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ABSTRACT
Automatic gender classi�cation is receiving increasing a�ention
in the computer interaction community as the need for person-
alized, reliable, and ethical systems arises. To date, most gender
classi�cation systems have been evaluated on textual and audio-
visual sources. �is work explores the possibility of enhancing
such systems with physiological cues obtained from thermography
and physiological sensor readings. Using a multimodal dataset
consisting of audiovisual, thermal, and physiological recordings of
males and females, we extract features from �ve di�erent modali-
ties, namely acoustic, linguistic, visual, thermal, and physiological.
We then conduct a set of experiments where we explore the gender
prediction task using single and combined modalities. Experimental
results suggest that physiological and thermal information can be
used to recognize gender at reasonable accuracy levels, which are
comparable to the accuracy of current gender prediction systems.
Furthermore, we show that the use of non-contact physiological
measurements, such as thermography readings, can enhance cur-
rent systems that are based on audio or visual input. �is can be
particularly useful for scenarios where non-contact approaches
are preferred, i.e., when data is captured under noisy audiovisual
conditions or when video or speech data are not available due to
ethical considerations.
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Mohamed Abouelenien, Verónica Pérez-Rosas, Rada Mihalcea, and Mihai
Burzo. 2017. Multimodal Gender Detection. In Proceedings of ICMI ’17,
Glasgow, UK, November 13–17, 2017, 10 pages.
DOI: 10.1145/3136755.3136770

1 INTRODUCTION
�e task of automatically identifying gender has gained a lot of
a�ention recently due to ethical and security concerns. In partic-
ular, gender detection has a wide variety of applications, includ-
ing human-computer interaction, surveillance purposes, computer
forensics, statistical analysis for large scale text applications, col-
lection of users’ demographics, narrowing down database queries,
and assessing consumer behavior.

Recent research on human-computer interaction and systems
has shown that multimodal approaches can assist in addressing
challenges such as noisy data and non-universality, which are fre-
quently associated to the use of single modalities. �is can be
achieved by combining multiple data sources that might be avail-
able for a speci�c application and can potentially provide more
robust or complimentary information.

An example of the challenges that deteriorate the performance
when using single modalities can be seen in the visual data stream.
For instance, disguise, wearing hats, sunglasses, fake beards and
wigs, and accessories are among some of the countermeasures
that can signi�cantly a�ect the classi�cation results during gender
recognition from video data. Furthermore, the performance of vi-
sual recognition is highly dependent on the illumination conditions,
time of day, shadows, and weather conditions. Another example
is the unavailability of the verbal responses or their presence with
noise and/or background conversations.

In contrast, modalities such as thermal imaging can bring impor-
tant advantages over the visual data stream as it is robust against
illumination conditions, disguised faces, and changes in pose. In
addition, the thermal spectrum can capture anatomical information
of the human face (unique to each individual), and can be used with
or without the cooperation of human subjects.

In this paper, we explore and compare the potential bene�ts
of using alternative modalities to detect gender in addition to the
three most commonly used modalities, namely vision, acoustics,
and language. In particular, we explore thermography by itself
and in combination with audiovisual sources to detect gender. In
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addition, we also experiment with physiological data extracted from
contact-based sensors to provide a reference value for the thermal
readings.

�e paper makes three main contributions. First, we collect a
dataset of di�erent responses from 51 males and 53 females using
di�erent devices. Second, we analyze the capability of �ve di�er-
ent modalities in detecting gender, namely the visual, linguistic,
physiological, thermal, and acoustic modalities. �ird, we analyze
the performance of integrating features from di�erent modalities
assuming the availability of speci�c modalities for di�erent appli-
cations.

�e proposed approach can be particularly useful in a number
of se�ings, including 1) applications where multiple modalities are
present; 2) applications using real-world data that is noisy and poses
challenges such as low quality audiovisual recordings, occluded
faces, distances and angles of view, among others; 3) applications
where privacy concerns restrict the access to a particular data
stream, e.g., visual and audio information.

2 RELATEDWORK
�is section surveys previous work on gender detection, which has
focused mainly on the visual, linguistic, acoustic and physiological
modalities.

