
HAWK: Hardware Support for
Unstructured Log Processing

Prateek Tandon Faissal M. Sleiman Michael J. Cafarella Thomas F. Wenisch
prateekt@umich.edu sleimanf@umich.edu michjc@umich.edu twenisch@umich.edu

Department of Computer Science and Engineering, University of Michigan

Abstract—Rapidly processing high-velocity text data is criti-
cal for many technical and business applications. Widely used
software solutions for processing these large text corpora target
disk-resident data and rely on pre-computed indexes and large
clusters to achieve high performance. However, greater capacity and
falling costs are enabling a shift to RAM-resident data sets. The
enormous bandwidth of RAM can facilitate scan operations that
are competitive with pre-computed indexes for interactive, ad-hoc
queries. However, software approaches for processing these large
text corpora fall far short of saturating available bandwidth and
meeting peak scan rates possible on modern memory systems. In
this paper, we present HAWK, a hardware accelerator for ad hoc
queries against large in-memory logs. HAWK comprises a stall-
free hardware pipeline that scans input data at a constant rate,
examining multiple input characters in parallel during a single
accelerator clock cycle. We describe a 1GHz 32-character-wide
HAWK design targeting ASIC implementation, designed to process
data at 32GB/s (up to two orders of magnitude faster than software
solutions), and demonstrate a scaled-down FPGA prototype that
operates at 100MHz with 4-wide parallelism, which processes at
400MB/s (13× faster than software grep for large multi-pattern
scans).

I. INTRODUCTION

High-velocity electronic text log data, such as system logs,
social media updates, web documents, blog posts, and news
articles, have undergone explosive growth in recent years
[24]. These textual logs can hold useful information for time-
sensitive domains, such as diagnosing distributed system fail-
ures, online ad pricing, and financial intelligence. For example,
a system administrator might want to find all HTTP log entries
that mention a certain URL. A financial intelligence appli-
cation might search for spikes in the number of Tweets that
contain the phrase “can’t find a job”. Queries on high-velocity
text data are often ad hoc, highly-selective, and latency-
sensitive; i.e., the workload is not known beforehand; queries
often ignore the vast majority of the corpus; and answers must
be generated quickly and reflect up-to-the-second data.

The dominant current-generation tools for management of
unstructured data like textual logs, such as Splunk or Hadoop,
are designed to process data sets that reside on disk or SSD.
They achieve high performance through scale, by sharding data
over a large number of disks and servers. However, RAM
storage costs have fallen drastically over the past decade,
and new storage technologies, such as the recently announced

Intel/Micron XPoint 3D memory [2], which promise RAM-
like performance at even lower cost per bit, will be available
soon. As a result, memory-resident databases are becoming
a popular architectural solution, not simply for transactional
[17], [27] workloads, but for analytical ones [1], [19], [25],
[26], [34] as well. For example, Twitter’s own search engine
now stores recent data in RAM [8].

The shift to RAM-resident data sets fundamentally alters
the performance requirements of a data management engine.
Memory bandwidth—the rate at which the architecture sup-
ports transfers from RAM to the CPU for processing—is nearly
two orders of magnitude higher than bandwidth available over
the network or to disk. As a result, latency-sensitive queries,
which conventionally could meet performance objectives only
via pre-computed indexes, may become achievable with scans,
avoiding the compute and storage costs of constructing and
maintaining an index.

Unfortunately, existing processing techniques do not come
close to saturating available memory bandwidth. For example,
using a state-of-the-art in-memory database, we measure a
peak scan rate of less than 2GB/s on a dual-socket 16-
threaded server—only 15% of available memory bandwidth.
Non-database textual tools, such as grep and awk, perform
even worse, sometimes by orders of magnitude. The gap
arises because these tools must execute many instructions, on
average, for each input character they scan. Thus instruction
execution throughput, rather than memory bandwidth, limits
performance. With the advent of DDR4, the gap between
instruction throughput and memory bandwidth will grow.

System Goal — There are many questions when building an
in-memory analytical database, but in this paper we focus on
just one: can we saturate memory bandwidth when processing
text log queries?1 If so, the resulting system could be used
directly in grep- and awk-style tools, and integrated as a query
processing component in memory-resident relational systems.

We are interested in designs that include both software and
hardware elements. Although hardware accelerators have had
a mixed history in data management systems, there is reason
to be newly optimistic about their future. The anticipated
end of CMOS voltage scaling (Dennard scaling) has led
experts to predict the advent of chips with “dark silicon”;

1Although we are motivated primarily by text log processing, general
streaming data query processing has many of the same requirements.



that is, chips that are designed to have a substantial portion
powered off at any given time [5], [11], [30]. This forecast
has renewed interest in domain-specific hardware accelera-
tors that can create value from otherwise dark portions of
a chip—accelerators powered only when especially needed.
Researchers have recently proposed several hardware designs
tailored for data management [14], [33]. Further, recently-
announced chip designs include field programmable gate ar-
ray (FPGA) elements [7], making domain-specific hardware
accelerators—implemented in FPGAs—even more practical
and promising. There has also been substantial interest in using
FPGAs for database query processing [13], [20], [31], [32].

Technical Challenge — It is not surprising that current
software systems on standard cores fall short of saturating
memory bandwidth. Most text processing systems use pattern
matching state machines as a central abstraction, and standard
cores that implement these machines in software can require
tens of instructions per character of input. Further, efficiently
representing state machines for large alphabets and complex
queries is challenging; the resulting transition matrices are
sparse, large, and randomly accessed, leading to poor hardware
cache performance.

We set an objective of processing in-memory ASCII text
at 32 giga-characters per second (GC/s), corresponding to
32GB/s from memory—a convenient power of two expected to
be within the typical capability of near-future high-end servers
incorporating several DDR3 or DDR4 memory channels. We
investigate whether a custom hardware component can reach
this performance level, and how much power and silicon
area it takes. Achieving this processing rate with conventional
multicore parallelism (e.g., by sharding the text log data into
subsets, one per core) is infeasible; our measurements of a
state-of-the-art in-memory database suggest that chips would
require nearly 20× more cores than are currently commonplace
in order to reach the target level of performance.

Our Approach — We propose a combination of a custom
hardware accelerator and an accompanying software query
compiler for performing selection queries over in-memory
text data. When a user’s query arrives, our compiler creates
pattern matching finite state automata that encode the query
and transmits them to the accelerator; the accelerator then
executes the automata, recording the memory addresses of all
text elements that satisfy the query. This list of results can then
be used by the larger data management software to present
results to the user, or as intermediate results in a larger query
plan.

We exploit two central observations to obtain fast processing
while using a reasonable hardware resource budget. First, our
accelerator is designed to operate at a fixed scan rate: it always
scans and selects text data at the same rate, regardless of the
data or the query, streaming data sequentially from memory
at 32GB/s. We can achieve such performance predictability
because the scan engine requires no control flow or caches;
hence, the hardware scan pipeline never stalls and can operate
at a fixed 1GHz frequency, processing 32 input characters
per clock cycle. Our approach allows us to avoid the cache

misses, branch mispredictions, and other aspects of CPUs that
make performance unpredictable and require area-intensive
hardware to mitigate. Second, we use a novel formulation
of the automata that implement the scan operation, thereby
enabling a hardware implementation that can process many
characters concurrently while keeping on-chip storage require-
ments relatively small. We conceptually concatenate 32 con-
secutive characters into a single symbol, allowing a single state
transition to process all 32 characters. Naı̈vely transforming the
input alphabet in this way leads to intractable state machines—
the number of outgoing edges from each state is too large to
enable fixed-latency transitions. So, we leverage the concept of
bit-split pattern matching automata [29], wherein the original
automaton is replaced with a vector of automata that each
process only a bit of input. As a result, each per-bit state
requires only two outgoing transitions. Matches are reported
when all bit-split automata have recognized the same search
pattern.

