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ABSTRACT
Nowcasting is the practice of using social media data to
quantify ongoing real-world phenomena. It has been used by
researchers to measure flu activity, unemployment behavior,
and more. However, the typical nowcasting workflow requires
either slow and tedious manual searching of relevant social
media messages or automated statistical approaches that are
prone to spurious and low-quality results.

In this paper, we propose a method for declaratively spec-
ifying a nowcasting model; this method involves processing
a user query over a very large social media database, which
can take hours. Due to the human-in-the-loop nature of con-
structing nowcasting models, slow runtimes place an extreme
burden on the user. Thus we also propose a novel set of query
optimization techniques, which allow users to quickly con-
struct nowcasting models over very large datasets. Further,
we propose a novel query quality alarm that helps users esti-
mate phenomena even when historical ground truth data is
not available. These contributions allow us to build a declar-
ative nowcasting data management system, RaccoonDB,
which yields high-quality results in interactive time.

We evaluate RaccoonDB using 40 billion tweets collected
over five years. We show that our automated system saves
work over traditional manual approaches while improving
result quality—57% more accurate in our user study—and
that its query optimizations yield a 424x speedup, allowing it
to process queries 123x faster than a 300-core Spark cluster,
using only 10% of the computational resources.

1. INTRODUCTION
The past several years have seen a growing interest in

social media nowcasting, which is the process of using trends
extracted from social media to generate a time-varying sig-
nal that accurately describes and quantifies a real-world
phenomenon. For example, the frequency of tweets mention-
ing unemployment-related topics can be used to generate
a weekly signal that closely mirrors the US government’s
unemployment insurance claims data [10]. Researchers have
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applied nowcasting to flu activity [17], mortgage refinanc-
ings [12], and more [13,14,34,37].

Although nowcasting has had more research attention
than wide adoption, it has the potential for massive impact.
Building datasets with nowcasting is likely to be faster and
less expensive than traditional surveying methods. This can
be a great benefit to many fields—economics, public health,
and others—that to a computer scientist appear starved
for data. For example, US government economists use a
relatively small number of expensive conventional economic
datasets to make decisions that impact trillions of dollars
of annual economic activity. Even a tiny improvement in
policymaking—enabled by nowcasting datasets—could mean
the addition of billions of dollars to the economy.

Nowcasting research to date has been driven by research
into particular target phenomena; the software has been ad
hoc rather than general-purpose. Yet, the literature [12–14,
34, 37] and our first-hand experience [10, 11] suggests that
building a nowcasting model entails a standard database
interaction model, the human-in-the-loop workflow:

1. Select: The user selects one or more topics about the
phenomenon derived from social media messages. A topic
consists of a descriptive label (e.g., “job loss”) and a time-
varying signal (e.g., daily frequency of tweets about job loss).

2. Aggregate: Using an aggregate function (e.g., averaging),
the user combines the selected topics into a single nowcasting
result. The result consists of a set of topic labels (e.g., job
loss and searching for jobs) and a single time-varying signal.

3. Evaluate: The user evaluates the nowcasting result. A
good result contains relevant topic labels (e.g., they are about
unemployment) and a high-quality signal (e.g., it closely
tracks real-world unemployment).

The nowcasting user repeats the above loop until reaching
success in Step 3 or giving up. Unfortunately, the user has
the difficult task in Step 1 of trying to select topics that will
optimize two potentially competing criteria. As a result, the
traditional approach to nowcasting topic selection—hand-
choosing topics with seemingly relevant descriptive labels—is
tedious and error-prone. For example, in one of our user stud-
ies, participants employing this manual approach achieved
35% lower quality results than our automated solution and
exerted much more effort in doing so (see Manual in Sec-
tion 6.3). We illustrate this with the following example:

Example 1. Imagine a government economist, Janet, who
wants to use social media to estimate the target phenomenon
of unemployment behavior. She transforms a database of so-
cial media messages into a database of social media topics.
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She then selects all topics that contain the word “fired.” She
uses historical ground truth data to train a statistical model
that aggregates the topics’ signals into a nowcasting result.
When evaluating, Janet finds the output signal poorly tracks
unemployment. She also notes that many “fired” topics actu-
ally reflect news about war-torn countries in which missiles
were “fired.” She chooses different topics about “benefits,”
but the new result also tracks unemployment poorly; she sees
that the messages describe “unemployment benefits” as well
as the film, “Friends With Benefits.” This loop continues
dozens of times until she obtains a satisfactory result.