Di�erent types of features and representations were extracted
from the visual faces to identify gender. Global and local face
representation approaches were compared using grey levels, prin-
cipal component analysis, and local binary pa�erns for neutral,
expressive and partially occluded faces to separate gender [4]. High
accuracy rates were reported in [45] using the Webers local texture
descriptor to detect gender from face images using the FERRET
database [33]. [5] emphasized the e�ect of the dependencies among
gender, age and pose facial a�ributes in the performance of gender
classi�cation systems. �e signi�cance of di�erent facial regions
in detecting gender was reported in [24], where fusion of multiple
facial regions was utilized. [44] used laser scanning to obtain 3D
human body shapes to show its e�ectiveness in detecting gender
over using 2-D images or videos.

Most of the introduced methods focused on features derived
from faces in constrained environments. More recently, the in-
terest started to grow in detecting gender from faces in the wild
and in unconstrained environments. Local binary pa�erns were
used to describe faces for gender detection in unconstrained con-
ditions using the Labeled Faces in the Wild dataset [17], where an
improved performance was reported using Adaboost and support
vector machine [38]. Deep-convolutional neural networks were
recently used to improve gender detection from visual recordings
in real-life conditions [18].

Gender detection has been extensively studied in textual sources
to aid tasks such as authorship a�ribution, emotion recognition
and deception detection [1, 2, 11, 19]. [28] analyzed several word
categories related to linguistic, psychological, and cognitive pro-
cesses in 14,00 text samples from 70 di�erent studies and found
important di�erences between male and female language. Other
works analyzed lexical, discourse and syntactical features to auto-
matically categorize wri�en text by author gender [9, 13, 37, 47].
Topic di�erences in discourse due to gender were analyzed in [36].

Additionally, lexical di�erences in word usage between genders
during telephone conversations were analyzed in [7].

�e performance of speci�c acoustic features was analyzed to
determine their capabilities of identifying gender. [42] analyzed the
e�ect of the interaction of Glo�al-pulse rate and vocal-tract length
on identifying gender and reported an improvement using vocal-
tract length in some cases. �e phonetic di�erences between male
and female speech were studied in [40]. �e relation between pitch
and speaker’s sex was studied in [6]. Spectral and pitch features
were used to identify gender using short speech from multilingual
speakers [20].

Physical or behavioral features referred to as so� biometrics
were surveyed in [34] to develop human and gender recognition
systems. An overview of gender classi�cation methods can be
found in [26]. �e study also analyzed the e�ect of face alignment
on gender classi�cation and reported an improved performance
using support vector machines.

Fingerprints features as well as the temporal representations
were added in order to improve the gender detection rates. Fin-
gerprints were also used to specify gender especially for forensic
purposes. Fingerprint ridge density was used to determine age
and gender di�erences [43]. Bag-of-visual-words model was imple-
mented to combine facial and �ngerprint features in a bimodal gen-
der recognition framework [22]. Bayesian hierarchical model was
used to fuse �ngerprint and face image representation to achieve
be�er gender detection rates. Texture-based spatiotemporal repre-
sentations were also used to describe and analyze faces for gender
recognition by combining facial appearance and facial motion fea-
tures [15].

Studies analyzed gender di�erences while responding to emo-
tional stimuli using physiological signals such as event related
potentials [48] and skin conductance responses[23]. EEG signals
were also analyzed and used for age and gender classi�cation [30].
However, to our knowledge there has not been an extensive analy-
sis of gender di�erences using di�erent physiological signals, and
in particular the combination of the four measurements proposed
in this paper.

Other types of visual recordings were explored in order to detect
gender such as near-infrared images. Local binary pa�ern his-
tograms were extracted from visual and near-infrared near frontal
images to detect gender resulting in reasonable classi�cation rates [10].
A recent a�empt of using thermal imaging to improve gender de-
tection can be found in [29]. �e method used a combination of
visual and thermal images of di�erent body parts to detect gender
in order to avoid the limitation of relying on visual images.

3 DATASET
For our experiments, we collected a multimodal dataset consisting
of audiovisual, thermal and physiological recordings from 104 sub-
jects. �e dataset gender distribution is 51 males and 53 females.
�e dataset consists of 520 recordings, with �ve recordings per
subject, one of which is a recording from a one-on-one interview
with the subject while the remaining four are recordings of the
subject providing his/her opinions towards a controversial topic.