Contributions and Outline — The core contributions of this
paper are as follows:

1) We describe a typical log processing query workload, de-
scribe known possible solutions (that are unsuitable), and
provide some background information about conventional
approaches (Sections II, III).

2) We propose HAWK, a hardware accelerator design with
a fixed scan-and-select processing rate. HAWK employs
automata sharding to break a user query across many
parallel processing elements. The design is orthogonal
to standard data sharding (i.e., breaking the dataset into
independent parts for parallel processing), and can be
combined with that approach if needed (Sections IV, V).

3) We describe a 1GHz 32-character-wide HAWK design
targeting ASIC implementation, which can saturate near-
future memory bandwidth, outperforming current soft-
ware solutions by orders of magnitude. Indeed, our scan
operations are fast enough that they are often competitive
with software solutions that utilize pre-computed indexes.

4) We validate our ASIC design with a scaled-down FPGA
prototype. The FPGA prototype is a 4-wide HAWK
design and operates at 100MHz. Even at this greatly
reduced processing rate, the FPGA design outperforms
grep by 13× for challenging multi-pattern scans.

Section VII covers related work and Section VIII concludes.

II. PROBLEM DESCRIPTION

hadoop.apache.org; 06:32:09; opera;   linux;   131.24.0.7;    279
mahout.apache.org; 06:32:15; safari;  osx;     187.98.32.1;   1729
hadoop.apache.org; 06:32:23; firefox; osx;     243.56.171.53; 583
chukwa.apache.org; 06:32:25; ie;      windows; 54.12.87.10;   9854
                                ...

Fig. 1: A sample log file.

We focus on the problem of enabling scans of textual and
log-style data to saturate modern memory bandwidth. Figure 1
shows a brief example of such data. The query workload is
a mixture of standing queries that can be precompiled, and
ad hoc ones driven by humans or by automated responses to



previous query results. The actual queries involve primarily
field-level tokenization plus string equality tests.

In this section, we cover the user-facing desiderata of such
a system, including the data model and query language. Then,
we consider traditional software solutions for such queries and
why hardware acceleration is desirable.

A. Desiderata for a Log Processing System

Data Characteristics — The text to be queried is log-style
information derived from Web servers or other log output from
server-style software. We imagine a single textual dataset that
represents a set of records, each consisting of one or more
explicitly delimited fields. The number of fields per record may
vary. For example, a typical record may contain date stamp and
optional source identifier information in addition to free-form
text.

Standard sharing formats such as JSON are increasingly
common but still create non-trivial computational serialization
and deserialization overhead when applied at large scale.
As a result, they are generally only used for relatively-rare
“interface-level” data communications, and are not standard
for bulk logs that are intended to be human-readable. However,
if the user does want to process JSON with our proposed
hardware, doing so is possible using the filter-style deployment
described in Section II-B.

In contrast to existing systems like Splunk, we do not con-
struct an index when ingesting data or as logs arrive, thereby
avoiding both the processing and storage cost of indexing,
and instead execute queries exclusively via scan operators.
Whereas an inverted index might accelerate string-equality
queries, index construction can take hours and consume a ma-
jority of available memory capacity, increasing the number of
servers required to manage a given data set. Furthermore, joins
seeking n-grams with frequent terms can remain expensive
even with indexes. Our objective is to demonstrate that index-
free selection queries are viable with hardware acceleration.

Query Language — The data processing system must answer
selection and projection queries over the aforementioned data.
Fields are simply referred to by their field number. For
example, for the data in Figure 1, we might want to ask:
SELECT $3,$5 WHERE $6=200 AND

($5="132.99.20.201" OR $5="100.202.44.1")

The system must support Boolean predicates on numeric
(=,<>,>,<,<=,=<) and textual fields (equality and LIKE).

Query Workload — We assume queries that have four salient
characteristics. 1) They are ad hoc, possibly written in response
to ongoing shifts in the incoming log data, such as in financial
trading, social media intelligence, or network log analysis.
2) Queries are time-sensitive: the user expects an answer as
soon as possible, perhaps so she can exploit the quick-moving
logged phenomenon that caused her to write the query in the
first place. 3) Queries are highly selective: the vast majority of
the log data will be irrelevant to the user. The user is primarily
interested in a small number of very relevant rows in the log.

Thus, although our system offers projections, it is not designed
primarily for the large aggregations that motivate columnar
storage systems. 4) Queries may entail many equality tests: we
believe that when querying logs, it will be especially useful for
query authors to search a field for a large number of constants.
For example, imagine the user wants to see all log entries from
a list of suspicious users:
SELECT $1,$2,$3 WHERE $3=’user1’
OR $3=’user2’ OR $3=’user3’ OR ...

or imagine a website administrator wants to examine latency
statistics from a handful of “problem URLs”:
SELECT $1,$4, WHERE $1=’/foo.html’
OR $1=’/bar.html’ OR ...

If we assume the list of string constants—the set of user-
names or the set of problematic URLs—is derived from a
relation, these queries can be thought of as implementing a
semijoin between a column of data in the log and a notional
relation from elsewhere [10]. This use case is so common that
we have explicit support for it in both the query language
and the execution runtime. For example, for a query logically
equivalent to the one above, a user can more compactly write:
SELECT $1,$4 WHERE $1={"problemurls.txt"}

When integrating HAWK with the software stack and inter-
acting with the user, we envision at least two possible scenar-
ios. The first usage scenario involves close integration with a
data management tool. When the database engine encounters
an ad hoc query, the query is handed off to the accelerator
for processing, potentially freeing up the server cores for
other processing tasks. Once the accelerator has completed
execution, it returns pointers in memory to the concrete results.
The database then retakes control and examines the results
either for further processing (such as aggregation) or to return
to the user. This scenario can be generalized to include non-
database text processing software, such as grep and awk.

The second usage scenario involves a stand-alone deploy-
ment, in which a user submits queries directly to the ac-
celerator (via a minimal systems software interface) and the
accelerator returns responses directly to the user. In either case,
the RDBMS software and the user do not interact directly with
the hardware. Rather, they use the hardware-specific query
compiler we describe in Section V-A.

B. Regular Expression Parsing
Processing regular expressions is not a core goal for our

design: regular expressions may not be required for many
log processing tasks, and our hardware-based approach does
not lend itself to the potentially deep stacks that regex rep-
etitions enable. The hardware natively supports exact string
comparisons including an arbitrary number of single-character
wildcards. However, it is possible to build a complete reg-
ular expression processing system on top of our proposed
mechanism—HAWK can be used to implement all of the
equality testing driven components of the regular expression,
and strings that pass this “prefilter” can then be examined with
a more traditional software stack for full regex processing.



C. Conventional Solutions
Today, scan operations like those we consider are typ-

ically processed entirely in software, and often using in-
verted indexes. Simple text processing is often performed with
command-line tools like grep and awk, while more complex
scan predicates are more efficiently processed in column-store
relational databases, such as MonetDB [17] and Vertica [15].
Keyword search is typically performed using specialized tools
with pre-computed indexes, such as Lucene [18] or the Yahoo
S4 framework [21].

