of lower to
higher 50s. An electric fan was used in one stage of the exper-
iments as explained below. The air speed was in the range of
0.8m/s to 3m/s for all the subjects. Additionally, clothing for all
the subjects was limited to 0.57 Clo and the metabolic rate was
controlled by specific metabolic activities. These settings were
designed to eliminate external factors on the process of detecting
discomfort.

Three-Stage Comfort Conditions
For each subject the experiment was divided into three

stages, which required a total time of 30 minutes for each one
of the 14 subjects (building’s occupants). In the first stage, the
individuals performed a 10 minutes workout on an air resistance
elliptical machine inside the Zero Energy building. A metronome
was provided to make sure that the exercise technique of all
the human subjects was uniform, such that approximately 2.8
metabolic rate was performed by each subject during this activ-
ity. The activity was designed to produce an increase in the heat
level of the human body and to observe its effect on thermal com-
fort level. After the activity, each occupant is asked to immedi-
ately sit on a chair where the four physiological measurements,
in addition to the thermal and visual videos, were recorded for
five minutes. Note however that the first recorded 10 seconds
were used for our analysis.

In the second stage, the same measurements and recordings
were collected for four additional minutes following the end of
stage one. For this stage, 10 seconds of the four minutes were
used for data analysis. This stage simulates the adaptation of
the human body to the surroundings and the relaxation back to
a condition of no effort or activity and therefore a condition of
comfort.

In the third stage, an electric fan creates an air flow in front
of each occupant for a period of 10 minutes. The physiological
measurements and video recordings were collected for two min-
utes close to the end of the 10 minutes period, however, 10 sec-
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onds were used for our analysis. This stage identifies the effect of
air movement across the occupant’s body after relaxation with no
activity and determines its effect on the thermal discomfort level.
The continued airflow targets a constant cooling discomfort sen-
sation by the occupants. The intent for the above described three
stages was to effectively create a perceived sensation of ”hot”
discomfort, comfort and ”cold” discomfort.

Overall, the collection consists of 42 thermal videos, 42 vi-
sual videos, and 42 sets of physiological measurements, where
each set has four types of physiological measurements. To elim-
inate transition periods between discomfort and comfort states,
we experimented with two time frames for each stage: we used
10 and 120 seconds per stage with thermal video recordings of
150 and 1800 frames, respectively. Both time periods achieved
close performance, but due to space limitations, we only report
here the results obtained with the 10 seconds period. We refer
to these experiments as the stage−wiseexperiments, where each
occupant has three videos labeled according to the simulated ex-
perimental stages as hot discomfort, comfort, and cold discom-
fort. This setting results in an equal distribution of 14 instances
per class.

Comfort Level Survey
In order to also evaluate the experienced comfort level, we

use the Predicted Mean Vote/Predicted Percentage of Dissatisfied
or PMV/PPD model developed by Fanger [8,37], which assumes
steady state conditions in an indoor environment. The PMV rates
thermal sensation of the subjects on a scale of (-3) for cold to (3)
for hot. The surveyed individuals choose a value on the thermal
scale to express their thermal sensation. PPD can be determined
from PMV following that PPD increases when PMV shifts away
in both directions from neutral, which is represented as (0) on the
thermal scale.

We controlled the clothing and metabolic rate as described in
the section above. Participants were surveyed one time for each
of the three stages of the experiments on their thermal comfort
sensation following the PMV scale. The scale has seven divi-
sions that range from (3) for hot in decrements of one down to
(-3) for cold. The first survey was taken right after the 10 min-
utes period of activity during the first stage. The second survey
was conducted after the end of the four minutes period of the
second (cooling down) stage. The third survey was conducted at
the end of the third stage, after the fan operated for 10 minutes.
The answers to the survey questions were collected in order to
investigate the relationship between the reported levels of ther-
mal comfort/discomfort and the extracted features in order to au-
tomatically detect discomfort. This setting provided a different
distribution of class labels among the occupants. In particular,
18, 9, and 15 videos were labeled as hot discomfort, comfort,
and cold discomfort, respectively. We refer to these experiments
as the PMV-labeled experiments.

FIGURE 5. AN OVERVIEW OF THE PROCESS OF AUTOMATIC
DETECTION OF THERMAL FACES.