�e recordings have an average duration of 82s, with a standard
deviation of 38s. �e visual recordings consist of subject’s frontal
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view where the upper body and hands are visible. �e thermal
recordings also contain the subject’s frontal view but are focused
on the face area. �e physiological recordings, obtained from �ve
di�erent biosensors that were a�ached to the subject’s hands and
thoracic area, contain measurements from subject’s blood volume
pulse, skin conductance, skin temperature, and respiration rate.

3.1 Preprocessing
Before conducting our experiments, we preprocessed the �ve dif-
ferent modalities included in the dataset to enable our multimodal
experiments.

First, starting with the audiovisual recordings, we extracted the
audio stream for each subject recording. Since the thermal cameras
can produce audio interference –due to mechanical noise– we ap-
plied speech enhancement methods to remove noise and improve
the speech signal quality. We started by converting the audio signal
from a stereo to a mono channel and to a uniform sample rate of
16k. We then applied the Mean Square Error estimation of spectral
amplitude for audio denoising, as implemented in the Voicebox
Speech Processing toolbox [8].

�en, we transcribed the subjects’ statements via crowdsourcing
with Amazon Mechanical Turk. �e workers transcribed the sub-
jects’ statements using the audio recordings only. When recordings
include interviews, we asked workers to transcribe the subject’s
speech only thus these transcripts do not contain the interviewer
questions. �e transcripts include word repetitions, word �llers,
and long pauses. All transcriptions were manually veri�ed to en-
sure quality. �e �nal transcript set contains 64,016 words, with an
average of 125 words per transcript.

To allow for the audio analysis of the recordings containing inter-
views, we processed the speech signal to isolate the subject’s speech.
We �rst applied automatic speech segmentation and clustering us-
ing the LIUM diarization toolkit [35]. Next, we used the resulting
clustering to identify the speech segments belonging to the subject’s
speech. Finally, we proceeded to split the original recording using
the automatic diarization output to obtain the speech segments
corresponding to the participant only.

4 PROPOSED APPROACH
4.1 Verbal Cues
We start by extracting several linguistic features to explore lan-
guage di�erences among genders. �e features were derived from
the transcripts of the subjects’ statements. For the recordings con-
taining subject’s opinions on controversial topics we use the full
transcript, whereas for the one-on-one interview we remove the
interviewer questions and concatenate the interviewee responses
into a single chunk of text. �e features are as follows:
Unigrams: We extracted unigrams derived from the bag of words
representation of each transcript. Each feature consists of frequency
counts of unique words in the transcript.
LIWC derived features: We used features derived from the Lin-
guistic Inquire Word Count (LIWC) lexicon. �ese features con-
sisted of word counts for each of the 80 semantic classes in the
LIWC lexicon [31]. For instance, the class “I” includes words as-
sociated with the self (e.g., I, me, myself); “Other” includes words
associated with others (e.g., he, she, they); etc.

Syntactic complexity and readability features: �is set of fea-
tures consisted of fourteen indexes of sentence syntax complexity,
including mean length of sentences, clauses, dependent clauses,
and t-units,1 as well as statistical descriptors of them. To extract
these features, we used a tool provided by Lu et al. [25].
Shallow and deep syntax: We extracted a set of features derived
from Part of Speech Tags (POS) and production rules based on
context free grammars (CFG) trees using the Berkeley parser [32].
�e CFG derived features consisted of all the lexicalized production
rules (rules including child nodes) combined with their parent and
grandparent node, e.g., *NNˆNP→friendship (in this example NN
–a noun– is the grandparent node, NP –personal pronoun– the
parent node, and “friendship” the child node). Features in this set
were also encoded as frequency values.
Response Length Features: We designed a set of features that
indicate the length of responses over time. We use an u�erance
as a thought unit and estimate the number of u�erances spoken
during �ve equally distributed intervals over the recording duration.
Finally, we counted the number of words in the u�erances spoken
during each interval, which resulted in �ve features indicating
the length of subject’s responses over time. Note that we use the
transcript to extract these features, thus we consider a sentence as
the equivalent of a spoken u�erance.