However, software-implemented scans fall well short of
the theoretical peak memory bandwidth available on modern
hardware because scan algorithms must execute numerous
instructions (typically tens, and sometimes hundreds) per byte
scanned. Furthermore, conventional text scanning algorithms
require large state transition table data structures that cause
many cache misses. For our design goal of 32GC/s, and a
target accelerator clock frequency of 1GHz, our system must
process 32 characters each clock cycle. Given a conventional
core’s typical processing rates of at most a few instructions
per cycle, and many stalls due to cache misses, we would
potentially require hundreds of cores to reach our desired
level of performance. Indexes are clearly effective, but are also
time-consuming and burdensome to compute. Traditional index
generation is expensive in time and memory.

Hardware-based solutions have been marketed for related
applications, for example, IBM Netezza’s data analytics ap-
pliances, which make use of FPGAs alongside traditional
compute cores to speed up data analytics [13]. Our accelerator
design could be deployed on such an integrated FPGA sys-
tem. Some data management systems have turned to graphics
processing units (GPUs) to accelerate scans. However, prior
work has shown that GPUs are ill-suited for string matching
problems [35], as these algorithms do not map well to the sin-
gle instruction multiple thread (SIMT) parallelism offered by
GPUs. Rather than rely on SIMT parallelism, our accelerator,
instead, is designed to efficiently implement the finite state
automata that underlie text scans; in particular, our accelerator
incurs no stalls and avoids cache misses.

In short, existing software and hardware solutions are un-
likely to reach our goal of fully saturating memory bandwidths
during scan—the most promising extant solution is perhaps
the FPGA-driven technique. Therefore, the main topic of this
paper is how we can use dedicated hardware to support the
aforementioned query language at our target processing rate.

III. BACKGROUND

We briefly describe the classical algorithm for scanning
text corpora, on which HAWK is based. The Aho-Corasick
algorithm [4] is a widely used approach for scanning a text
corpus for multiple search terms or patterns (denoted by the
set S). Its asymptotic running time is linear in the sum of the
searched text and pattern lengths. The algorithm encodes all
the search patterns in a finite automaton that consumes the
input text one character at a time.

The Aho-Corasick automaton M is a 5-tuple (Q,↵, �, q0, A)
comprising:

0 1

3

2

4

6 7

8 9

5

h

s

e

i

h e

s

r s

Fig. 2: An Aho-Corasick Pattern Matching Automaton.

Search patterns are he, she, his, and hers. States 2, 5, 7,
and 9 are accepting states.

1) A finite set of states Q: Each state q in the automaton
represents the longest prefix of patterns that match the
recently consumed input characters.

2) A finite alphabet ↵.
3) A transition function (� : Q⇥ ↵ ! Q): The automaton’s

transition matrix comprises two sets of edges, which,
together, are closed over ↵. The goto function g(q,↵

i

)

encodes transition edges from state q for input characters
↵
i

, thereby extending the length of the matching prefix.
These edges form a trie (prefix tree) of all patterns
accepted by the automaton. The failure function f(q,↵

i

)

encodes transition edges for input characters that do not
extend a match.

4) A start state q0 2 Q, or the root node.
5) A set of accepting states A: A state is accepting if

it consumes the last character of a pattern. An output
function output(q) associates matching patterns with every
state q. Note that an accepting state may emit multiple
matches if several patterns share a common suffix.

Figure 2 shows an example of an Aho-Corasick trie for
the patterns ‘he’, ‘she’, ‘his’ and ‘hers’ (failure edges are not
shown for simplicity).

Two challenges arise when seeking to use classical Aho-
Corasick automata to meet our performance objective: (1)
achieving deterministic lookup time, and (2) consuming input
fast enough. To aid in our description of these challenges, we
leverage the notation in Table I.

Parameter Symbol
Alphabet ↵

Set of search patterns S
Set of states in pattern matching automaton Q

Characters evaluated per cycle (accelerator width) W

TABLE I: Notation.

Deterministic lookup time — A key challenge in implement-
ing Aho-Corasick automata lies in the representation of the
state transition functions, as various representations trade off
space for time. The transition functions can be compactly rep-
resented using various tree data structures, resulting in lookup
time logarithmic in the number of edges that do not point to
the root node (which do not need to be explicitly represented).
Alternatively, the entire transition matrix can be encoded in a
hash table, achieving amortized constant lookup time with a
roughly constant space overhead relative to the most compact
tree. However, recall that our objective is to process input
characters at a constant rate, without any possibility of stalls in
the hardware pipeline. We require deterministic time per state
transition to allow multiple automata to operate in lockstep on
the same input stream. (As will become clear later, operating



multiple automata in lockstep on the same input is central to
our design). Hence, neither logarithmic nor amortized constant
transition time are sufficient.

Deterministic transition time is easily achieved if the tran-
sition function for each state is fully enumerated as a lookup
table, provided the resulting lookup table is small enough to be
accessed with constant latency (e.g., by loading it into an on-
chip scratchpad memory). However, this representation results
in an explosion in the space requirement; the required memory
grows with O(|↵| · |Q| · log(|Q|)). This storage requirement
rapidly outstrips what is feasible in dedicated on-chip storage;
to achieve a 1GHz access frequency, transition tables must fit
within tens of kilobytes of storage (comparable to a core’s
L1 cache capacity). Storing transition tables in cacheable
memory, as in a software implementation, again leads to non-
deterministic access time.

Consuming multiple characters — A second challenge arises
in consuming input characters fast enough to match our design
target of 32GC/s. If only one character is processed per state
transition, then the automaton must process state transitions
at 32GHz. However, no feasible memory structure can be ran-
domly accessed to determine the next state at this rate. Instead,
the automaton must consume multiple characters in a single
transition. The automaton can be reformulated to consume the
input W characters at a time, resulting in an input alphabet size
of |↵|W . However, this larger alphabet size leads to intractable
hardware—storage requirements grow due to an increase in
the number of outgoing transitions per state on the order of
O(|↵|W · log2 |Q|). Moreover, the automaton must still accept
patterns that are arbitrarily aligned with respect to the window
of W bytes consumed in each transition. Accounting for these
alignments leads to |Q| = O(|S| · W ) states. Hence, storage
scales exponentially with W as O(|S|·W ·|↵|W ·log2(|S|·W )).

HAWK uses a representation of Aho-Corasick automata that
addresses the aforementioned challenges. In the next section,
we discuss the principle of HAWK’s operation, and detail the
corresponding hardware design.

IV. HAWK IN PRINCIPLE

We now describe our proposed system for scanning text at
rates that meet or exceed memory bandwidth.

A. Preliminaries
Recall that we propose a fixed scan rate system, meaning

that the amount of input processed each clock cycle is constant:
HAWK has no pipeline stalls or variable-time operations. Since
semiconductor manufacturing technology will limit our clock
frequency (we target a 1GHz clock), the only way to obtain
arbitrary scanning capacity with our design is to increase the
number of characters processed each clock cycle.

There are multiple possible deployment settings for our
architecture: integrating into existing server systems as an
on-chip accelerator (like integrated GPUs), or as a plug-in
replacement for a CPU chip, or “programmed” into reconfig-
urable logic in a CPU-FPGA hybrid [7]. The most appropriate

packaging depends on workload and manufacturing technology
details that are outside the scope of this paper.

An accelerator instance is a sub-system of on-chip compo-
nents that processes a compiled query on a single text stream.
It is possible to build a system comprising multiple accelerator
instances to scale processing capability; we explore this design
space. We define an accelerator instance’s width W as the
number of characters processed per cycle; an instance that
processes one character per cycle is called 1-wide, and an
instance that processes 32 characters per cycle is called 32-
wide. Thus, for a target scan rate of 32GB/s, and a 1GHz clock,
we could deploy either a single 32-wide accelerator instance, or
32 1-wide accelerator instances. When deploying HAWK, an
architect must decide how many accelerator instances should
be manufactured, and of what width.