METHODOLOGY
Face Detection and Mapping

The first step to pre-process our thermal videos in order to
extract meaningful features is to detect the face areas of the occu-
pants. The face detection process was not very successful when
applied directly on the thermal images due to the absence of clear
edges and the lower resolution of the thermal images compared
to the visual ones. Given that the visual and thermal videos were
recorded simultaneously with fixed optics (i.e., the distance be-
tween thermal and visual camera objectives and the subject was
constant), we detected the faces from the visual frames using the
Viola-Jones algorithm [38] and then we mapped it automatically
to the thermal frames. The algorithm uses the sum of the images
pixel values within multiple rectangular areas to detect the faces.
The mapping required the knowledge of the pixel-wise distance
between the visual and thermal optics and then was applied au-
tomatically to all thermal images.

Despite the accurate thermal face detection process, the cor-
ners of the detected faces might contain parts of the background.
Additionally, large areas of hair might also add noise. To handle
this problem and eliminate the effect of these parts, we cropped
the face detected areas from the images and converted them to bi-
nary images with two pixel values, (1) for white and (0) for black.
The face areas are represented by the white pixels while other
parts are transformed to black. The image binarization process
thresholds the values of the original image pixels using Otsu’s
method [39] depending on the pixels intensities in order to re-
duce the intra class variance between the white and black pixels.
Hence, the detected face images (before binarization) is multi-
plied by the binary image to eliminate the background and noisy
pixels while keeping the non-zero pixels. An overview of the
detection of thermal faces can be seen in Fig. 5.

Feature Extraction and Classification
In order to automatically identify the level of comfort of

the building’s occupants, we propose two feature extraction ap-
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proaches, namely, bag of visual words and feature selection.
Both approaches were applied to both the stage-wise and the
PMV-labeled experiments.

In general, the bag of visual words method has three stages,
point detection, feature description, and codebook generation.
Given some videos, the point detection phase searches for inter-
esting points in each video frame, such as edges. These points are
then described using feature descriptors to create feature vectors
in order to represent each frame. The vectors are then clustered,
where the centers of the clusters are referred to as codewords or
visual words. These codewords form our codebook. The final
output is the frequency of occurrence of the feature vectors of
each video in the clusters, such that each video is represented by
one vector that has a size equal to the number of clusters.

For our experiments, we use all non-zero pixels as the de-
tected points of interest, a histogram of the values of the pix-
els for feature description, and k-means clustering for codebook
generation. First, the non-zero pixels of the thermal face images
(i.e., the output of Fig. 5) for all three stages are detected. Sec-
ond, the pixel values of the images create a histogram with 256
bins for each image (an image pixel values range from 0 to 255).
However, given that the count of black pixels of zero value was
discarded, we have a vector of size 255 to describe each image.
Analyzing 10 seconds per video recording generates a total of
6300 vectors. Finally, the histogram vectors are used to generate
clusters using k-means clustering, where the cluster centers are
the codewords. Each cluster contains similar or closely related
vectors. Following this, a single vector is created for each video
that has the same size as the number of clusters. The values in
this final vector correspond to the occurrence count of the his-
togram vectors in each cluster, i.e., frequency of occurrence of
the features of each video in each cluster. Given any test video,
histogram vectors are generated from its frames and are matched
to the nearest codewords to form a single test vector formed of
the occurrence count over its codewords vocabulary.

Using the second approach, four features are extracted from
the thermal videos. The values of the image pixels represent
different colors. Lighter colors have higher pixel values which
correspond to higher temperatures. For the detected face areas,
the four extracted features are the average value of all non-zero
pixels, the maximum pixel value, the minimum pixel value, and
the difference between the maximum and minimum pixel values.
These four features are additionally averaged over all the frames
belonging to each video, which results in a feature vector of size
four to represent each video.

We conducted our experiments using Plus-L Take-Away-R
feature selection method [40] to detect the best feature or combi-
nation of features that achieves the highest performance. The
method is a sequential search strategy that moves forward by
adding L features and backward by removing R features in search
for the best combination of features. In our experiments, we use
L = 1 and R = 2: starting with a set of four thermal features, we

remove two features and then add one and so on. This feature
selection method is applied to the four thermal features, the four
physiological features, and the eight features combined.