A nowcasting software system might follow the näıve strat-
egy of ranking all possible topic candidates by both signal
and label relevance to Janet’s target phenomenon. Such a
system would still be burdensome to use. Consider:

Example 2. Janet visits the hypothetical nowcasting sys-
tem, enters a query for “unemployment” and provides histor-
ical data for the US monthly unemployment rate. The system
scores and ranks all topics by correlation with the ground
truth signal and their labels’ semantic relevance to “unem-
ployment.” The system then selects the top-scoring topics
and aggregates them together into a nowcasting result. Janet
has successfully avoided much of the manual trial-and-error
process in Example 1, but due to the massive number of
candidates, the new system takes a considerable amount of
time—anywhere from fifteen minutes to several hours1—to
compute results. After evaluating the result, she finds that
many of the topics’ social media messages do not reflect on-
the-ground observations, but rather discuss the government’s
monthly data announcement. She modifies her query to use a
weekly unemployment dataset instead of the monthly one and
waits again for an extended time to find she has been only
partially successful in avoiding the monthly unemployment
announcement. She changes her text query from “unemploy-
ment” to “job loss, hired, benefits,” waits yet again for an
extended period, and finally obtains a good result.

System Requirements — While using the feature selec-
tion system in Example 2 has allowed Janet to avoid many of
the tedious iterations of Example 1’s ad hoc nowcaster, some
amount of iterating is unavoidable. Even with high-quality
automatic feature selection, Janet will inevitably want to
tweak the nowcaster to use different historical data or avoid
certain social media topics, but these tweaks are now in-
credibly painful, as she waits for standard feature selection
techniques to complete. In contrast, an ideal nowcasting
system would combine high-quality feature selection with
interactive-speed runtimes, so Janet can quickly make a small
number of effective revisions. (Our target usage model is that
of web search, where users can iteratively improve queries
very rapidly, so even fifteen minutes can seem like an eternity
when having to repeatedly refine ineffective queries.)

In this paper, we propose a framework for a declarative
nowcasting data management system. The user expresses
a desired target phenomenon, and in interactive time, the
system automatically selects social media topics to satisfy
the competing statistical and semantic relevance criteria. The
user can now enjoy the benefits of automatic feature selection
(fewer iterations) with the advantages of fast execution (quick
iterations when strictly necessary). We are unaware of any
existing data systems that can do this. Our initial prototype
of this framework is called RaccoonDB.
1As seen with our baseline systems in Section 6.2.

Technical Challenge — Our automated method for pre-
dicting phenomena can be viewed as a form of multi-criteria
feature selection from the set of all distinct social media
topics—a truly massive set (e.g., we have 150 million topics
in our experiments). Previous work in feature selection [40]
has integrated selection with model construction, but ex-
isting approaches require several seconds to process a few
hundred features—too slow for our intended application. An-
other area of related work is multi-criteria ranking [16,21],
but existing systems assume candidate scores are already
provided or inexpensive to compute; in contrast, obtaining
our scores is costly. Processing nowcasting queries requires
a different approach that can choose the best topics from
hundreds of millions of candidates in interactive time.

Our Approach — We expand upon the work of feature
selection and multi-criteria ranking to handle the scale and
speed required by nowcasting. We apply candidate prun-
ing methods that exploit both signal and semantic informa-
tion, along with several low-level optimizations, to achieve
interactive-speed query processing. We also employ query ex-
pansion principles to find relevant results that user queries do
not explicitly declare. Additionally, user query log statistics
help identify when a query cannot be answered effectively.

Contributions — Our contributions are as follows:

• We define a novel query model for declaratively specify-
ing a nowcasting model, which allows users to estimate
real-world phenomena with little effort (Section 2).

• We propose a novel framework for generating nowcasting
results that uses both semantic and signal information
from social media topics to generate high-quality now-
casting results (Section 3).

• We describe a novel set of query optimizations that
enable query processing in interactive time (Section 4).

• We propose a novel method for detecting low-quality
nowcasting queries—even for targets lacking historical
ground truth data—alerting users when results may be
unreliable (Section 5).