A common technique in data management systems is data
sharding, in which the target data (in this case, the log text) is
split over many processing elements and processed in parallel.
Our architecture allows for data sharding—in which each
accelerator instance independently processes a separate shard
of the log text, sharing available memory bandwidth—but it is
not the primary contribution of our work. More interestingly,
our architecture enables automata sharding, in which the user’s
query is split over multiple accelerator instances processing
a single input text stream in lockstep. Automata sharding
enables HAWK to process queries of increasing complexity
(i.e., increasing numbers of distinct search patterns) despite
fixed hardware resources in each accelerator instance. HAWK
is designed to make automata sharding possible.

B. Key Idea
The key idea that enables HAWK to achieve wide, fixed-

rate scanning is our reformulation of the classic Aho-Corasick
automaton to process W characters per step with tractable
storage. As previously explained, simply increasing the input
alphabet to |↵|W rapidly leads to intractable automata. Instead,
we extend the concept of bit-split pattern matching automata
[29] to reduce total storage requirements and partition large
automata across multiple, small hardware units. Tan and Sher-
wood propose splitting a byte-based (|↵| = 2

8
= 256) Aho-

Corasick automaton into a vector of eight automata that each
process a single bit of the input character. Each state in the
original automaton thus corresponds to a vector of states in
the bit-split automata. Similarly, each bit-split state maps to a
set of patterns accepted in that state. When all eight automata
accept the same pattern, a match is emitted.

Bit-split automata conserve storage in three ways. First, the
number of transitions per state is drastically reduced to two,
making it trivial to store the transition matrix in a lookup
table. Second, reduced fan-out from each state and skew in
the input alphabet (ASCII text has little variation in high-order
bit positions) results in increased prefix overlap. Third, the
transition function of each automaton is distinct. Hence, the
automata can be partitioned in separate storage and state IDs
can be reused across automata, reducing the number of bits
required to distinguish states.

Our contribution is to extend the bit-split automata to
process W characters per step. Instead of the eight automata



Partial 
Match Vectors

Bit-split Pattern Matching
State Machines

Output Field 
Values

Input Stream
[W bytes per cycle]

Compiler

www.pbs.org/nature.html; 72
www.cbs.com/index.html; 31
www.nbc.com/news.html; 46
                 ...

Intermediate 
Match Vector

Field 0: 
     www.pbs.org/nature.html
Field 1: 
     72

1 ... 1
...

|S| x W bits

M
ai

n 
M

em
or

y

Pa
tte

rn
 A

ut
om

at
a

[W
 x

 8
 u

ni
ts

]

In
te

rm
ed

ia
te

 M
at

ch
 

   
 U

ni
t

00 ... 1

Fi
el

d 
Al

ig
nm

en
t 

   
 U

ni
t

Po
st

-p
ro

ce
ss

in
g

So
ftw

ar
e

Sec V-A

Se
c 

V-
B

Se
c 

V-
C

Se
c 

V-
D

|S| x W bits
W x 8

01 ... 1
10 ... 1

00 ... 1
...

Fig. 3: Block diagram of the accelerator architecture.

that would be used in the bit-split setting (one automaton per
bit in a byte), our formulation requires W ⇥ 8 automata to
process W characters per step. Increasing W introduces the
new challenge of addressing the alignment of patterns with
respect to the W -character window scanned at each step; we
cover this issue in detail in later sections. Extending the bit-
split approach to W > 1 results in exponential storage savings
relative to widening conventional byte-based automata. The
number of states in a single-bit machine is bounded in the
length of the longest search term L

max

. Since the automaton
is a binary tree, the total number of nodes cannot exceed
2

L

max

+1 � 1. The key observation we make is that the length
of the longest search pattern is divided by W , so each bit-split
automaton sees a pattern no longer than L

max

W

+ P , with P
being at most two characters added for alignment of the search
term in the W -character window. We find |Q| for a single bit
machine scales as O(2

[Lmax

W

+P+1]
) = O(1) in W . The storage

in the bit-split automata grows as O(|S| · W ) to overcome
the aforementioned alignment issue (reasons for this storage
increase will become clear in subsequent sections). With W⇥8

bit-split machines, the total storage scales as O(8 · |S| ·W 2
),

thereby effecting exponential storage savings compared to the
byte-based automaton.

C. Design Overview
We now describe HAWK in detail. Figure 3 shows a high-

level block diagram of a HAWK system. At query time, the
system compiles the user’s query and sends the compiled
query description to each accelerator instance. Each instance
then scans the in-memory text log as a stream, constantly
outputting matches that should be sent to higher-level software
components for further processing (say, to display on the
screen or to add to an aggregate computation).

The major components of our design are:
• A compiler that transforms the user’s query into a form

the hardware expects for query processing—a set of bit-
split pattern matching automata. These automata reflect
the predicates in the user’s query.

• Pattern automaton hardware units that maintain and ad-
vance the bit-split automata. At each cycle, each pattern
automaton unit consumes a single bit of in-memory text
input. Because each automaton consumes only one bit
at a time, it cannot tell by itself whether a pattern has
matched. After consuming a bit, each automaton emits
a partial match vector (PMV) representing the set of
patterns that might have matched, based on the bit and

the automaton’s current state. For an accelerator instance
of width W, there are W×8 pattern automaton units. For
a query of |S| patterns, the PMV requires |S|×W bits.

• The intermediate match hardware unit consumes PMVs
from the pattern automata processing each bit position to
determine their intersection. At each clock cycle, the in-
termediate match unit consumes W×8 PMVs, performing
a logical AND operation over the bit-vectors to produce a
single intermediate match vector (IMV) output. The IMV
is the same length as the PMVs: |S|×W.

• Finally, the field alignment unit determines the field
within which each match indicated by the IMV is located.
Pattern matching in all of the preceding steps takes place
without regard to delimiter locations, and therefore, of
fields and records in the input log file. This after-the-fact
mapping of match locations to fields, which is a novel
feature of our design, allows us to avoid testing on field
identity during pattern matching, and thereby avoids the
conditionals and branch behavior that would undermine
our fixed-rate scan design. If the field alignment unit finds
that the IMV indicates a match for a field number that the
user’s query requested, then it returns the resulting final
match vector (FMV) to the database software for post-
processing. To simplify our design, we cap the number
of fields allowed in any record to 32—a number sufficient
for most real-world log datasets.

Note that each accelerator instance supports searching for
128 distinct patterns. Therefore, a device that has 32 1-wide
accelerator instances can process up to 32×128 patterns, a
device with 16 2-wide instances can process up to 16×128
distinct patterns, and a device with a single 32-wide instance
can process up to 1×128 distinct patterns. By varying the
number of instances and their width, the designer can trade
off pattern constraints, per-stream processing rate, and, as we
shall see later, area and power requirements (see Section VI-C).

V. HAWK ARCHITECTURE

We now describe the four elements of HAWK highlighted
in Figure 3 in detail.

A. Compiler
HAWK first compiles the user’s query into pattern-matching

automata. Figure 4 conceptually depicts compilation for a 4-
wide accelerator. Algorithm 1 lists the compilation algorithm.
The compiler’s input is a query in the form described in



Algorithm 1 The multicharacter bit-split pattern matching
automata compilation algorithm.
Input: Query K and architecture width W

Output: Bit split automata set M .
1: S = shard( sort(

S
predicates(K) ) )

2: S’ = []
3: for each s 2 S do
4: for i = 1 to W do
5: S’.append(pad(s, i, W))
6: end for
7: end for
8:
9: Automata set M = {}

10: for each s 2 S

0 do
11: for i = 0 to len(s) do
12: for bit b 2 s[i] do
13: M[i MOD W].addNode(b)
14: end for
15: end for
16: end for
17:
18: for each m 2 M do
19: makeDFA(m)
20: for each q 2 M.states do
21: makePMV(q)
22: end for
23: end for

Padded Search Terms 
[|S| x W]

...