The last step is training classifiers to create a model that is
able to classify unseen data into their proper classes as an indi-
cator of hot discomfort, comfort, or cold discomfort. The clas-
sification processes uses leave-one-out cross validation. For in-
stance in our case, each video is used 41 times for training and
one time for testing. For both feature extraction approaches,
three classifiers are trained, decision tree, K-nearest neighbor
(K=3), and Naive Bayes classifiers. The overall average per-
formance over the cross validations is reported along with the
average per class accuracy.

EXPERIMENTAL RESULTS
To evaluate the performance of our experiments, the overall

accuracy was measured in addition to the per class accuracy. This
will give an idea of the capability of our approaches of detecting
thermal discomfort/comfort. The baseline performance is calcu-
lated according to the random guessing accuracy. The stage-wise
experiments have equally distributed instances among the three
classes, which allowed a random guessing accuracy of approxi-
mately 33.3% per class. The PMV-labeled experiments have 18,
9, and 15 instances labeled as hot discomfort, comfort, and cold
discomfort, respectively, which resulted in a random guessing ac-
curacy of approximately 42.9%, 21.4%, and 35.7%, respectively.

Bag of Visual Words Approach
Following our bag of visual words approach, the only vari-

able that can be manipulated is the number of clusters. We de-
cided to use 5, 15, and 30 clusters to observe whether increasing
the number of our codewords can further improve the results.

Figure 6 (A), (B), and (C) show the accuracy of the bag of
visual words approach with decision trees, nearest neighbor, and
Naive Bayes, respectively, for the stage-wise experiments using
5, 15, and 30 clusters. The overall accuracy lies between 60 to
70%. The per class accuracy is close for all three classes us-
ing decision trees and Naive Bayes. Using nearest neighbor, the
hot discomfort class achieves above 90% classification accuracy
using 5 clusters. However, this improvement is on the expense
of the other two classes and, in particular, the comfort class. It
can also be noted that as we increase the number of clusters, the
performance is deteriorated for all classifiers.

Figure 6 (D), (E), and (F) show the accuracy for the PMV-
labeled experiments. Clearly, using the self-reported level of dis-
comfort using the PMV scale results in lower overall accuracy
compared to the stage-wise experiments. Although there is im-
provement for detecting the hot discomfort class, this improve-
ment is also on the expense of the other classes. For example,
using Naive Bayes classifier, the comfort class is never classified
correctly for any number of clusters.
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FIGURE 6. BAG OF VISUAL WORDS OVERALL AND PER CLASS ACCURACY PERCENTAGES FOR STAGE-WISE EXPERIMENTS US-
ING (A) DECISION TREES (DT), (B) K-NEAREST NEIGHBOR (3-NN), AND (C) NAIVE BAYES (NB), AND FOR PMV-LABELED EXPERI-
MENTS USING (D) DECISION TREES (DT), (E) K-NEAREST NEIGHBOR (3-NN), AND (F) NAIVE BAYES (NB).

Feature Selection Approach
Using the feature selection approach, we start by reporting

the accuracy of training all four thermal features, all four physio-
logical features, and all eight features combined. We then report
the performance of individual features to indicate which features
are highly discriminative between the levels of discomfort. We
additionally report the accuracy of the selected features which
achieve the best performance in indicating the level of discomfort
using the Plus-L Take-Away-R method for the thermal features,
physiological features, and all eight features.

Figure 7 displays the accuracy percentages without elimi-
nating any of the features. It can be clearly noticed that training
the thermal features achieves improved performance compared
to training the physiological features using all classifiers. For in-
stance, an improvement of 93% is observed using decision trees
in Fig 7 (A) in the overall accuracy. The only exception can
be seen for the PMV-labeled experiments in Fig. 7 (F), where
the physiological features achieve a slight improvement over the
thermal features in the overall accuracy. In several cases, the
performance does not reach that of the baseline such as the per-
formance of the comfort and cold comfort classes in Fig. 7 (B)
using nearest neighbor. Training all physiological and thermal
features combined does not add to the performance of relying
solely on the thermal features, except for a slight increase in ac-
curacy using a Naive Bayes classifier for both the stage-wise and
PMV-labeled experiments.