For additional insight into language di�erences in gender, Table 1
presents the top ranked semantic LIWC classes associated with
each gender, using the semantic word class scoring from [27]. In
this table, we observe clear di�erences in word choices between
genders. �e top three word classes for males include sports, music
and money whereas for females sleep, groom and inhibition are the
most dominant word classes. �ese results are in line with previous
studies on gender language di�erences [28].

Table 1: Results from LIWCword class analysis. Top ranked
semantic classes associated to male and female subjects are
shown.

Male Female
Class Score Class Score
Sports 2.18 Sleep 1.83
Music 1.58 Groom 1.83
Money 1.51 Inhibition 1.81
TV 1.42 Anxiety 1.63
Job 1.29 Sad 1.55
Family 1.27 Similes 1.43
Sexual 1.25 You 1.38
Body 1.21 Home 1.34
School 1.21 Eating 1.31
Anger 1.20 Positive Feeling 1.29
Article 1.18 Certain 1.20
Physical 1.17 Inclusive 1.20

4.2 Vocal Cues
To incorporate vocal behavior into the analysis, we extracted a set
of prosodic features to capture speech pa�erns from both genders.
1De�ned as the shortest grammatically allowable sentences into which (writing can
be split) or minimally terminable unit.
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We extracted these features using OpenEar [12]. We used a prede-
�ned feature set, EmoBase, which consists of a set of 988 prosodic
features frequently used for emotion recognition tasks. �e features
are derived from 25 low-level speech descriptors including inten-
sity, loudness, 12 Mel-frequency cepstral coe�cients (MFCC), pitch
(F0), probability of voicing, F0 envelope, zero-crossing rate, and
8 line spectral frequencies. �e feature extraction was conducted
at audio-frame level every 10ms with a 25ms Hamming window.
For the recordings containing interviews, we �rst extracted the
acoustic features on the subject’s speech segments only (obtained
as described in section 3.1) and then we averaged each feature over
the di�erent segments.

4.3 Visual Cues
To specify visual di�erences between males and females, we ex-
tracted two type of visual features, facial and hand gestures, and
global facial representation.

4.3.1 Facial and Hand Gestures. In order to incorporate gesture
information into the analysis, we annotated the subjects’ facial
displays as well as head and hand movements using the MUMIN
coding scheme [3]. To conduct the annotation, we �rst split each
visual recording into video segments of 20 seconds length and
then we annotated each segment using Amazon Mechanical Turk.
We requested four di�erent hits for each video clip to annotate
gestures for the head and general face; mouth; eyes; and hands. �e
annotation was done on silent video so that the annotators could
focus on identifying the predominant gesture over each segment.

Each segment was annotated by three independent annotators.
To ensure the quality of the annotations and to avoid spam, we
checked that the annotators correctly responded to instructions in a
control video showed randomly during the annotation. We rejected
annotations from workers who failed the quality control more than
twice. A�er the annotations were completed, we assigned gesture
labels at segment and video level using majority voting over the
labels provided by the three annotators. For those cases where
a majority could not be identi�ed, the �nal label was randomly
selected among the three available annotations.

To identify di�erences in gesture behavior among subjects, we
analyzed the percentage of occurrences of each gesture clustered
by gender. Figure 1 presents the box plots corresponding to the
gestures for which we observed larger variations between genders,
particularly in facial expressions such as smile, scowl, and laugh,
as well as eyebrow, eyes, and lips gestures. �is analysis suggests
that the proposed gestures are potentially useful predictors of the
subject’s gender.

Next, from the gesture annotations at video level, we derived
40 binary features that indicated whether the subjects elicited the
given gesture during the full recording. We opted for a binary
representation due to di�erences in recording lengths.

In addition, we extracted temporal variations in visual behavior,
by computing the number of times a gesture change occurred in
the series of video segments throughout the subject’s response. We
computed this feature for each of the nine gesture categories in the
MUMIN scheme.

�e �nal set of visual features includes 40 binary features of
the facial and hand gestures for each response, as well as a set of

M F

0

0.2

0.4

0.6

0.8

Smile

M F

0

0.2

0.4

0.6

0.8

Scowl

M F

0

0.2

0.4

0.6

0.8

Laugh

M F

0

0.2

0.4

0.6

0.8

1

Raising eyebrows

M F

0

0.2

0.4

0.6

0.8

1

Interlocutor Gaze

M F

0

0.2

0.4

0.6

0.8

1

Lips Protruded

Figure 1: Di�erences in facial displays by males (M) and fe-
males (F)

nine features representing the dynamics of the gestures in each
response.