• We built a prototype system, RaccoonDB, and evalu-
ated it using 40 billion tweets collected over five years.
We show that it is 57% more accurate than manual ap-
proaches in our user study and that its optimizations
yield a 424x speedup. Compared to a 300-core Spark
cluster, it processes queries on average 123x faster using
only 10% of the computational resources (Section 6).

We note that this paper builds upon our past nowcasting
work. Our early work in economics [10] was successful at
nowcasting US unemployment behavior, but building that
nowcasting model entailed the tedious process of manual
searching. In later computer science work [11], we showed
the potential of using topic label semantics to select rele-
vant topics for nowcasting; however, that system had two
crucial flaws: it did not use any signal information to find
relevant topics—excluding an important dimension for deter-
mining topic relevancy—and it took hours to process a single
query. In contrast, this paper’s contributions enable finding
more relevant topics and generating higher-quality results,
all within interactive runtimes. In a short demonstration
paper [9], we described the user interaction of RaccoonDB,
which includes a web-based interface for users to easily create
nowcasting queries and explore results in interactive time.
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2. PROBLEM STATEMENT
We will now formally define the nowcasting data manage-

ment problem. Table 1 summarizes our notation.

Nowcasting — The goal of a nowcasting system is to use
social media data to produce a time-varying signal that de-
scribes a real-life, time-varying phenomenon. As the name im-
plies, nowcasting systems estimate a current quantity based
on current social media data. They do not attempt to predict
future events or one-off events such as riots. Nowcasting is
possible and reasonable in cases where a target phenomenon—
such as unemployment, or going to the movies—also yields
discussion in social media. For phenomena with little or no
discussion, nowcasting will not be applicable.

Social Media Data — A nowcasting system operates on a
social media database comprised of social media messages.

Definition 1 (Social media database). A social me-
dia database is a set M, where each m ∈ M is a tuple
m = (msg, tstamp) containing user-created textual content
(msg) and a timestamp of the content creation date (tstamp).

From M, a set of topics can be extracted into a topic
database to represent different trends on social media.

Definition 2 (Topic database). A topic database is
a set T where each topic t ∈ T is a tuple t = (l, s) such that:

1. Topic t is associated with a set of messages Mt ⊂M.

2. Label l is a textual description of the messages in Mt.

3. Time-varying signal s = {s1, . . . , sc} is defined by op-
erator S : Mt → s, where si = (timei, yi). Value yi is
the number of messages in Mt occurring in time period
timei, which is in a chosen domain (weekly, etc.).

As an example, a topic with label “Christmas” may have
a set of messages discussing the holiday and a signal s that
spikes in December of each year. To extract topics from M,
several nowcasting projects have used simple string contain-
ment in the messages [10–12,14,17] (e.g., a single topic might
be all the messages that contain, “I lost my job”). This ap-
proach has the advantage of supplying an easy-to-understand
label for each topic. Others have used sentiment analysis [13]
(e.g., a single topic might be all the messages that connote
happiness). Similarly, methods like topic modeling [20] have
shown success in topic extraction.

User Queries — In order to find relevant topics for a target
phenomenon, users describe their target with a user query.

Definition 3 (User query). A user query is a tuple
Q = (q, r) such that:

1. Query string q describes the target phenomenon.

2. Time-varying signal r = {r1, . . . , rc} describes the tar-
get’s historic trend, where ri = (timei , yi). Value timei
is in the same domain as T , and yi is a real number.

Query string q is distinct from the topics above; a single
q = “unemployment” could describe topics related to los-
ing a job, needing a job, and so on. Users have two options
for declaring query signal r. In the standard query model,
r would be historical data of the target phenomenon, such
as government survey or administrative data. For some phe-
nomena, this ground truth data is not available; however,
a popular practice in machine learning is to use synthetic
or incomplete data instead of a traditional dataset; these
distantly supervised learners are often able to achieve high

Notation Description

M Social media database
T Topic database
Q = (q, r) User query with query string q and signal r
O = (A, o) Nowcasting result with label set A and signal o
R Topics in T used to create output O
k Target size of R
β User preference for signal vs. semantic weighting

Table 1: Frequently used notations.

quality results even when no good traditional data is avail-
able [28]. This motivated our distant supervision query model,
where r would be a partial signal that describes the user’s
domain knowledge. For example, our economist knows that
unemployment always spikes when Christmas seasonal jobs
end, so she creates a signal r that shows spikes at the end of
each year. Under this model, RaccoonDB processes queries
as it does in the standard model, but it also provides a
query quality alarm to help users identify low-quality queries
(further discussed in Section 5).