Sort search terms 
alphabetically
and create padded search 
terms

bit
byte
nibble

bit?
?bit
??bit???
???bit??
byte
?byte???
??byte??
???byte?
nibble?? 
?nibble?  
??nibble  
???nibble???        

Search Terms 
[S]

Bit-split State 
Machines [W x 8]

Create bit-split machines. 
Assign each bit in 
padded search terms to 
corresponding bit-split 
machine using Aho-
Corasick

Mach.  Wx8 - 1

0 1 1 0 1 1 1 0

0 1 1 ... 1 0
PMV [|S| x W bits]

Assign a PMV to each 
state in every bit-split 
machine. If state is 
accepting for a search 
term, set corresponding 
bit value to 1, else set to 0

Mach. 0

W=4; S=3

Fig. 4: Three-step compiler operation for a 4-wide acceler-
ator and three search terms (W=4, S=3).

Section II. After parsing the query, the compiler determines the
set of all patterns S, which is the union of the patterns sought
across all fields in the WHERE clause. S is sorted lexicograph-
ically and then sharded across accelerator instances (Line 1).
Sharding S lexicographically maximizes prefix sharing within
each bit-split automaton, reducing their sizes.

Next, the compiler must transform S to account for all
possible alignments of each pattern within the W -character
window processed each cycle. The compiler forms a new set
S0 wherein each pattern in S is padded on the front and back
with wildcard characters to a length that is a multiple of W ,
forming W patterns for all possible alignments with respect
to the W -character window (Lines 2-7). Figure 4 shows an

example of this padding for S={bit, byte, nibble} and W=4.
For a machine where W=1, there is just one possible pattern
alignment in the window; no padding is required.

The compiler then generates bit-split automata for the
padded search patterns in S0 according to the algorithm
proposed by Tan and Sherwood [29] (Lines 9-16). A total
of W×8 such automata are generated, one per input stream
bit processed each cycle. Since each state in these automata
has only two outgoing edges, the transition matrix is easy
to represent in hardware. Automata are encoded as transition
tables indexed by the state number. Each entry is a 3-tuple
comprising the next state for input bits of zero and one and
the PMV for the state. Each state’s PMV represents the set of
padded patterns in S0 that are accepted by that automaton in
that state. The compiler assigns each alignment of each pattern
a distinct bit position in the PMV (Line 21). It is important
to note that the hardware does not store S0 directly. Rather,
patterns are represented solely as bits in the PMV.

Accelerator Width (W) 1 2 4 8 16 32
Per Bit-split Machine Storage (KB) 74.8 69.6 33.5 16.5 16.4 32.8

Total Storage (MB) 0.6 1.11 1.07 1.06 2.1 8.4

TABLE II: Provisioned storage.

B. Pattern Automata
The pattern automata (first panel of Figure 5) each process

a single bit-split automaton. Each cycle, they each consume
one bit from the input stream, determine the next state,
and output one PMV indicating possible matches at that bit
position. Consider the pattern automaton responsible for bit 0
of the W×8-bit input stream (from Figure 5). In cycle 0, the
automaton’s current state is 0. The combination of the current
state and the incoming bit value indicates a lookup table entry;
in this case, the incoming bit value is 0, so the lookup table
indicates a next state of 1. The pattern automaton advances
to this state and emits its associated PMV to the intermediate
match unit for processing in the next cycle.

The transition table and PMV associated with each state are
held in dedicated on-chip storage. We use dedicated storage
to ensure each pattern automaton can determine its next state
and output PMV at a 1GHz frequency. (Accesses may be
pipelined over several clock cycles, but, our implementation
requires only a single cycle at 1GHz). We determine storage
requirements for pattern automata empirically. We select 128
search terms at random from an English dictionary and observe
the number of states generated per automaton. We then round
the maximum number of states required by any automaton
to the next power of 2, and provision this storage for all au-
tomata. (Note that if the query workload were to systematically
include longer strings, such as e-commerce URLs, then storage
requirements would be correspondingly higher.)

Table II shows the per-automaton and total storage alloca-
tion for a range of accelerator widths. Importantly, the storage
per pattern automaton is comparable to a first-level data cache
of a conventional CPU, which must support a similar access
frequency. We observe a few interesting trends. First, the per-
automaton-storage is minimal for W=8 and W=16. Whereas
the number of patterns grows with W (a consequence of our



Pattern Automata

bit0 = 0

Input 
Stream

bitW*8-1

curState  = 0

...

curState=0
curState=1
curState=2
curState=3

00...1...01...0 
10...1...10...1
01...0...11...0

5 2
6 4
6 4

1 3 11...1...01...1

...

Intermediate Match Unit

...

...

Field Alignment Unit

Delimiter Detector

char0 ∈ field0
...

char4 ∈ field1
...

charW-1 ∈ field1

IMV

...

...
charW-1 
demux

FMV for field0

Next 
state

bit0 = 0

Next 
state

bit0 = 1
Output PMV
[S*W bits]

PMV0 = 
11...1...01...1

[W*8]

PMVW*8-1

Cycle 0

PMV0

PMVW*8-1

IMV

Cycle 1

Cycle 2

PMVs output 
based on current 
state and input bit

IMV = PMV0 & 
PMV1 & ... &                            
PMVW*8-1

Values mapped 
to fields.

E.g., char0 maps 
to FMV for field0

...

...

...

FMV for field1

FMV for field31

char0 
demux

...1 01 ... ...1 11

...1 00 ... ...0 10

...1 11 ... ...1 10

...1 00 ... ...0 10

... ...

...1 00 ... ...0 10

Patterns ending
at char0

Patterns ending
at charW-1

...1 00 ... ...0 00

...0 00 ... ...0 10

...0 00 ... ...0 00

Fig. 5: Operation of the major string matching subunits.

padding scheme), the number of states in each automaton
shrinks due to an effective reduction in pattern length (a con-
sequence of processing multiple characters simultaneously).
Simultaneously, as the number of patterns grows, the PMV
width increases. The reduction in states dominates the larger
PMV widths until W=16, after which the impact of increased
PMV widths starts to dominate. Note that we conservatively
provision the same storage for all automata, despite the fact
that ASCII is highly skewed and results in far more prefix
sharing in high-order bit positions. This decision allows HAWK
to support non-ASCII representations and ensures symmetry
in the hardware, which facilitates layout.

C. Intermediate Match Unit
The intermediate match unit (middle panel of Figure 5)

calculates the intersection of the PMVs. A pattern is present
at a particular location in the input stream only if it is reported
in the PMVs of all pattern automata. The intermediate match
unit is a wide and deep network of AND gates that computes
the conjunction of the W×8 |S| ⇥ W -bit PMVs. The result
of this operation is a |S| ⇥ W -bit wide intermediate match
vector (IMV). As with the pattern automata, the intermediate
match unit’s execution can be pipelined over an arbitrary
number of clock cycles without impacting the throughput of

the accelerator, but our 32-wide ASIC implementation requires
only a single cycle. In our FPGA prototype, we integrate the
pattern automata and intermediate match unit and pipeline
them over 32 cycles; this simplifies delay balancing across
pipeline stages. Figure 5 shows that the PMVs generated by
the pattern automata in cycle 0 are visible to the intermediate
match unit in cycle 1. The intermediate match unit performs
a bitwise AND operation on all W×8 |S| ⇥ W -bit PMVs
and yields an IMV. In our example, the second and last
bits of all PMVs are set, indicating that the padded patterns
corresponding to these entries have been matched by all bit-
split automata (i.e., true matches). The intermediate match unit,
therefore, outputs an IMV with these bits set.

