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ABSTRACT

Daily pressure, work load, and family responsibilities among
other factors impose increasing levels of stress on different
individuals. Hence, detecting stress as early as possible can
potentially reduce the severe consequences and risks that
someone may experience. In this paper, we develop a novel
dataset to detect acute stress using 50 subjects. We addi-
tionally analyze different features extracted automatically
from the thermal and physiological modalities. Further-
more, we develop a system that integrates both thermal and
physiological features for improved stress detection rates.
Our system achieves promising results exceeding 75% accu-
racy and has the potential to be further improved by adding
additional modalities, which can provide a useful and reli-
able approach in early detection of stress.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: Miscellaneous
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1. INTRODUCTION

Stress is a major problem that can result in severe conse-
quences. In the most recent report of an annual study con-
ducted by the American Psychological Association (APA) to
identify and analyze various critical elements associated with
stress, it was found that money, work, family responsibili-
ties, and health concerns were the most significant stressors
for 3,068 study subjects!. Apart from the fact that stress is
known to be associated with serious chronic diseases, e.g.,

"http://www.apa.org/news/press/releases/stress/2014/stress-
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depression, diabetes, and hypertension, either due to a de-
fined pathological mechanism or due to other factors (e.g.,
genetic factors) that patients may have, stress can pave the
way for healthy patients to acquire such diseases through
driving them to follow unhealthy behaviors to cope with
their problems. For instance, 42% of the study participants
resorted to staying awake at night, and 33% adopted poor
eating habits (e.g., overeating or consuming unhealthy food)
to relief their stress. Adults from age 18-35 were found to
be the most stressed group among all the other age groups.
Interestingly, women (49%) were found to be more stressed
than men (38%) in particular due to monetary responsibil-
ities. As a result, finding that more women (29%) experi-
enced loneliness/isolation compared to men (19%) becomes
logical.

Stress can be divided into three types, namely, acute stress,
episodic acute stress, and chronic stress. Many people ex-
hibit some form of acute stress during their life. It occurs
with the daily pressures and demands. Instances of acute
stress exist with incidents such as small accidents, work pres-
sure, and traffic among others. However, as an individual
is subject to extended amount of acute stress, he becomes a
victim of multiple types of diseases such as upset stomach,
distress, and tension headaches among others.

As acute stress occurs more frequently /periodically, it trans-
forms to episodic acute stress. In this form, people become
short-tempered, tense, easily irritated, and anxious. They
suffer symptoms such as persistent headaches, hypertension,
and heart disease. Episodic acute stress requires professional
intervention to avoid severe consequences. The third and
most problematic type is the chronic stress. This type exists
with unrelenting demands and requirements as well as ter-
rible experiences such as wars, struggles, poverty, childhood
abuse, and traumatic memories. Chronic stress affects per-
sonality and wears an individual physically and mentally. It
could be fatal in many cases and results in suicide, heart at-
tacks, violence, and stroke. It requires extended treatments
and professional intervention.

In order to avoid the severe consequences of stress, sci-
entists explored multiple ways to detect and prevent stress
as early as acute stress starts to occur. In general, stres-
sors, which are the factors triggering different levels of stress,
can be divided to physical and psychological stressors [11].
Physical stressors are in direct contact with the human body
while psychological stressors affect the individuals emotion-



ally and/or mentally. In order to automatically detect stress,
different types of stressors are employed followed by data
collection from sensors or video recordings, usually collected
in lab-settings using a group of volunteers [10,16,23]. The
data is finally processed to determine the stress level of an
individual.

Examples of physical stressors include a running or walk-
ing activity [7,18]. The data in these cases are collected
before and after the exercises. The cold presser test is an-
other example where participants immerse their hands in
an ice water container. On the other hand, the majority
of stressors fall in the psychological category. Examples of
these stressors are providing the subjects with an arithmetic
problem or a quiz [22], work meetings [5], exams [16], watch-
ing stressful vs. relaxing video clips [33], using a driver sim-
ulator [6], and playing games [10]. Additional tests used
to stimulate stress include the Stroop color word test [23],
which assesses cognitive processing by asking subjects to
read words and name colors in a timely manner.