Nowcasting Results — For a given user query Q, Rac-
coonDB creates R, a set of k topics selected from T , which
are then used to generate a nowcasting result that estimates
the target phenomenon using social media.

Definition 4 (Nowcasting result). A nowcasting re-
sult is a tuple O = (A, o) such that:

1. Topic label set A is the set of topic labels in R.

2. Output signal o = {o1, . . . , oc} is a time-varying signal
defined by a given aggregate function f : R → o, where
oi = (timei , yi). Value yi is an estimate of the target in
period timei , which is in the same time domain as T .

Several choices for the aggregation function f are found
in past nowcasting projects, such as simply combining the
signals [12,17] or choosing the most important factor(s) from
a principal components calculation [10,11]. The size of k will
vary for different aggregation functions, but it is generally
on the order of tens or hundreds.

Evaluating Success — The quality of nowcasting result
O is measured using two criteria. First, semantic relevance
measures the relatedness of output topic label set A to query
string q. It is unacceptable to build a nowcasting result using
a topic that is semantically unrelated to the researcher’s
goal, even if such a topic has been highly correlated with the
target phenomenon in the past. For example, in certain time
periods, the topic pumpkin muffins will likely yield a time
series that is correlated with flu activity, because both spike
as the weather cools. However, it is highly unlikely the two
are causally linked: pumpkin muffin activity may fluctuate
because of harvest success or changes in consumer tastes,
whereas flu activity may fluctuate because of vaccine efficacy
or prevalence of certain viruses.2 We will evaluate output
label set A using human annotators.

The second criterion is signal correlation, which measures
the similarity between output signal o and query signal r.
For both our query models, r represents (either directly or
indirectly) the target phenomenon’s behavior over time, and
o should track this closely. We use Pearson correlation to
measure this, a popular measure of signal similarity.

2 Some seemingly unrelated topics may actually be quite
indicative (e.g., maybe pumpkin muffins suppress the immune
system), but this sort of hypothesis generation is different
from our paper’s focus, which is on model generation.
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Figure 1: A comparison of the traditional approach to nowcasting
and the RaccoonDB architecture.

In nowcasting practice, the relative weight of these two
criteria—call them semScore and sigScore—is quite unclear,
owing to the informal evaluation process for output label set
A. RaccoonDB will allow the user to control the relative im-
portance of these criteria with a parameter β (β > 1.0 favors
semantic scoring, while β < 1.0 favors signal scoring), which
we use to compute harmonic mean scores using a formula
we borrow from an evaluation metric used in information
retrieval, generalized F-score [33]. It is defined as:

Fβ = (1 + β2) · sigScore · semScore

(β2 · sigScore) + semScore
(1)

We can now formally state the nowcasting data management
problem we are solving with RaccoonDB:

Problem 1. Given user query Q and weighting preference
β, find a nowcasting result O that maximizes Fβ over all
choices of R ⊂ T .

Further, because of the human-in-the-loop nature of build-
ing nowcasting models (Section 1), we want to find a result
quickly enough to allow the user to interactively refine her
query over many iterations (i.e., within several seconds).

3. SYSTEM ARCHITECTURE
In the traditional approach to nowcasting (Figure 1a),

users spend many slow iterations manually searching for
topics and evaluating their effectiveness (or manually filtering
out spurious topics from statistical ranking approaches). In
contrast, RaccoonDB introduces several novel components
that allow for fewer, yet faster iterations and more expressive
querying, as shown in Figure 1b.

First, RaccoonDB uses the two-part query Q to find
topics in T that match well in both the semantic and signal
domains (Scoring and Ranking). Additionally, Pruning Opti-
mizations are used to avoid scoring and ranking irrelevant
topics (further described in Section 4). RaccoonDB per-
forms the same aggregation as the traditional workflow, and
then, before showing the results to the user for evaluation,
RaccoonDB uses a Quality Alarm to warn users of poten-
tially low-quality queries (further discussed in Section 5).