D. Field Alignment Unit
HAWK’s operation so far has ignored the locations of

matches between the log text and the user’s query; it can
detect a match, but cannot tell whether the match is in
the correct field. The field alignment unit (bottom panel of
Figure 5) reconstructs the association between pattern matches
and fields. The output of the field alignment unit is an array
of field match vectors (FMVs), one per field. Each FMV has
a bit per padded pattern that allows the determination of the
exact location of the matching pattern within the input stream;
i.e., bit i in FMV j indicates whether pattern i matches field
j and the pattern’s location within the input stream.

The field alignment unit receives two inputs. The first input
is the |S| ⇥ W -bit IMV output from the intermediate match
unit. This vector represents the patterns identified as true
matches. The second input comes from a specialized delim-
iter detector that is preloaded with user-specified delimiter
characters. (The hardware design for the delimiter detector is
straightforward and is not detailed here for brevity. It is essen-
tially a simple single-character version of pattern matching.)
Each cycle, the delimiter detector emits a field ID for every
character in the W -character window corresponding to the
current IMV (overall, W field IDs). Search patterns that end
at a particular character location belong to the field indicated
by the delimiter detector. Recall that bit positions in the PMVs
(and hence, the IMV) identify the end-location of each padded
search pattern within the current W -character window (see
Section V-A). Thus for every end-location, the field alignment
unit maps corresponding IMV bits to the correct field ID, and
the respective FMV. The operation of the field alignment unit
is a demultiplexing operation (see Figure 5).

In cycle 2, the field alignment unit evaluates the window pre-
viously processed by the pattern automata and the intermediate
match unit. In our example, the IMV’s second and last bits are
set; i.e., the patterns ending at character0 and character

W � 1

have matched in some fields. The delimiter detector indicates
that character0 is in field0, and character

W � 1 is in field1. Thus,
the patterns ending at character0 are mapped to the FMV for
field0, and the patterns ending at character

W � 1 are mapped
to the FMV for field1. The mapped FMVs are subsequently
sent to the post-processing software.

The field alignment unit hardware entails 32 AND op-
erations for each bit of the IMV. Compared to the pattern
matching automata, area and power overheads are minor.



VI. EXPERIMENTAL RESULTS

Processor Dual socket Intel E5630
16 threads @ 2.53 GHz

Caches 256 KB L1, 1 MB L2, 12 MB L3
Memory Capacity 128 GB

Memory Type Dual-channel DDR3-800
Max. Mem. Bandwidth 12.8 GB/s

TABLE III: Server specifications.
We utilize three evaluation metrics for HAWK. The most

straightforward is query processing performance when com-
pared to conventional solutions on a modern server. The other
metrics are HAWK’s area and power requirements, constraints
extremely important to chip designers. We will show that when
given hardware resources that are a fraction of those used by
a Xeon chip, an ASIC HAWK can reach its goal of 32GC/s
and can comfortably beat conventional query processing times,
sometimes by multiple orders of magnitude. Furthermore, we
validate the HAWK design through proof-of-concept imple-
mentation in an FPGA prototype with scaled down frequency
and width and demonstrate that even this drastically down-
scaled design still can outperform software.

A. Experimental Setup
We compare HAWK’s performance against four traditional

text querying tools: awk, grep, MonetDB [17], and Lucene
[18]. We run all conventional software on a Xeon-class server
(see Table III). We preload datasets into memory, running an
initial throwaway experiment to ensure data is hot. We repeat
all experiments five times and report average performance.

We implement a HAWK ASIC in the Verilog hardware
description language. Fabricating an actual ASIC is beyond
the scope of a single paper; instead, we estimate performance,
area, and power of the ASIC design using Synopsys’ Design-
Ware IP suite [28], which includes tools that give timing, area,
and power estimates. (Synthesis estimates of area and power
are part of conventional hardware design practice). Synthesiz-
ing an ASIC design entails choosing a target manufacturing
technology for the device. We target a commercial 45nm
manufacturing technology with a nominal operating voltage of
0.72V, and design for a clock frequency of 1GHz. The details
are less important than the observation that this technology
is somewhat out of date; it is two generations behind the
manufacturing technology used in the state-of-the-art Xeon
chip for our conventional software performance measurements.
However, the 45nm technology is the newest ASIC process to
which we have access. Since power and area scale with the
manufacturing technology, we compare HAWK’s power and
area against a prior-generation Intel processor manufactured
at the same 45nm technology node as HAWK2.

The FPGA HAWK prototype is tested on an Altera Arria
V development platform. Due to FPGA resource constraints,
we build a single 4-wide HAWK accelerator instance. We use
the block RAMs available on the FPGA to store the state
transition tables and PMVs of the pattern matching automata.

2We measure software performance on the more recent Xeon E5630 chip
listed in Table III; the 45nm Xeon W5590 is used only for area and power
comparisons.

In the aggregate, the automata use roughly half of these RAMs;
there are insufficient RAMs for an 8-wide accelerator instance.
Because of global wiring required to operate the distributed
RAMs, we restrict clock frequency to 100MHz. Thus, the
prototype achieves a scan rate of 400MB/s. Because of limited
memory capacity and overheads in accessing off-chip memory
on our FPGA platform, we instead generate synthetic log
files directly on the FPGA. Our log generator produces a
random byte-stream (via a linear feedback shift register) and
periodically inserts a randomly selected search term from a
lookup table3. We validate that the accelerator correctly locates
all matches.

The HAWK compiler is written in C. Relative to query
execution time, compilation time is negligible. Since the pri-
mary focus of this paper is on string pattern matching, our
compiler software does not currently handle numeric fields
automatically; we compile numeric queries by hand.

Our evaluation considers three example use cases for HAWK
that stress various aspects of its functionality. In each case, we
compare to the relevant software alternatives.

1) Single Pattern Search: We first consider the simplest
possible task: a scan through the input text for a single, fixed
string. We generate a synthetic 64GB dataset comprising 100-
byte lines using the text log synthesis method described by
Pavlo [23]. We formulate the synthetic data to include target
strings that match a notional user query with selectivities of
10%, 1%, 0.1%, 0.01%, and 0.001%. We time the queries
needed to search for each of these strings and report matching
lines. We compare HAWK against a relational column-store
database (MonetDB) and the UNIX grep tool. For MonetDB,
we load the data into the database prior to query execution.

2) Multiple Pattern Search: Next, we consider a semijoin-
like task, wherein HAWK searches for multiple patterns in a
real-world dataset, namely, the Wikipedia data dump (49 GB).
We select patterns at random from an English dictionary; we
vary their number from one to 128. We compare against an
inverted text index query processor (Lucene) and grep. For
Lucene, we create the inverted index prior to query execution;
indexing time is not included in the performance comparison.
Lucene and grep handle certain small tokenization issues
differently; to ensure they yield identical search results, we
make some small formatting changes to the input Wikipedia
text. We execute grep with the -Fw option, which optimizes
its execution for patterns that contain no wildcards.

3) Complex Predicates: Finally, we consider queries on a
webserver-like log of the form <Source IP, Destination URL,
Date, Ad Revenue, User Agent, Country, Language, Search
Word, Duration>. This dataset is also based on a format
proposed by Pavlo [23]. A complex query has selection criteria
for multiple columns in the log. It takes the following form4:
SELECT COUNT(*) FROM dataset WHERE (
(Date in specified range)
AND (Ad Revenue within range)
AND (User Agent LIKE value2 OR ...)