As with the bag of words results, the overall accuracy of the
stage-wise experiments is better than that of the PMV-labeled.
Moreover, the comfort class also suffers a deteriorated perfor-
mance while the hot discomfort class performance is improved
in the PMV-labeled experiments.

TABLE 1. AVERAGE OVERALL ACCURACY % (ALL) AND AV-
ERAGE PER CLASS ACCURACY % FOR HOT DISCOMFORT
(HOT), COMFORT (COMF), AND COLD DISCOMFORT (COLD)
FOR EACH FEATURE USING DECISION TREES. THE BEST PER-
FORMANCE IS HIGHLIGHTED IN BOLD. THE FEATURES IN-
CLUDE: THERMAL PIXELS AVERAGE (AVG), MAXIMUM PIXEL
VALUE (MAX), MINIMUM PIXEL VALUE (MIN), DIFFERENCE
BETWEEN MAXIMUM AND MINIMUM (MAX/MIN), BLOOD
VOLUME PRESSURE (BVP), SKIN TEMPERATURE (ST), RESPI-
RATION RATE (R), AND SKIN CONDUCTANCE (SC).

Stage-wise PMV-labeled

Feat\Acc. ALL HOT COMF COLD ALL HOT COMF COLD

avg 76.2 57.1 78.6 92.9 47.6 50.0 22.2 60.0

max 52.4 50.0 42.9 64.3 50.0 61.1 22.2 53.3

min 52.4 42.9 35.7 78.6 52.4 66.7 0.0 66.7

max/min 45.2 35.7 35.7 64.3 42.9 66.7 11.1 33.3

BVP 59.5 64.3 71.4 42.9 35.7 61.1 0.0 26.7

ST 40.5 35.7 50.0 35.7 47.6 61.1 22.2 46.7

R 33.3 50.0 28.6 21.4 23.8 33.3 0.0 26.7

SC 33.3 35.7 42.9 21.4 52.4 61.1 44.4 46.7

Table 1 lists the overall and per class accuracy of each of
the eight features using decision trees only due to the space limit
owing to its improved and consistent performance. The table in-
dicates that in general the thermal features extracted from the
videos are better indicators of the degree of thermal discom-
fort. For the stage-wise experiments, the (avg) thermal feature
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FIGURE 7. OVERALL AND PER CLASS ACCURACY PERCENTAGES USING ALL THERMAL FEATURES, ALL PHYSIOLOGICAL FEA-
TURES, AND ALL 8 FEATURES COMBINED FOR STAGE-WISE EXPERIMENTS USING (A) DECISION TREES (DT), (B) K-NEAREST
NEIGHBOR (3-NN), AND (C) NAIVE BAYES (NB), AND FOR PMV-LABELED EXPERIMENTS USING (D) DECISION TREES, (E) K-
NEAREST NEIGHBOR, AND (F) NAIVE BAYES.

exhibits a significantly improved performance compared to other
features. The improvement in the overall accuracy is approx-
imately 28% compared to the second best performing feature
(BVP) which has the best performance for the hot discomfort
class. The performance of all features is better than the baseline
except for the two physiological features, (R) and (SC).

The overall performance of the PMV-labeled experiments is
lower than the stage-wise. The thermal feature (min) achieves the
highest overall accuracy and the highest accuracy for the hot and
cold discomfort classes. The physiological measurement (SC)
also achieves the highest overall accuracy and the highest accu-
racy for the comfort class. The trend of the poor performance
of the comfort class can be observed with all features here as
well. In particular, four features have an accuracy that is below
the base line and three features perform slightly better than the
base line for the PMV-labeled experiments.

To further detect the thermal and physiological features
combinations that have higher capability of discriminating be-
tween the three classes, Fig. 8 shows the overall and per class
accuracy of the best combination of selected features using the
Plus-L Take-Away-R method for the thermal features, physiolog-
ical features, and all eight features for the stage-wise and PMV-
labeled experiments. The selected features are shown in paren-
theses in the figure. The thermal selected features exhibit an im-
proved performance once again compared to the selected physio-
logical features except for Fig. 8 (F). However, on the contrary of
training all eight features previously, selecting the best features
out of the combination of the eight features increases the overall
accuracy in all cases except Fig. 8 (C), where the best selected
feature is the thermal (avg).