3.1 Scoring and Ranking
The set of social-media-derived topics T contains a large

number of topics (roughly 150 million in our experiments),
which in principle need to be scored for signal and seman-
tic relevance, then sorted, for each novel nowcasting query.
Performing this step is the primary bottleneck in obtaining

Algorithm 1 Näıve Query Processing

Input: T ,Q, k, β

1: semScores = computeSemScores(T ,Q)
2: sigScores = computeSigScores(T ,Q)
3: R = getTopFScores(semScores, sigScores, β, k)
4: factors = PCA(R)
5: (A, o) = factorCombiner(factors,Q)
6: isLowQuality = queryQualityAlarm(A, o)
7: return (A, o, isLowQuality)

Algorithm 2 Thesaurus Semantic Scoring

Input: q, l

1: toks1 = tokenizeAndStem(q)
2: toks2 = tokenizeAndStem(l)
3: bests1 = [], bests2 = []
4: for all t1 in toks1 do
5: scores1 = []
6: for all t2 in toks2 do
7: scores1 .append(jaccardDistance(t1 , t2 ))
8: end for
9: bests1 .append(min(scores1 ))

10: end for
11: for all t2 in toks2 do
12: scores2 = []
13: for all t1 in toks1 do
14: scores2 .append(jaccardDistance(t1 , t2 ))
15: end for
16: bests2 .append(min(scores2 ))
17: end for
18: return 1 - (average(bests1 ) + average(bests2 ))/2

interactive query times in the näıve implementation of Rac-
coonDB (Algorithm 1), where similarity scores are generated
in two parts for all t ∈ T and the user’s query Q.

Semantic Scoring — On line 1 of Algorithm 1, Rac-
coonDB calculates a semantic similarity score between each
topic’s label and the user query string q. Several existing
methods can be used for this, including pointwise mutual in-
formation [15] and thesaurus- or lexical-based metrics [26,35].
We chose a variation of thesaurus-based similarity for its sim-
plicity and performance, as well as its shared spirit with query
expansion principles, allowing topics that share no immediate
tokens with a user query to still be relevant. Algorithm 2
describes how this is computed. On lines 1–2, the topic label
l and the query string q are tokenized and stemmed with
Porter stemming. Then on lines 4–18, for each pair of topic
and query tokens, we compute the Jaccard distance between
the tokens’ thesaurus sets; all such distances are then com-
bined using a method from Tsatsaronis, et al. [35], where an
average is produced across them.

Signal Scoring — On line 2 of Algorithm 1, a signal sim-
ilarity score is calculated between each topic’s signal and
the user’s query signal r. Several existing methods can be
used for this, including correlation-based metrics (Pearson,
Spearman, etc.) and mean squared error. We use Pearson
correlation due to its simplicity and popularity, as well as
its statistical properties that we can exploit in our query
processing optimizations (Section 4.1.1). If the user provides
an incomplete query signal r (i.e., our distant supervision
query model), we only compute Pearson correlation for the
timespans explicitly provided.

Harmonic Mean Scoring and Ranking — On line 3
of Algorithm 1, RaccoonDB calculates a harmonic mean
score (Fβ) for each topic in T using Equation 1 and the
user-provided weighting preference β. Finally, the topics are
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sorted by their harmonic mean scores, and the top-k topics
are selected as R.

Time Complexity — For the näıve implementation of Rac-
coonDB (Algorithm 1), if topic signals have c observations
and topic labels have on average u tokens, then for the n
topics in T , RaccoonDB scoring has O((c+u)n) worst-case
time. Since c and u are relatively small and slow-growing,
this complexity can be simplified to O(n). Ranking the topics
requires O(n log(n)) sorting, so the non-optimized system’s
complexity becomes O(n+n log(n)), which can be simplified
to O(n log(n)) worst-case time. In Section 4.4, we discuss the
time complexity of our optimized system, which drastically
reduces the number of items scored and ranked.

3.2 Aggregation
A core part of nowcasting projects is aggregating the topics

inR into the output signal o. Past systems have used a variety
of techniques, including summing signals together [12, 17],
dimensionality reduction [10, 11], or simply setting k = 1
(thus, no aggregation). This module is not a core contribution
of RaccoonDB but is a pluggable component chosen by
the domain experts using the system. By default, we use
a form of principal component analysis (PCA) aggregation
with k = 100, based on our past economic work [10].