4.3.2 Global Facial Representation. We use the Eigenfaces ap-
proach [39] to derive global face features that can be used to model
facial di�erences between genders. �e features were extracted us-
ing the Principal Component Analysis (PCA) technique. To extract
the Eigenfaces, each individual face image is projected into a lower
dimensional space and was expressed as a weighted summation of
the Eigenface vectors. To recognize a new unlabeled face image,
the image is projected into the new PCA space.

Hence, we randomly sampled images from the male and female
video recordings. �e faces in the images were automatically de-
tected using the Viola-Jones algorithm [46]. �e training set of
gender-based faces was used to create the new PCA space and the
faces to be tested were projected into the new space. It should be
noted that we are aware of other recent methods that utilized deep
learning to predict gender from faces as listed earlier; however,
these approaches provide pretrained models, which cannot be used
in our case for a fair comparison with other modalities. Moreover,
given the size of our collected dataset, deep learning might not
perform e�ectively.

4.4 Physiological Sensors
�e physiological recordings were processed with the Biograph
In�niti Physiology2 suite to obtain four raw physiological measure-
ments from the subject’s blood volume pulse, skin conductance,
skin temperature, and respiration rate, as well as statistical mea-
surements derived from them.3 �e statistical descriptors include
the maximum and minimum values, means, power means, standard
deviations, and mean amplitudes (epochs). In addition, we obtained

2h�p://though�echnology.com/index.php/so�ware/physiology-suite-sa7970.html
3All measurements were obtained at a sampling rate of 2048 samples per second.

http://thoughttechnology.com/index.php/software/physiology-suite-sa7970.html
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features derived from inter-beat intervals (IBI) measurements such
as the minimum and maximum amplitudes and their intervals. �e
�nal feature set consists of 59 physiological features including 40
BVP features, �ve SC features, seven RR features, �ve ST features,
and two features extracted from the BVP and the RR sensors com-
bined, namely, the mean and heart rate max-min di�erence, which
is a measure of breath to heart rate variability.

Figure 2 shows the box plots of each sensor raw output clus-
tered by gender. �e �gure suggests noticeable di�erences of phys-
iological responses between males and females, particularly, in
electrodermal response (skin conductance) and respiration rate.
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Figure 2: Average rawvalues of physiologicalmeasurements
when clustered by gender (males M, females F).

4.5 �ermal Imaging
�ermal features were extracted in order to determine whether
certain thermal pa�erns vary between males and females. We
derived feature vectors that represent the thermal signature of the
subject’s face over di�erent regions of interest (ROI) as described
below.
Segmenting and Tracking the ROI. We started by manually lo-
cating �ve ROIs from the �rst frame of each recorded thermal
video by specifying their bounding boxes. �e ROIs included the
whole face; forehead; periorbital (eyes); cheeks including the nose;
and nose. Interesting points were then detected in this ROI using
Shi-Tomasi corner detection algorithm. �ese points were located
where sharper changes in temperatures existed. Following this, the
detected points were tracked through the entire response using
a fast Kanade-Lucas-Tomasi (KLT) tracking algorithm [41]. �e
points tracking was performed by estimating the displacement
between successive frames.

Following the tracking process and displacement estimation,
geometric transformation [16] was applied, which globally esti-
mated the interesting points transformation based on similarity
in order to map the interesting points between the frames. Once
the points were mapped, the new boundary box was geometrically
speci�ed. �e maximum distance we allowed between the tracked
point and its projection on the next frame was �ve pixels. Moreover,
if the number of points matched between two successive frames
is less than 95%, a chance of occurrence of occlusion was consid-
ered. Hence, we discarded the tracking of the current frame and
proceeded to the next one.
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Figure 3: Di�erence in the average thermal temperatures ex-
tracted from the faces of the males (M) and females (F).