The stress detection problem was tackled using different
technical approaches. Earlier approaches relied on contact-
based sensors based on the assumption that experiencing
stress caused physiological arousal which elevated the sen-
sors readings. Different physiological measurements were
collected and processed to analyze these variations such as
heart rate, electrocardiogram (ECG) signals, galvanic skin
responses (skin conductance), respiration rates, and skin
temperatures [20, 23, 30, 38]. Variations in behavioral pat-
terns were also observed when people were under stress such
as their keystroke dynamics when typing [15]. Addition-
ally, stress affects the visual signature of different subjects,
which can be observed in the temporal domain as variations
in their eyebrows, mouth and lips movements, and general
emotions as well as facial expressions [18,26,34]. The ad-
vantage of this approach is its non-evasiveness compared to
the contact-based sensors.

More recently, thermal imaging techniques were utilized
to determine the level of stress. There were indications of
increased blood flow in the superficial blood vessels of the
face and in particular those in the periorbital area when a
person is under stress [24,27,35]. This increase was reflected
in an elevation of the temperature of the facial skin, which
can be detected using thermal recordings and proper com-
putational processing.

As the need arises to detect stress as early as possible to
provide stress-sufferers with the appropriate feedback to pre-
vent further complications, this paper addresses the acute
stress detection problem and provides three contributions.
First, we collected a novel stress dataset using a set of 50
participants, which is one of the largest reported popula-
tions for a stress detection study. Another aspect of this
dataset is the novelty of the employed scenarios presenting
the psychological stressors to induce stress. Second, we an-
alyze which features are more capable of indicating stress
using a set of four physiological sensors measuring the heart
rate, respiration rate, skin conductance, and skin tempera-
ture in addition to thermal imaging. Finally, we integrate
features from both the physiological and thermal modali-
ties to create a more reliable acute stress detection system.
While there have been attempts to follow a multimodal ap-
proach to detect stress by combining behavioral, physical
and cognitive features or by combining some visual features
with physiological electrocardiogram [6, 10, 31], this is the

first work to fuse these four physiological signals with facial
thermal features.

This paper is organized as follows. Section 2 surveys re-
lated work. Section 3 describes the dataset we collected.
Section 4 analyzes the features and details our approach in
detecting acute stress. Our experimental results are dis-
cussed in Section 5. Finally, our concluding remarks and
future work are provided in 6.

2. RELATED WORK

Methods to detect human stress can be divided into phys-
iological, behavioral, visual, thermal and multimodal. Heart
rate variability was shown to be effective in detecting stress
levels [21]. In particular, variations between consecutive
heart beats and higher-order statistical features in the time
and frequency domains [22] indicated that the individual
could be under different stress levels. By extracting elec-
trical and muscular functions of human heart in terms of
ECG [23], scientists were able to relate changes in these
functions to acute stress as well as different stress levels [32].
Features from GSR sensors were used to recognize stress-
ful states in humans owing to its ability of indicating the
physiological arousal. For example, stress levels were de-
tected from GSR features using a population of 16 adults
with an accuracy exceeding 70% [25]. However, such fea-
tures suffered from elevated levels of noise due to movements
among other factors [5]. EEG power spectrum ratio and
Spectral Centroids techniques were used to improve stress
detection rates [37]. Furthermore, the fusion of different
physiological measurements such as ECG, HRV, and skin
conductance achieved improved accuracy rates for detecting
stress [20, 22,23, 30, 38].

As stress affects human behavior, recent research focused
on key stroke dynamics and text patterns. By collecting
keystroke patterns, Epp et al. [12] were able to identify
the rhythm of the subject’s typing to determine their stress
level. A more detailed analysis of the time duration between
keystrokes and the addition of linguistic analysis targeted a
more precise detection of human stress and emotional lev-
els [13,15].