3We pursue this methodology since HAWK’s performance is independent
of the characteristics of both the input stream and search patterns.

4We use COUNT so MonetDB does not incur extra overhead in returning
concrete result tuples, but rather incurs only trivial aggregation costs.



Fig. 6: Query performance for the single pattern search
task on synthetic data, across varying selectivities.

AND (Country LIKE value4 OR Country LIKE ...)
AND (Language LIKE value6 OR Language LIKE ...)
AND (Search Word LIKE value8 ...)
AND (Duration within range)).

We tune the various query parameters to achieve selectivities
of 10%, 1%, 0.1%, 0.01%, and 0.001%. We compare against
equivalent queries executed with the relational column-store
(MonetDB) and the UNIX tool awk.

B. Performance
We contrast the performance of HAWK to various software

tools in GC/s. By design, the HAWK ASIC always achieves
a performance of 32GC/s (0.4GC/s for the FPGA); due to
conscious design choices, there is no sensitivity to query
selectivity or the number of patterns with HAWK, provided
the query fits within the available automaton state and PMV
capacity. In contrast, software tools show sensitivity to both
these parameters, so we vary them in our experiments.

1) Single Pattern Search: Figure 6 compares HAWK’s sin-
gle pattern search performance against MonetDB and grep.
HAWK’s constant 32GC/s performance is over an order of
magnitude better than either software tool, and neither comes
close to saturating memory bandwidth. MonetDB’s perfor-
mance suffers somewhat when selectivity is high (above 1%),
but neither grep nor MonetDB exhibit much sensitivity at lower
selectivities.

Fig. 7: Query performance on real-world text data, for vary-
ing numbers of search patterns.

2) Multiple Pattern Search: Figure 7 compares HAWK
against Lucene and grep when searching for multiple

Fig. 8: Query performance for complex predicates task,
across varying selectivities.

randomly-chosen words in the Wikipedia dataset. For Lucene,
we explore query formulations that search for multiple patterns
in a single query or execute separate queries in parallel and
report the best result.

Grep’s performance is poor: its already poor performance
for single-pattern search (1GC/s) drops precipitously as the
number of patterns increases, to as little as 20 megacharacters/s
in the 128-word case. Unsurprisingly, because it uses an index
and does not actually scan the input text, Lucene provides the
highest performance. We report its performance by dividing
query execution time by the size of the data set to obtain an
equivalent GC/s scan rate. Note that this equivalent scan rate
exceeds available memory bandwidth in many cases (i.e., no
scan-based approach can reach this performance).

Remarkably, however, our results show that, when the
number of patterns is large, a HAWK ASIC is competitive
with Lucene even though HAWK does not have access to a
precomputed inverted index. In the 128-pattern case, Lucene’s
performance of 30.4GC/s falls short of the 32GC/s perfor-
mance of HAWK. At best, Lucene outperforms HAWK by a
factor of two for this data set size (its advantage may grow for
larger data sets, since HAWK’s runtime is linear in the dataset
size). Of course, these measurements do not include the 30
minutes of pre-query processing time that Lucene requires to
build the index. Our result demonstrates that scan-based query
execution can be performance-competitive with pre-computed
indexes for RAM-resident text corpora.

3) Complex Predicates: Figure 8 compares HAWK, Mon-
etDB, and awk on the complex queries described in Sec-
tion VI-A3. MonetDB performance spans a 45× range as
selectivity changes from 10% to 0.001%. When selectivity is
low, MonetDB can order the evaluation of query predicates to
rapidly rule out tuples, avoiding the need to access most data.
For 0.001% selectivity, it outperforms HAWK by 3×. However,
for queries that admit more tuples (i.e., where MonetDB must
more frequently examine large text fields), HAWK provides
superior performance, with more than 10× advantage at 10%
selectivity. The performance of awk is not competitive.

C. ASIC Area and Power
We report a breakdown of an ASIC HAWK instance’s per-

sub-component area and power estimates for two extreme



(a) Single-Unit (b) Multi-Unit, 32GC/s

Fig. 9: Area requirements for various accelerator widths
and configurations (compared to a Xeon W5590 chip)

(a) Single Unit (b) Multi-Unit 32GC/s

Fig. 10: Power requirements for various accelerator widths
and configurations (compared to a Xeon W5590 chip).

design points, 1-wide and 32-wide, in Table IV. For both
designs, the pattern automata account for the vast majority
of area and power consumption. Pattern automata area and
power are dominated by the large storage structures required
for the state transition matrix and PMVs. We can see here the
impact that state machine size has on the implementation. Even
with the drastic savings afforded by the bit-split technique,
the automata storage requirements are still large; without the
technique, they would render the accelerator impractical.

1-wide 32-wide
Unit Area (mm2) Power (mW) Area (mm2) Power (mW)

Pattern Automata 5.7 2602 86 44,563
Intermediate Match Unit < 0.1 < 1 < 1 35

Field Alignment Unit < 1 14 1 448
Delimiter Detector 1.1 < 1 < 1 < 1

Numeric Units < 0.1 1 < 1 39
Other Control Logic 0.2 26 1 146

Total 7.1 2644 89 45,231

TABLE IV: Component area and power needs for 1-wide
and 32-wide configurations.

Figures 9 and 10 compare the area and power requirements
of ASIC HAWK to an Intel Xeon W5590 chip [3], a chip in the
same generation manufacturing technology as our synthesized
design (45nm). We find that a 1-wide HAWK instance requires
only 3% of the area and 2% of the power of the Xeon chip.
A 32-wide HAWK requires 42% of the area and 35% of the
power of the Xeon processor. Although these values are high,
they would improve when using more modern manufacturing
technology; a 32-wide HAWK instance might occupy roughly
one-sixth the area of a modern server-class chip.

Figures 9 and 10 also reveal an interesting trend. The 8-
wide (4×8) and 16-wide (2×16) HAWK configurations utilize
resources more efficiently (better performance per area or
watt) than other configurations. This saddle point arises due

to two opposing trends. Initially, as width W increases from
1, the maximum padded pattern length (L

max

) per bit-split
automaton decreases rapidly. Since each bit-split automaton
is a binary tree, lower L

max

yields a shallower tree (i.e.,
fewer states) with more prefix sharing across patterns. Overall,
the reduced number of states translates into reduced storage
costs. However, as W continues to grow, L

max

saturates
at a minimum while the set of padded patterns, S0, grows
proportionally to |S|⇥W . Each pattern requires a distinct bit
in the PMV, which increases the storage cost per state. Above
W = 16, the increased area and power requirements of the
wide match vectors outweigh the savings from reduced L

max

,
and total resource requirements increase.

Overall, the 8-wide and 16-wide configurations strike the
best balance between these opposing phenomena. It is more
efficient to replace one 32-wide accelerator with four 8-wide
accelerators or two 16-wide accelerators. The 4×8 configura-
tion, which exhibits the lowest area and power costs, requires
approximately 0.5× area and 0.48× power compared to the
32-wide accelerator, while maintaining the same performance.
Compared to the W5590, the 4×8 configuration requires 0.21×
the area and 0.17× the power. Four 8-wide accelerator in-
stances (4×8) provide the best performance-efficiency tradeoff.