�ermal Feature Extraction. �e locations of the bounding
boxes containing the ROI of each frame were cropped from the
raw thermal video, and a thermal map was created to represent the
heat distribution in each ROI. In particular, we extracted statistical
measurements on the full response-level such as the minimum,
maximum, mean, and standard deviation of the frame-level mean,
maximum, minimum, standard deviation, and the average of the
10% ho�est temperatures of each ROI. Moreover, we extracted a
histogram of 20 bins of the non-zero temperatures in each ROI.
Furthermore, we extracted temporal features by dividing each re-
sponse into �ve equal stages and computing the statistical features
from each stage. �e features extracted from the males’ and fe-
males’ responses in addition to the �ve temporal thermal features
presented the �nal feature set for each ROI.

Figure 3 shows the box plots of the mean thermal temperatures
extracted from the whole faces of the male and female subjects. �e
�gure clearly indicates that males’ facial temperatures are higher
compared to females, on average. As the notch marks clearly do
not overlap, the gender-based thermal di�erences are signi�cant at
the 95% con�dence interval.

5 RESULTS AND DISCUSSION
5.1 Experimental Setup
�e experiments are conducted using feature sets from individual
modalities as well as integrated modalities. A decision tree classi�er
is used to predict binary gender using a leave-one-subject-out cross
validation scheme in order to avoid any bias. In this scheme, the �ve
instances belonging to each subject are reserved for testing and all
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other instances are used for training during each fold. We report the
overall accuracy as well as the recall of the male and female classes.
Moreover, we conduct feature analysis by visualizing the decision
tree model developed for the best performing set of features and
determining the speci�c features that are most capable of detecting
gender.

5.2 Individual Modalities

Table 2: Overall accuracy and class recall using the �ve ther-
mal regions of interest including the face, forehead, peri-
orbital (eyes), cheeks, and nose. �e best results are high-
lighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
Face 70.2 71.0 69.4
Forehead 45.2 44.7 45.7
Eyes 51.9 53.3 50.6
Cheeks 69.6 70.6 68.7
Nose 60.4 61.2 59.6

Table 2 lists the overall accuracy and class recall using the �ve
thermal ROIs including the face, forehead, periorbital (eyes), cheeks,
and nose. �e table indicates that the thermal measurements from
the whole facial area are the most capable of indicating gender. In-
terestingly, the cheeks region achieves very close performance and
reaches approximately 70% accuracy, indicating the capability of
this region to di�erentiate between males and females. On the other
hand, the forehead and eyes regions are not capable of identifying
gender and provide performance similar to that of random guessing.
It can be noted that there exists a slight improvement in the males’
recall compared to the females’ recall; however the di�erence is
not signi�cant. Table 3 shows the overall accuracy and class recall
using the physiological signals including the blood volume pulse,
skin conductance, skin temperature, respiration rate, and “All” sig-
nals combined. �e table indicates that the blood volume pulse
and skin conductance signals achieve the best performance among
the individual signals. �e accuracy of all the individual signals
stands below 60%. However, when all the physiological features
are integrated, the accuracy is boosted to close to 70% accuracy,
indicating that the speci�c combination of di�erent signals can be
indicative of gender.

Table 3: Overall accuracy and class recall using the physio-
logical signals including the blood volume pulse, skin con-
ductance, skin temperature, respiration rate, and “All” sig-
nals combined. �e best results are highlighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
Blood Volume 57.5 58.4 56.6
Skin Conductance 58.3 58.4 58.1
Skin Temperature 50.8 45.5 55.8
Respiration Rate 52.9 53.3 52.5
All 68.7 67.1 70.2

Table 4: Overall accuracy and class recall using linguistic
features including the unigrams (Unigrams), language in-
quiry and word count (LIWC), readability scores (Readabil-
ity), context free grammars (CFG), part of speech tags (POS),
and “All” linguistic features combined. �e best results are
highlighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
Unigrams 57.3 55.3 59.2
LIWC 54.4 47.1 61.5
Readability 55.8 54.1 57.4
CFG 57.9 57.3 58.5
POS 55.0 56.1 54.0
All 58.7 58.8 58.5

Table 4 lists the overall accuracy and class recall using linguis-
tic features including the unigrams (UNI), language inquiry and
word count (LIWC), readability scores (Read.), context free gram-
mars (CFG), part of speech tags (POS), and “All” linguistic features
combined.