Visually, the human faces can indicate their levels of stress
by tracking their eyebrows, mouth, and lips movements [26]
and by analyzing their facial emotions [14]. More recently,
thermal facial patterns were used to indicate stress [18,34].
Cross et al. [11] developed a system to extract and evalu-
ate responses to physical and psychological stressors using
electro-optical and mid-wave infrared cameras in order to
mask responses capable of indicating stress, anxiety, and
fear. Features from the visible and thermal spectra were
also integrated to capture dynamic thermal patterns in his-
tograms for stress recognition [33].

Multimodal analysis showed to achieve an improved per-
formance in a variety of applications such as deception detec-
tion, driver’s alertness, and thermal discomfort [1-3,8,9,28,
29]. Attempts to integrate features from different modalities
was recently explored to improve stress detection rates [4,
31]. Carneiro et al. [10] used eight behavioral, physical and
cognitive features extracted from a set of 19 subjects to an-
alyze the features associated with acute stress. Using facial
features such as eyes blinking, yawning, and head rotations
combined with the physiological ECG and galvanic skin re-
sponse, a system was developed to detect stress for driver’s
safety applications [6].



3. DATASET
3.1 Subjects

Our dataset consists of recordings collected from 50 un-
dergraduate and graduate volunteering students from the
University of Michigan. The subjects included 35 females
and 15 males. All participants expressed themselves in En-
glish, belonged to several ethnic backgrounds, and had an
age range between 20 and 35 years.

3.2 Experimental Procedure

The subjects were asked to sit comfortably in the experi-
ments station and were informed that they were participat-
ing in a lie detection study. No information regarding the
stress study was directed to them. Moreover, the subjects
were not told any prior information regarding the details of
the scenarios involved.

In order to collect our data we used three different cameras
and four physiological sensors. In particular we used a top-
of-the-line FLIR SC6700 thermal camera with a resolution
of 640x512 and 7.2 M electrons capacity, reaching a frame
rate of approximately 100 frames/second. We also used two
visual cameras.

In addition, we employed four bio-sensors to collect phys-
iological responses, namely blood volume pulse (BVP sen-
sor), galvanic skin response (GSR sensor), skin tempera-
ture (ST sensor), and abdominal respiration (BR sensor).
Two skin conductance electrodes were placed on the second
and third fingers. The skin temperature and blood volume
pulse sensors were placed at the little and index fingers, re-
spectively. The respiration sensor was placed comfortably
around the thoracic region.

Participants were instructed to avoid excessive movements
in order to obtain high quality data from the cameras and
reduce interference with the physiological sensors.

3.3 Scenarios

Three scenarios were designed for the experiments. The
subjects were informed of the topic matter before each indi-
vidual recording. In two scenarios, namely, “Abortion” and
“Best Friend”, subjects were allowed to speak freely once
truthfully and once deceptively, while in the third scenario
“Mock Crime”; the subjects had to respond to questions
asked by the interviewer.

3.3.1 Abortion

In this scenario participants were asked to provide first a
truthful and then a deceptive opinion about their feelings re-
garding abortion and whether they think it is right or wrong
and if it should be legalized. The experimental session con-
sisted of two independent recordings for each case.

3.3.2 Best Friend

In this scenario subjects were instructed to provide an
honest description of their best friend, followed by a decep-
tive description about a person they cannot stand. In the
second part, they had to describe the individual they can-
not stand as if he or she was their best friend. Therefore, in
both cases, the person was described positively.

3.3.3 Mock Crime

This scenario was employed in a different manner by al-
lowing the subjects to respond only once with their choice

of being truthful or deceptive. In particular, a $20 bill was
hidden in an envelope in a box beside the participants. The
subjects were told that the interviewer would leave the room
and that it was their choice to steal the money. Addition-
ally, they were told that the interviewer would return back
to the room to ask them questions regarding the missing bill
in a one-on-one interview, and that they should make their
own decisions whether they would lie to the interviewer or
not. Hence, the subjects had to choose one of four options;
steal the money and deny it, steal the money and admit
taking it, leave the money and falsely claim they took it, or
leave the money and simply say the truth. The interview
was conducted as follows:

1. Are the lights on in this room?

2. Regarding that missing bill, do you intend to answer
each question truthfully about that?

3. Prior to 2012, did you ever lie to someone who trusted

you?

Did you take that bill?

Did you ever lie to keep out of trouble?