It can be noted that the (avg) thermal feature is repeatedly
selected in most cases whether by itself or in combination with
other features except for Fig. 8 (E). As with individual feature
performances, this specific feature has high capability of differ-
entiating between different levels of discomfort. Adding selected
physiological features to the thermal (avg), further improves the
performance such as adding the BVP and R features. For the
PMV-labeled experiments, it can once again be noticed that the
comfort class performance suffers especially with nearest neigh-
bor and Naive Bayes classifiers while the performance of the hot
discomfort class is improved.

Comfort Class Performance
Our analysis indicates that the comfort class suffers a dete-

riorated performance, especially with the PMV-labeled experi-
ments. In order to investigate this issue, we decided to visualize
the changes that occur from one stage to another. For visualiza-
tion, the average thermal feature (avg), which averages the pixel
values of the face area, is used because of its improved perfor-
mance and capability of discriminating between classes.

Figure 9 illustrates the variation of the feature through the
three experimental stages for all 14 occupants. The y-axis repre-
sents the values for the pixels averages, where higher pixel values
represent higher temperatures. The x-axis represents the number
of frames used for the 10 seconds per stage experiments. Each
stage has 150 frames. The hot discomfort stage ranges from (1 to
150) frames, the comfort stage ranges from (151 to 300) frames,
and the cold discomfort stage ranges from (301 to 450) frames.
Surprisingly, the comfort stage curves clarifies that the average
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FIGURE 8. OVERALL AND PER CLASS ACCURACY USING FEATURE SELECTION FOR STAGE-WISE EXPERIMENTS USING (A) DE-
CISION TREES (DT), (B) K-NEAREST NEIGHBOR (3-NN), AND (C) NAIVE BAYES (NB), AND FOR PMV-LABELED EXPERIMENTS USING
(D) DECISION TREES, (E) K-NEAREST NEIGHBOR, AND (F) NAIVE BAYES. SELECTED FEATURES ARE SHOWN IN PARENTHESES.

pixel values are higher than the hot discomfort stage, i.e., the face
cells have higher temperatures during this stage.

In hot weather, the blood flow transfers the heat from the
body core to the skin where the heat is lost mainly by thermal
convection and radiation and to a lesser degree by thermal con-
duction. Five minutes following the activity, we assumed that
the occupants will start to go into a comfort state. However,
the curves make it clear that the temperature is still increasing
during this stage for each occupant due to the delay (inertia) of
the heat transfer process (mainly natural convection and radia-
tion). While the general trend shows a temperature increase in
the comfort stage, some occupants have higher temperature in the
hot discomfort stage compared to other occupants in the comfort
stage. Moreover, the distribution of the classes using the PMV
survey shows that more occupants were still thermally uncom-
fortable while only nine claimed they are thermally comfortable.
On the other hand, the cold discomfort class (forced convection
is used) shows a clear decrease in the temperature indicating that
the body has adapted in a faster manner to cold discomfort.

The results of training the classifiers, especially with the
PMV-labeled data, show that the classifiers could not discrimi-
nate between the hot discomfort and comfort classes. In multiple
cases, the classifiers considered most thermally comfortable in-
stances as hot discomfort, which was reflected in its improved
performance. The peaks that are seen in the black curve shown
in right-bottom side of Fig. 9 are for an occupant who had her/his
hair covering the forehead down to the eyes. In some frames, the
binarization process could not completely eliminate those hair
areas and considered them part of the skin, which obviously in-
fluenced the calculation of the average of the pixel values.

FIGURE 9. VARIATIONS IN THE THERMAL (AVG) FEATURE
THROUGH THE THREE STAGES OF HOT DISCOMFORT, COM-
FORT, AND COLD DISCOMFORT/

CONCLUSION AND FUTURE WORK
Automated detection of thermal discomfort could play a sig-

nificant role in designing energy-efficient buildings, which in
turn would have beneficial consequences on the climate and en-
vironment. This paper contributes a novel dataset consisting of
sensorial measurements of the human body and a multimodal
model that automatically detects thermal discomfort based on
thermal features and supported with physiological measurements
obtained from an indoor environment.