Context free grammars and unigrams have be�er capability of
determining gender. Moreover, di�erent linguistic features pro-
vide performance that is above the baseline of random guessing.
We experimented with several combinations and noticed that the
integration of unigrams and LIWC achieve higher performance.
However, for fair comparison and due to space limit, we provide
the results for combining all linguistic features together, which
exceed the accuracy of all individual linguistic sets. �e males and
females recall are very close in the majority of the cases.

Table 5: Overall accuracy and class recall using the visual
features including the face gestures, hand gestures, both ges-
tures, Eigenfaces, and all features combined. �ebest results
are highlighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
Face Gestures 57.3 56.5 58.1
Hand Gestures 48.1 50.6 45.7
Both Gestures 53.3 52.2 54.3
Eigenfaces 71.7 69.4 74.0
All 71.7 69.4 74.0

Table 5 lists the overall accuracy and class recall using the visual
features including the face gestures, hand gestures, both gestures,
Eigenfaces, and all features combined. �e table shows that the
Eigenfaces method provides a signi�cantly improved performance
compared to other gestures. �is indicates that global facial fea-
tures have higher capability of indicating gender compared to facial
gestures and other body movements. Facial gestures provide per-
formance that is above the baseline, however, the hand gestures are
not capable of detecting gender. Hence, the combination of both
facial and hand gestures does not achieve improved performance.
�e integration of all visual features achieves identical performance
to the Eigenfaces approach, which indicates that the decision tree
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model only utilized the Eigenfaces features. �e females recall is
slightly be�er than the males recall using facial-related features.

Table 6: Overall accuracy and class recall using the vocal fea-
tures including the MFCC and EmoBase features. �e best
results are highlighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
MFCC 80.4 80.8 80
EmoBase 79.2 77.3 81.1

For the acoustic modality we experimented with the Emobase
set as well as a subset containing the MFCC features only. Table 6
illustrates the overall accuracy and recall �gures when using these
features. �e table shows that the acoustic features have superior
performance compared to other features from other modalities,
exceeding 80% accuracy. In particular, the MFCC features exhibit a
slight improvement compared to using the full Emobase set.

5.3 Integrated Modalities
In order to analyze whether the integration of several modalities
provides improved performance in detecting gender, we experiment
with di�erent combinations of features. To avoid any bias and due
to the absence of development data, we integrate all the feature
sets of a chosen modality before combining them with other modal-
ities. In other words, we use the “All” feature set for the linguistic,
physiological, and visual modalities, the whole face for the thermal
modality, and the Emobase for the vocal modality.

As it is infeasible to experiment with all possible combinations,
we chose the combinations that might exist in real-life situations,
taking also into consideration that some physiological signals can
be extracted from thermal videos as a non-contact approach. For
instance, recent work has shown that thermography can be used
to extract heart and respiration rate [14, 21]. �us, the selected
combinations are the thermal and physiological features, thermal
and acoustic features, and the thermal and linguistic features where
visual cameras are prohibited, vocal and linguistic features in appli-
cations where speech is only available, thermal and visual features
for surveillance applications, thermal, physiological, and visual as
a non-contact approach with the unavailability of speech, and all
�ve modalities combined.

Table 6 lists the overall accuracy and class recall using di�er-
ent combination of modalities such as thermal (Face) and physi-
ological (All) {�rm+Phys}, vocal (EmoBase) and linguistic (All)
{Voc+Ling}, thermal (Face) and visual (All) {�rm+Vis}, thermal
(Face) and vocal (EmoBase) {�rm+Voc}, thermal (Face) and lin-
guistic (All) {�rm+Ling}, thermal (Face), physiological (All), and
visual (All) {�rm+Phys+Vis}, and “All Modalities” combined.

�e table shows that following a multimodal approach does not
provide signi�cant di�erences as compared to the use of single
modalities. In particular, the combination of thermal and physio-
logical, vocal and linguistic, thermal and visual su�ered a slight
decrease in performance compared to the best performing individ-
ual modality in the combination. On the other hand, the integration
of the thermal and vocal, thermal and linguistic, thermal, physi-
ological, and visual, and all modalities combined exhibit a slight

Table 7: Overall accuracy and class recall using di�er-
ent combination of modalities such as thermal (Face)
and physiological (All) {�rm+Phys}, vocal (EmoBase)
and linguistic (All) {Voc+Ling}, thermal (Face) and
visual (All) {�rm+Vis}, thermal (Face) and vocal
(EmoBase) {�rm+Voc}, thermal (Face) and linguistic
(All) {�rm+Ling}, thermal (Face), physiological (All),
and visual (All) {�rm+Phys+Vis}, and “All Modalities”
combined . �e best results are highlighted in bold.