We first perform dimensionality reduction on the topic
signals in R using PCA (line 4 of Algorithm 1). We use
this output to generate k factors that represent weighted
combinations of the signals in R. We then choose a subset
of them using a heuristic based on a scree plot approach
to choosing principal components. In traditional scree plot
usage, a researcher plots each component’s captured variance
and eigenvalue and then looks for for an “elbow” in this plot,
defining a break between steep and not steep portions of
the plot. We mimic this process by looking for the first set
of neighboring points where the delta between them drops
below a fixed threshold that we tuned across a workload
of queries. Finally, we use this subset as input to a linear
regression task, in which the user’s signal r is the training
data. To prevent overfitting, the system always chooses a
subset size so that it is smaller than the number of points in
r. The output of this regression is the query output o. This
aggregation has a negligible effect on the time complexity of
RaccoonDB since the input of our aggregation has only k
items and k � |T |, the input size of our scoring and ranking
procedures, which dominates the overall time complexity.

4. QUERY OPTIMIZATIONS
In order to process queries in interactive time, RaccoonDB

automatically balances several optimizations according to
the characteristics of the user query Q = (q, r) and weight-
ing preference β. RaccoonDB uses two types of candidate
pruning to avoid fully scoring all items in T , the first us-
ing signal information and the second using semantics. The
parameters of these pruning methods are adjusted for each
individual query. Further, shared computation methods like
SIMD instructions and parallelization, which are applicable
to all user queries, allow RaccoonDB to further speed up
candidate scoring. We discuss each of these below.

4.1 Candidate Pruning
We will now discuss how RaccoonDB performs confidence

interval signal pruning and semantic pruning.

Algorithm 3 Confidence Interval Signal Pruning

Input: T , Q, β, semScores, k, δ

1: aggLB = [], aggUB = [], resolution = 0, origSize = |T |
2: repeat
3: resolution = getNextResolution(resolution, k, |T |)
4: rlowres = sample(Q.r, resolution)
5: for all i, (l, s) ∈ T do
6: slowres = sample(Q.r, resolution)
7: scoreLB , scoreUB = signalSimCI(rlowres, slowres)
8: aggLB [i] = getTopFScores(scoreLB , semScores[i], β, k)
9: aggUB [i] = getTopFScores(scoreUB , semScores[i], β, k)

10: end for
11: thresLB = getLowerBoundThres(aggLB , k)
12: T ′ = []
13: for all i, sim ∈ aggUB do
14: if sim ≥ thresLB then
15: T ′.append(T [i])
16: end if
17: end for
18: T = T ′

19: until |T ′| / origSize < δ
20: return T ′

4.1.1 Confidence Interval Signal Pruning
To address the cost of calculating hundreds of millions of

signal similarity scores for a given query, we use a form of
top-k confidence interval pruning to eliminate candidates
without calculating their exact score, an approach used when
answering top-k queries over probabilistic data [32] and for
recommending data visualizations over large datasets [36].

The core idea is to first quickly compute an approximate
score using a lower resolution version of the data. A set of
approximate scores, even with large error bounds, is often
sufficient to disqualify many low-scoring candidates from
further consideration. For the few potentially high-scoring
candidates that remain, the system uses additional data to
reduce the error bounds until it obtains the top-k topics.

Algorithm 3 details our pruning method. The input in-
cludes the topic database T ; user query Q and weighting
preference β; the semScores for each topic in T ; the target
size of R (k); and the desired pruning ratio (δ). On lines 3–6,
the system creates low-resolution versions of the query signal
r and each topic in T using a resolution value chosen by
examining the size of set T , k, and the previous resolution
value (further discussed in Section 4.2). Then, the system
calculates approximate signal similarity scores with 95% con-
fidence intervals for each (rlowres, slowres) pair. Using these
intervals, the system finds lower and upper bounds on the
harmonic mean scores (lines 7–9). The k-th highest lower
bound in the harmonic mean scores becomes the pruning
threshold (line 11); RaccoonDB prunes all topics with up-
per bounds below the threshold to produce T ′ (lines 12–17).
The pruning repeats until the pruning ratio is less than δ.

4.1.2 Semantic Scoring Pruning
We can also use a pruning approach to avoid work during

semantic scoring. We note that the size of a typical thesaurus
is relatively small, and it is easy to precompute Jaccard
similarities for all token pairs with non-zero similarity.