Did you take the bill from the private area of the lab?

Prior to this year, did you ever lie for personal gain?

What was inside the white envelope?

Please describe step by step, in as much detail as you

can, what you did while you were in the room and I

was outside.

10. Do you know where that missing bill is right now?
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3.3.4  Inactivity

Before recording the three scenarios, the subjects were
asked to relax and sit comfortably in the chair for a one-
minute recording with no activity on their side. The same
process was repeated at the end of recordings, i.e., after
recording the three scenarios. We will refer to the earlier
recording as “Inactive 1”7 and the last recording as “Inactive
27.

Table 1: Distribution of the self-assessment of the
50 subjects for the most and least stressful scenarios
they experienced during the recordings.

Scenario Most Stressful|Least Stressful
True Abortion 14 2
False Abortion 10 0
True Best Friend 1 14
False Best Friend 15 1
Mock Crime 8 0
Inactive 1 2 13
Inactive 2 0 20

3.3.5 Self-Assessment

Subjects were compensated for participating in the study.
Their performance in deceiving the interviewer in the “Mock
Crime” scenario was additionally rewarded. Hence, each
subject had 7 recordings resulting in a total of 350 responses.



Once the recordings were finalized and the subjects were
compensated, they were asked to self-assess the responses
that were the most stressful and least stressful for them. Ta-
ble 1 shows the overall distribution of the chosen responses.
These assessments were used as the ground-truth in labeling
the stress and non-stress classes. Therefore our final dataset
was formed of 50 stress-labelled instances and 50 non-stress
labelled instances.

4. METHODOLOGY

4.1 Physiological Features

The physiological features include raw physiological mea-
surements of the heart rate, respiration rate, skin conduc-
tance, and peripheral skin temperature. Additionally, we
extract statistical descriptors of the raw measurements such
as the maximum and minimum values, means, power means,
standard deviations, and mean amplitudes (epochs) using
the Biograph Infinity Physiology suite?. The data is ex-
tracted at a rate of 2048 samples per second and the fi-
nal set consists of a total of 59 physiological features. The
features include 40 extracted heart rate features, five skin
conductance features, five skin temperatures features, and
seven respiration rate features. Furthermore, two features
are extracted from the BVP and the respiration rate sensors
combined, namely, the mean and heart rate max éAS min
difference, which is a measure of breath to breath heart rate
variability. The final vector for each response is averaged
over all samples.

4.2 Thermal Features

The thermal features are extracted to detect the temper-
ature variations of the subjects as they are subject to stress
and non-stress situations. In order to extract the features,
we locate the thermal faces and track them through the ther-
mal videos. Specifically, the process is performed in three
steps: face segmentation, tracking, and development of a
thermal map.

First, we manually locate the facial areas of the subjects
in the first frame of each video by determining its bound-
ing box. Interesting points are then detected in this re-
gion using Shi-Tomasi corner detection algorithm. These
points are located in areas with sharper changes in colors,
i.e., temperatures. Following this, the detected points are
tracked through the entire response using a fast Kanade-
Lucas-Tomasi (KLT) tracking algorithm [36]. We addition-
ally calculate the Forward-Backward Error [19] by tracking
the points forth to the current frame and back to the pre-
vious frame in order to eliminate outliers and avoid the un-
certainty associated with some points.

Following the tracking process, a geometric transforma-
tion [17] is applied to map the interesting points between the
frames and determine the new bounding boxes. The back-
grounds of the frames are additionally discarded to eliminate
their effect on the quality of the extracted features by mul-
tiplying the original image by the binarized image. This is
followed by cropping the boxes surrounding the facial areas.
Hence, in our cropping process, all the eliminated areas are
blackened pixels. The binarization and cropping processes
are briefly shown in Figure 1.

Zhttp:/ /www.thoughttechnology.com /physsuite.htm

Figure 1: A diagram showing the binarization and
cropping processes of the tracked face with the
bounding box. The cropped face is then converted
to the HSV pixel representation for feature extrac-
tion.