Two sets of experimental data were acquired, first (i) from a
three stage set that had an equal distribution of instances among
three classes of hot discomfort, comfort, and cold discomfort,
and (ii) PMV-labeled experiments with self-reported distribution
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of classes. The paper then presented two approaches to create
a model that learns to discriminate between the three classes,
namely the bag of visual words approach and feature selection
approach. While the feature selection approach exhibited an im-
proved performance compared to the bag of visual words, both
approaches illustrated similar trends. For example, the stage-
wise experiments performed better than the PMV-labeled exper-
iments. Moreover, the comfort class exhibited a deteriorated per-
formance, especially with the PMV-labeled experiments, com-
pared to the detection of the hot and cold discomfort classes.

In general the thermal features achieved higher capability of
detecting the occupants’ level of comfort/discomfort compared
to the physiological measurements. In particular, the average
thermal pixel values indicated a superior capability of differen-
tiating between different classes. However, selecting the com-
bination of features that achieves the best performance showed
that adding selected physiological measurements to the selected
thermal features can slightly enhance the performance.

Further analysis indicated that the observed deteriorated per-
formance of the comfort class is related to the fact that during the
assumed state of thermal comfort (stage 2) most subjects did not
cooled down sufficiently or were even ”hotter” that in the first
stage (activity on an elliptical machine). This is obviously due to
the built in cooling mechanism of the human body and the inertia
of the heat transfer processes involved. As a results the tempera-
ture of the body kept increasing for an extended amount of time,
and hence it was classified as hot discomfort in many cases.

For future work, we are planning to collect additional data
from more occupants to be able to generalize well to different
states of discomfort. Although we have reached an overall ac-
curacy of approximately 80% for our system in some cases, we
expect additional important improvement after addressing some
of the issues observed while carrying out this set of experiments.
For instance, the poor comfort class performance can be ad-
dressed using one of two strategies. First, the sequence of the
experimental stages can be altered so that we start with the com-
fort stage followed by the cold discomfort stage and then the
activity to simulate the hot discomfort stage. In this case, the
comfort class will not be affected by any previous states of dis-
comfort. Second, the duration allowed for each stage can be in-
creased from a total of 30 minutes to an hour, which would allow
enough time for a subjects’s body to adapt to the thermal con-
ditions before moving into the next thermal state. The clothing
level and relative humidity parameters will also be added at a
later time.

The ultimate goal of this research is determining the features
that are capable of detecting the state of discomfort and help set
guidelines and create systems for energy conservation of build-
ings (minimize energy consumption) while maintaining thermal
comfort of their inhabitants.

ACKNOWLEDGMENTS
We are grateful to Prof. Bill Buckles from the University

of North Texas for allowing us to use the thermal camera. This
material is based in part upon work supported by National Sci-
ence Foundation award #1355633. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] , 2013. Residential energy consumption survey. Tech. rep.,

U.S. Energy Information Administration, May.
[2] Aebischer, B., Catenazzi, G., and Jakob, M., 2007. “Impact

of climate change on thermal comfort, heating and cooling
energy demand in europe”. In Proceedings ECEEE 2007
Summer Study ”Saving Energy Just Do It!”, pp. 23–26.

[3] Mller, N., Kuttler, W., and Barlag, A.-B., 2014. “Coun-
teracting urban climate change: adaptation measures and
their effect on thermal comfort”. Theoretical and Applied
Climatology, 115(1-2), pp. 243–257.

[4] Leech, J., Burnett, R., Nelson, W., Aaron, S., and Raizenne,
M., 2000. “Outdoor air pollution epidemiologic stud-
ies”. American Journal of Respiration and Critical Care
Medicine, 161(3).

[5] Hoppe, P., 2002. “Different aspects of assessing indoor and
outdoor thermal comfort”. Energy and Buildings, 34(4).

[6] , 1997. “Ashrae (american society of heating and refriger-
ating engineers)”. In Handbook of Fundamentals: Physio-
logical Principles, Comfort, Health.

[7] Mayer, E., 1993. “Objective criteria for thermal comfort”.
Building and Environment, 28(4), pp. 399 – 403.

[8] Fanger, P., 1972. Thermal Comfort. McGraw-Hill Book
Company, New York, NY, USA.

[9] Hoppe, P. R., and Seidl, H. A., 1991. “Problems in the as-
sessment of the bioclimate for vacationists at the seaside”.
International Journal of Biometeorology, 35(2), pp. 107–
110.