We exploit this fact in our semantic pruning (Algorithm 4).
Like signal pruning, semantic pruning has T , Q, and k as in-
put. Additionally, it requires a threshold (thres) that controls
the aggressiveness of the pruning. On lines 1–2, the algorithm
uses a precomputed data structure to retrieve tokens that
have a Jaccard similarity with any token in the query higher
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Algorithm 4 Semantic Pruning

Input: T , Q, thres, k

1: tokens = getTokensAboveThres(Q.q, thres)
2: candidates = getTopics(T , tokens)
3: T ′ = []
4: for all (t, s) ∈ candidates do
5: if jaccardScore(t,Q.q) ≥ thres then
6: T ′.append((t, s))
7: end if
8: end for
9: return T ′

than thres; topics containing any of these tokens are then
retrieved. Next, the full Jaccard score is calculated for the
retrieved topics, and any topics with a Jaccard score below
thres are pruned (lines 3–8). Controlling the value of thres
over repeated calls is a crucial part of the algorithm and is
described below in Section 4.2.

One guarantee we get from our thesaurus scoring is that
our semantic pruning will always return all of the topics with
a score greater than or equal to our threshold. As Algorithm 2
describes, the final similarity score is essentially the average
across all token similarities. Therefore, if a topic has a score
greater than or equal to thres, it must have a token with a
Jaccard score greater than or equal to thres. Otherwise, the
average of the Jaccard scores would be below thres.

4.2 Dynamic Query Optimizations
Algorithm 5 shows our full algorithm for optimized now-

casting query processing, which combines signal and semantic
pruning, and dynamically adjusts pruning parameters based
on Q and β. The core idea is that each pass through the main
loop of the algorithm (lines 3–12) uses incremental amounts
of semantic and signal information to eliminate candidates
for R, until there are only k candidates remaining.

For many queries, RaccoonDB could simply perform the
pruning in Algorithms 3 and 4 with static parameters (e.g.,
thres = 0.5). Other queries, though, benefit from different
parameter settings. For example, queries that skew topic
semantic scores to high values should use a higher threshold
to avoid excess work in semantic pruning.

When first processing a query, RaccoonDB decides an
initial value for thres (lines 1–2): given the user’s query string
q, RaccoonDB creates a histogram of Jaccard scores to find
a value of thres such that the number of candidate items is
greater than or equal to N , which is chosen based on past
query processing statistics. If N is too large, many items will
be unnecessarily processed due to inadequate pruning; if it is
too small, too many items will be pruned and extra rounds
of query processing will be needed. As hinted at above, the
histogram can vary greatly for each query, and one that has
a distribution skewed towards higher or lower values will
respectively benefit from lower and higher thres values.

After the first round of semantic pruning and scoring (lines
4–5), RaccoonDB applies signal pruning and scoring (lines 6–
7). In this phase, since each iteration has relatively expensive
sampling and data copying costs, RaccoonDB attempts
to minimize the number of iterations needed to meet the
stopping criteria on line 19 of Algorithm 3 by dynamically
adjusting the resolution value. A query signal that correlates
well with many topics benefits from a higher resolution.

Once scoring is complete (lines 4–7), RaccoonDB uses
the k-th best item’s score to find the minimum semantic score
that satisfies Equation 1 with a perfect signal score of 1.0.
This becomes our minimum Jaccard score (minJacScore),

Algorithm 5 Query Processing with Optimizations

Input: T , Q, β, k, δ

1: minJacScore = +∞
2: thres = getNewThres(Q, β,minJacScore)
3: while thres < minJacScore do
4: T ′ = semanticPruning(T ,Q, thres, k)
5: semScores = computeSemScores(T ′,Q)

6: T ′′ = signalPruning(T ′,Q, semScores, β, k, δ)
7: sigScores = computeSigScores(T ′′,Q)

8: R = getTopFScores(semScores, sigScores, β, k)
9: kthBest = R[k].score

10: minJacScore = (kthBest ∗ β2)/(1 + β2 − kthBest)
11: thres = getNewThres(Q, β,minJacScore)
12: end while
13: factors = PCA(R)
14: (A, o) = factorCombiner(factors,Q)
15: isLowQuality = queryQualityAlarm(Q, A, o)
16: return (A, o, isLowQuality)

which determines a new Jaccard threshold (lines 9–11). This
Jaccard threshold is guaranteed to be monotonically increas-
ing since at each round of pruning, only higher scoring items
are included (as described in Section 4.1.2). Finally, after
one or more rounds of pruning occur, the rest of the pipeline
continues as in the unoptimized system (lines 13–16).