Once the facial thermal areas are located in each frame,
thermal features are extracted using the Hue Saturation
Value (HSV) color representation by creating a histogram
of 255 bins for each band given that different degrees of
colors presented different temperatures. The HSV channels
represent the colors of the pixels using cylindrical coordi-
nates. Hue is the angular dimension locating different colors
at different angles. The distance from the central axis of the
cylinder to the outer surface is referred to as Saturation and
represents the purity of the colors. The height of the cylin-
der refers to the Value channel and represents the brightness
of the colors, i.e., another form of calculating the gray scale
level of the pixels.

The histograms are normalized to form a probability dis-
tribution over all bins. Moreover, we extract pixel-level tem-
perature measurements such as the average temperature,
overall minimum and overall maximum temperatures, the
mean of the 10% highest pixel values, and the standard de-
viation. The final set consisted of 780 thermal features from
each facial frame using all frames in each response, i.e., none
of the frames are dropped unless rejected during tracking.
The final vector is averaged over all the frames.

In order to account for the normal thermal variations be-
tween different subjects, the same set of features is extracted
from the frames of a few seconds at the beginning of the inac-
tivity recordings. The actual features are divided by this set
for normalization purposes. The same normalization scheme
is followed for the physiological features as well. The feature
extraction processes of both the thermal and physiological
modalities are synchronized to start and end at the same
second.

4.3 Stress Classification

After the features are extracted from each of the two
modalities, we test their performance individually and com-
bined. We employ a decision tree classifier and a leave-one-
subject-out cross validation scheme to report the average
overall accuracy and the average recall of the stress and the
non-stress classes. The classifier was employed from the sta-
tistical toolbox in Matlab R2015a using Gini’s diversity in-
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Figure 2: The overall accuracy as well as the recall of the stress and non-stress classes using individual sets
of features formed of the thermal (Thrm), heart rate (BVP), heart rate including 2 features extracted from
the BVP and respiration rate sensors combined (BVP_R), skin conductance (SC), skin temperature (ST),
respiration rate (RR), respiration rate including the two features in common with BVP (RR_B), four raw
physiological (4 Raw Phys), and all physiological (All Phys) features.
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Figure 3: The overall accuracy as well as the recall of the stress and non-stress classes using the fused sets
of modalities and features formed of the fusion of the heart rate and thermal (BVP+Thrm), heart rate with
the two respiration rate features and thermal (BVP_R+Thrm), skin conductance and Thermal (SC+Thrm),
skin temperature and thermal (ST+Thrm), respiration rate and thermal (RR+Thrm), respiration rate with
the two BVP features and thermal (RR_B+4Thrm), four raw physiological features with thermal (4 Raw
Phys+Thrm), and all physiological and thermal features (All Phys+Thrm).

dex as the splitting criterion. In the leave-one-subject-out
cross validation scheme, both the stress and non-stress in-
stances of each subject are used for testing at each fold,
whereas the instances of all other 49 subjects are used for
training. This scheme is followed for a fair evaluation and to
avoid any subject dependencies that might bias the results.

Given that the two classes are balanced, the baseline is at
50%. Moreover, we evaluate the performance of individual
sets of features to specify the set with the highest capability
of indicating stress. Furthermore, we analyze whether fea-
ture fusion of the physiological and thermal modalities could
further improve the acute stress detection rates.

S. EXPERIMENTAL RESULTS

The final dataset consists of a total of 100 instances in-
cluding 780 thermal features and 59 physiological features.
In order to specify which features achieve the best perfor-

mance, we start by evaluating individual sets of features.
Figure 2 shows the overall accuracy as well as the recall of
the stress and non-stress classes using the thermal (Thrm),
the heart rate (BVP), heart rate including 2 features ex-
tracted from the BVP and respiration rate sensors com-
bined (BVP_R), skin conductance (SC), skin temperature
(ST), respiration rate (RR), respiration rate including the
two features in common with BVP (RR_B), the four raw
physiological, i.e., without the statistical descriptors (4 Raw
Phys), and all physiological (All Phys) features.