Metric Accuracy Male Recall Female Recall
Baseline 51.0 49.0 51.0
�rm+Phys 69.2 69.8 68.7
Voc+Ling 78.8 76.9 80.8
�rm+Vis 70.6 69.0 72.1
�rm+Voc 79.6 76.1 83.0
�rm+Ling 70.4 71.4 69.4
�rm+Phys+Vis 72.5 66.7 78.1
All Modalities 80.6 78.0 83.0

improved performance compared to the best performing individual
modality in the integration. �e best overall accuracy among all
individual and combined modalities is achieved by integrating all
�ve modalities with a relative improvement of 1.8% compared to the
best performing modality (Vocal Emobase) in the combination. �is
potentially indicates that there might be some bene�t in following
a multimodal approach. However, based on the application it might
be infeasible to process all �ve modalities.

5.4 Feature Analysis
In order to analyze the speci�c features that play an important
role in predicting gender, we visualize the decision tree model
constructed from the best performing set of features, which is
achieved by integrating all �ve modalities together as can be seen
in Figure 4.

�e �gure shows that tree nodes are constructed from four of
the �ve modalities excluding the linguistic features. As expected
the vocal features played a crucial role in the construction of the
tree, including the root node and nine other nodes out of 17 nodes.
�ree nodes are composed using the thermal features starting from
the second level of the tree. Two nodes are built using each of the
visual and physiological features.

�e vocal features include the pitch (F0) at the root node and
the �rst level of the tree indicating that the pitch features provide
the best separation between males and females. Moreover, four
MFCC, two LSP, one PCM, and one voice probability features are
used to build the nodes of the tree at di�erent levels. Two thermal
features are extracted from the histogram of 20 bins and one feature
presents the maximum temperature extracted from the faces of the
subjects, which indicates that males and females have di�erent
thermal distribution among their faces and reach di�erent levels of
maximum temperatures.

�e two visual features were extracted from the Eigen vectors,
which emphasizes the importance of the global facial features to
indicate gender. Finally, the two physiological features present
in the tree are the respiration rate and skin temperature signals.
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Figure 4: A visualization of the decision tree model constructed from the �ve modalities.

�is might be surprising given that these two signals exhibited
the lowest performance when used individually. However, their
integration provides richer information that can improve gender
prediction.

6 CONCLUSION
In this paper we analyzed di�erent modalities for detecting gen-
der taking into consideration the wide variety of applications that
require gender detection such as surveillance purposes, computer
forensics, electronic marketing, statistical analysis, demographic
information collection, among others.

In particular we developed a dataset of male and female re-
sponses, explored the potential of utilizing for the �rst time �ve
di�erent modalities to detect gender including the visual, linguistic,
physiological, thermal, and vocal modalities, and evaluated the per-
formance of integrating di�erent modalities together for real-life
applications.

�e experiments showed that the vocal features outperform other
modalities in identifying gender especially using the pitch features.
�e visual and thermal modalities came second. �e global facial
features in particular were capable of separating between genders.
Moreover, the thermal features in the whole facial area and in
the cheeks region represent good clues for detecting gender, which
presents an analysis that was not explored before. �e physiological
features provide very close performance to that of the visual and

thermal features especially using the individual blood volume pulse
and skin conductance signals.

While di�erent combinations of modalities did not exhibit a sig-
ni�cant improvement over using individual modalities, the best
performance achieved using the �ve modalities shed some light on
the speci�c integrated features that can potentially detect gender
with higher reliability. �ese features include the pitch, MFCC, LSP,
PCM, and voice probability vocal features, the maximum temper-
ature as well as the temperature distribution in the face for the
thermal features, the facial global representations, and the combi-
nation of the respiration rate and skin temperature. On the other
hand, the linguistic features and the gestures were not as useful
compared to the rest of the features. �ese sets of features can be
further explored in future work to identify gender based on the
availability of speci�c modalities as well as the requirements of
di�erent real-life applications.
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