[10] Rohles, F. H., 2007. “Temperature and temperament: A
psychologist looks at comfort”. ASHRAE Transactions, 49,
pp. 14–19.

[11] Tredre, B. E., 1965. “Assessment of mean radiant tempera-
ture in indoor environments”. British Journal of Industrial
Medicine, 22(1), pp. 58–66.

[12] Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel,
A. J., Osborne, M. P., and Simmons, R. M., 2008. “Effec-
tiveness of a noninvasive digital infrared thermal imaging
system in the detection of breast cancer”. The American
Journal of Surgery, 196(4), pp. 523 – 526.

[13] Ng, E.-K., 2009. “A review of thermography as promising
non-invasive detection modality for breast tumor”. Interna-
tional Journal of Thermal Sciences, 48(5), pp. 849 – 859.

10 Copyright c© 2014 by ASME



[14] Garbey, M., Sun, N., Merla, A., and Pavlidis, I., 2007.
“Contact-free measurement of cardiac pulse based on the
analysis of thermal imagery”. IEEE Transactions on
Biomedical Engineering, 54(8), pp. 1418–1426.

[15] Gulyaev, Y. V., Markov, A. G., Koreneva, L. G., and Za-
kharov, P. V., 1995. “Dynamical infrared thermography in
humans”. IEEE Engineering in Medicine and Biology Mag-
azine, 14(6), pp. 766–771.

[16] Fabrice De Oliveira, Sophie Moreau, C. G., and Dittmar,
A., 2007. “Infrared imaging analysis for thermal comfort
assessment”. In 29th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
pp. 3373–3376.

[17] Oliveira, F. D., and Moreau, S., 2009. “Assessment of ther-
mal environment sensation for various climatic conditions
and fluctuating air flow”. In EACWE 5.

[18] Zeiler, W., Boxem, G., van Houten, R., Vissers, D., and
Maaijen, R., 2012. “The human leading the thermal com-
fort control”. In Twelfth International Conference for En-
hanced Building Operations, pp. 23–26.

[19] Maia, A. P. d. A., Oliveira, S. R. d. M., Moura, D. J. d.,
Sarubbi, J., Vercellino, R. d. A., Medeiros, B. B. L., and
Griska, P. R., 2013. “A decision-tree-based model for eval-
uating the thermal comfort of horses”. Scientia Agricola,
70, 12, pp. 377 – 383.

[20] Freire, R. Z., Oliveira, G. H., and Mendes, N., 2008. “Pre-
dictive controllers for thermal comfort optimization and en-
ergy savings”. Energy and Buildings, 40(7), pp. 1353 –
1365.

[21] Haldi, F., and Robinson, D., 2008. “On the behaviour and
adaptation of office occupants”. Building and Environment,
43(12), pp. 2163 – 2177.

[22] Huizenga, C., Abbaszadeh, S., Zagreus, L., and Arens,
E. A., 2006. “Air quality and thermal comfort in office
buildings: Results of a large indoor environmental quality
survey”. In Healthy Buildings, pp. 393–397.

[23] Fang, L., Wyon, D. P., Clausen, G., and Fanger, P. O., 2004.
“Impact of indoor air temperature and humidity in an office
on perceived air quality, sbs symptoms and performance”.
Indoor Air, 14, pp. 74–81.

[24] Zheng, G., Jing, Y., Huang, H., and Ma, P., 2009. “Thermal
comfort and indoor air quality of task ambient air condi-
tioning in modern office buildings”. In Information Man-
agement, Innovation Management and Industrial Engineer-
ing, 2009 International Conference on, Vol. 2, pp. 533–536.

[25] Balaras, C. A., Dascalaki, E., and Gaglia, A., 2007. “HVAC
and indoor thermal conditions in hospital operating rooms”.
Energy and Buildings, 39(4), pp. 454 – 470.

[26] Ye, X. J., Zhou, Z. P., Lian, Z. W., Liu, H. M., Li, C. Z., and
Liu, Y. M., 2006. “Field study of a thermal environment and
adaptive model in shanghai”. Indoor Air, 16(4).

[27] Bessoudo, M., 2008. Building Façades and Thermal Com-
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