The thermal features as well the four raw physiological
features achieve the highest overall accuracy at 73% and the
highest recall of the non-stress class. This confirms that
there exist thermal variations in the participantsaAZ faces
as they are subject to stressful situations. The skin tem-
peratures and all physiological achieve the second highest
accuracy and all physiological features additionally achieve
the highest recall for the stress class. The individual phys-
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iological features exhibit a close performance. Moreover,
the combination of all physiological features outperforms
the employment of single sensors. All the features have a
performance that is above the baseline. The performance
shows that the thermal and all physiological features are as
effective in determining the acute stress levels of humans.
Based on these results, the thermal modality can be useful
for non-invasive stress detection approaches.

Figure 3 displays the overall accuracy and class recall
for the fusion of the heart rate and thermal (BVP+Thrm),
heart rate with the two respiration rate features and thermal

(BVP_R+Thrm), skin conductance and Thermal (SC+Thrm),

skin temperature and thermal (ST+Thrm), respiration rate
and thermal (RR+Thrm), respiration rate with the two BVP
features and thermal (RR_-B+Thrm), four raw physiological
features and thermal (4 Raw Phys+Thrm), and all physio-
logical and thermal features (All Phys+Thrm).

The fusion of the features from the thermal modality with
the respiration rate features outperforms all other combina-
tions as well as the individual sets of features in the over-
all accuracy and also the recall of the stress and non-stress
classes. The improvement in the overall accuracy exceeds 4%
compared to the individual thermal and the four raw phys-
iological features. Moreover, this particular fusion achieves
a relative accuracy improvement of 26.6% over the individ-
ual heart rate and skin conductance features, and 38.2%
over the respiration rate features. The second best perfor-
mance is achieved by the fusion of the skin conductance and
the thermal features, which agrees with previous research
claiming the capability of the GSR, sensor features to detect
stress.

5.1 Decision Tree Model

In order to illustrate which particular features in the train-
ing model are the most capable of discriminating between
stressful and non-stressful instances, we visualize the deci-
sion tree model trained on the dataset composed of the res-
piration rate features combined with the thermal features as
can be seen in Figure 4.

It can be seen that most of the tree nodes are constructed

from the thermal features. In particular, the root node is
created from the value channel while the first level nodes are
formed from the hue channel. Lower tree levels are formed
from the saturation channel as well as one respiration rate
feature, which represents the respiration rate epoch mean.
This construction of nodes achieves the best separation be-
tween acute stress and non-stress states.

6. CONCLUSION

In this paper, we investigated the capability of the thermal
and physiological features of indicating stress. In particular,
this paper had three main contributions. First, we developed
a novel dataset with unique scenarios including one of the
largest reported number of subjects to detect acute stress.
Second, we investigated the ability of different sets of fea-
tures to discriminate between stress and non-stress. Finally,
we integrated features extracted from both the physiological
and the thermal modalities in order to analyze their effect
on the stress detection rates.

Our experimental results indicated that the thermal fea-
tures achieved similar and in several cases improved perfor-
mance compared to the physiological features, which paves
the way towards non-invasive and efficient stress detection
approaches that can be employed in clinics and variety of
applications. Moreover, the usage of data derived from all
physiological sensors exhibited better performance compared
to the employment of single sensors. Furthermore, the inte-
gration of some physiological features, and in particular the
respiration rate, with the thermal features outperformed all
other individual and fused sets of features. Visualization of
our decision tree model specified the bands of the thermal
features and the epoch mean of the respiration rate as the
most useful features in constructing an improved classifier to
detect stress. This also showed that multimodal approaches
that employ and gather data from multiple sources such as
sensors and cameras provide an improved and more reliable
stress detection rates.

Our data was collected in lab-settings with no serious con-
sequences in order to detect the earliest and most common
types of stresses: acute stress. We expect our system to



achieve higher detection rates with real-life situations. In
future, we are planning to collect such data using quizzes,
public presentations, and mind-term and final exams, where
students would experience real-life stressors. Additionally,
we will add features from the linguistic and visual modal-
ities where the usage of specific word usages and gestures
can further improve our system. Such a reliable system can
deliver proper feedback to individuals on their acute stress
level and eventually reduce the risks associated with episodic
acute stress, and chronic stress.
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