D. FPGA Prototype
We validate the HAWK hardware design through our FPGA

prototype. As previously noted, the prototype is restricted
to 4-wide accelerator instance operating at a 100MHz clock
frequency, providing a fixed scan rate of 400MB/s. As with
the ASIC design, the storage requirements of pattern automata
dominate resource requirements on the FPGA. We program the
accelerator instance to search for the same 64 search terms as
in the multiple pattern search task described in Section VI-A2.
Although it is 80× slower than our ASIC design, the FPGA
prototype nevertheless remains faster than grep for this search
task by 13×, as grep slows drastically when searching for
multiple patterns. Whereas grep achieves nearly a 1GB/s scan
rate for a single pattern, it slows to 30MB/s when searching
for 64 terms. (Note that this is still faster than searching for
the terms sequentially in multiple passes, but only by a small
factor). With better provisioning of on-chip block RAMs, both
the width and clock frequency of the FPGA prototype could be
improved, increasing its advantage over scanning in software.

VII. RELATED WORK

There are several areas of work relevant to HAWK.

String Matching — Multiple hardware-based designs have
been proposed to accomplish multicharacter Aho-Corasick
processing. Chen and Wang [9] propose a multicharacter tran-
sition Aho-Corasick string matching architecture using non-
deterministic finite automata (NFA). Pao and co-authors [22]
propose a memory-efficient pipelined implementation of the
Aho-Corasick algorithm. However, neither work aims to meet
or exceed available memory bandwidth. Some elements of our
approach have been used in the past. Hua et al. [12] present
a string matching algorithm that operates on variable-stride



blocks instead of single bytes; their work is inspired in part
by how humans read text as patterns. van Lunteren et al. [16]
use transition rules stored using balanced routing tables; this
technique provides a fast hash lookup to determine next states.
Bremler-Barr and co-authors [6] encode states such that all
transitions to a specific state are represented by a single prefix
that defines a set of current states. However, we are unaware
of previous work that uses our approach of combining bit-split
automata with multiple-character-width processing.

Processing Logs — Processing text logs is an important
workload that has dedicated commercial data tools and is
a common use case for distributed data platforms such as
Hadoop and Spark. In-memory data management systems have
also become quite popular [17], [25], [27], [34].

Databases and FPGAs — A large amount of research has
focused on using FPGAs to improve database and text pro-
cessing. Mueller et al. explore general query compilation and
processing with FPGAs [20]. Teubner et al. propose skeleton
automata for avoiding expensive FPGA compilation costs [31].
The project with goals most similar to our own is probably
that of Woods et al. [32], who examine the use of FPGAs
for detecting network events at gigabit speeds. Although this
project also focuses on the problem of string matching, it has
a lower performance target, does not have our fixed-processing
rate design goal, and is technically distinct. IBM Netezza [13]
is the best-known commercial project in this area.

VIII. CONCLUSION

High-velocity text log data have undergone explosive growth
in recent years. Rapid improvement in RAM cost and ca-
pacity now make it feasible for large text corpora to reside
entirely in memory, opening the possibility of scan-based query
processing that is performance-competitive with pre-computed
indexes. Conventional software scan mechanisms cannot fully
exploit available memory bandwidth. We show that our HAWK
accelerator can process data at a constant rate of 32GB/s,
outperforming state-of-the-art solutions for text processing.

REFERENCES

[1] Deloitte University Press: In-Memory Revolution.
http://dupress.com/articles/2014-tech-trends-in-memory-revolution/.

[2] Intel: A Revolutionary Breakthrough in Memory Technology.
http://www.intel.com/newsroom/kits/nvm/3dxpoint.

[3] Intel W5590 Specifications. http://ark.intel.com/products/41643.
[4] A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to

Bibliographic Search. Commun. ACM, 18(6), June 1975.
[5] S. Borkar and A. A. Chien. The Future of Microprocessors. Commu-

nications of the ACM, 54(5):67–77, May 2011.
[6] A. Bremler-Barr, D. Hay, and Y. Koral. CompactDFA: Generic State

Machine Compression for Scalable Pattern Matching. INFOCOM, 2010.
[7] D. Bryant. Disrupting the Data Center to Create the Digital Services

Economy. Intel Corporation, 2014.
[8] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin.

Earlybird: Real-Time Search at Twitter. In ICDE, 2012.
[9] C.-C. Chen and S.-D. Wang. An Efficient Multicharacter Transition

String-matching Engine Based on the Aho-corasick Algorithm. ACM
Transactions on Architecture and Code Optimization, 2013.

[10] N. Doshi. Using File Contents as Input for Search. Splunk Blogs, 2009.
[11] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and

D. Burger. Dark Silicon and the End of Multicore Scaling. In Intl.
Symp. on Computer Architecture, 2011.

[12] N. Hua, H. Song, and T. Lakshman. Variable-Stride Multi-Pattern
Matching For Scalable Deep Packet Inspection. In INFOCOM, 2009.

[13] IBM Corporation. IBM PureData System for Analytics Architecture: A
Platform for High Performance Data Warehousing and Analytics. 2010.

[14] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan. Meet the Walkers: Accelerating Index Traversals for In-
memory Databases. In Intl. Symp. on Microarchitecture, 2013.

[15] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi,
and C. Bear. The Vertica Analytic Database: C-store 7 Years Later.
Proc. VLDB Endow., 2012.

[16] J. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and K. Atasu.
Designing a Programmable Wire-Speed Regular-Expression Matching
Accelerator. In Intl. Symp. on Microarchitecture, 2012.

[17] S. Manegold, M. L. Kersten, and P. Boncz. Database Architecture Evo-
lution: Mammals Flourished Long Before Dinosaurs Became Extinct.
PVLDB, 2009.

[18] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in Action.
Manning Publications, 2010.

[19] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets.
In PVLDB, 2010.

[20] R. Müller, J. Teubner, and G. Alonso. Data Processing on FPGAs.
PVLDB, 2(1), 2009.

[21] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
Stream Computing Platform. In ICDM Workshops, 2010.

[22] D. Pao, W. Lin, and B. Liu. A Memory-Efficient Pipelined Im-
plementation of the Aho-Corasick String-Matching Algorithm. ACM
Transactions on Architecture and Code Optimization, 2010.

[23] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A Comparison of Approaches to Large-scale Data
Analysis. In ACM SIGMOD, 2009.

[24] M. E. Richard L. Villars, Carl W. Olofson. Big Data: What It Is and
Why You Should Care. IDC, 2011.

[25] V. Sikka, F. Färber, A. K. Goel, and W. Lehner. SAP HANA: The
Evolution from a Modern Main-Memory Data Platform to an Enterprise
Application Platform. PVLDB, 6(11), 2013.

[26] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 Requirements of
Real-time Stream Processing. ACM SIGMOD Record, 2005.

[27] M. Stonebraker and A. Weisberg. The VoltDB Main Memory DBMS.
In TCDE, 2013.

[28] Synopsys. DesignWare Building Blocks. 2011.
[29] L. Tan and T. Sherwood. A High Throughput String Matching

Architecture for Intrusion Detection and Prevention. In Intl. Symp. on
Computer Architecture, 2005.

[30] M. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen of
the Coming Dark Silicon Apocalypse. DAC, 2012.

[31] J. Teubner, L. Woods, and C. Nie. Skeleton Automata for FPGAs:
Reconfiguring without Reconstructing. In ACM SIGMOD, 2012.

[32] L. Woods, J. Teubner, and G. Alonso. Complex Event Detection at
Wire Speed with FPGAs. PVLDB, 2010.

[33] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100:
The Architecture and Design of a Database Processing Unit. ASPLOS,
2014.

[34] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing. In NSDI,
2012.

[35] X. Zha and S. Sahni. GPU-to-GPU and Host-to-Host Multipattern
String Matching on a GPU. Computers, IEEE Transactions on, 2013.