4.3 Low-Level Optimizations
There are several low-level database system optimizations

available to RaccoonDB for all user queries. First, we can
represent signal, semantic, and harmonic mean scoring (lines
4–8 of Algorithm 5) as vector operations, enabling us to
use SIMD instructions. Second, by using a compact integer
encoding for token labels, we can speed up lookups on lines
1–2 of Algorithm 4. Third, by partitioning T , we can run
lines 1–8 of Algorithm 5 in parallel on multiple CPUs.

4.4 Time Complexity
As discussed in Section 3.1, our näıve query processing

runs in O(n log(n)) worst-case time. However, our pruning
methods reduce the amount of candidate topics that are
sorted from n to p. With the O(n) scoring pass over the data,
our optimized system runs in O(n+ p log(p)) time. In most
reasonable cases, p� n, so RaccoonDB processes queries
in O(n) time (i.e., the scoring time). In rare cases where
pruning is ineffective (that is, p is not significantly smaller
than n), the worst case case running time is O(p log(p)).

5. DETECTING POOR USER QUERIES
As discussed in Section 2, RaccoonDB supports two query

models. In the standard model, the user’s query signal r is
historical ground truth data about her target phenomenon,
while in the distant supervision query model, r is whatever
domain knowledge she has about her target’s trend. In the
latter query model, even if the user is a domain expert, it
may be easy for her to unintentionally provide a low-quality
version of r. Knowing that unemployment claims, for example,
peak after the winter holidays allows the user to define a
signal peak in January, but the amplitude and exact location
on the timeline may be far from the truth.

The distant supervision query model can provide a user
with valuable nowcasting results that have been heretofore
impossible, but when the user’s query signal r is unknowingly
wrong, the nowcasting result may also be wrong without the
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user realizing it. In this section, we propose a method of
detecting when r is likely to be far from the ground truth
when no ground truth is available for comparison, so the user
can reevaluate her query before accepting a result.

Query Consistency — When a user’s query contains no
conventional ground truth data, our system cannot quan-
titatively evaluate how well its estimate of the target phe-
nomenon matches reality. We can, however, evaluate proper-
ties of the user’s query to judge the likelihood that the query
will produce a high-quality estimate. More specifically, the
query’s two components (q, r) must be mutually consistent;
that is, topics satisfying the semantic portion of the query
should be related to the topics that satisfy the signal portion,
and vice versa. If the two query components are unrelated,
the nowcasting output of the system will be unrelated to
at least one of the query inputs, which would qualify as a
low-quality nowcasting result.

The quality of the user’s query string q is fairly easy for a
user to judge for herself (i.e., “Does ‘I need a job’ indicate
unemployment?” should be an easy question for most users
to answer). The query signal r, conversely, is difficult to
evaluate without access to ground truth data. To assist the
user, RaccoonDB uses a query quality alarm to examine her
query to see if it is likely to produce a poor-quality result.

Building a Query Quality Alarm — The query qual-
ity alarm is a domain-independent classifier that predicts
whether or not a query will produce a poor nowcasting re-
sult. The classifier uses the following groups of features to
characterize important properties of the data:

• Query Consistency — These two features, fsem and fsig,
measure the consistency of the two query components, as
described above. To do this, the system finds the top-v
topics as measured by signal similarity and computes the
mean semantic similarity for them, and vice versa. For
top signal topics S and top semantic topics T :

fsem =
1

v

∑
s∈S

semScore(s) fsig =
1

v

∑
t∈T

sigScore(t)

• Variance Explained — By applying PCA to a set of
signals, one can measure the variety among the signals by
looking at the resulting eigenvalues. RaccoonDB uses
this observation to generate two features: the variance
explained (i.e., eigenvalue) by the first PCA factor for
the top-k topics as measured by signal similarity, and
vice versa using semantic similarity.

• Consistency Across β Settings — To compute another se-
ries of features that indicate query consistency, the system
finds the top topics as measured by one of our similarity
metrics (e.g., signal similarity) and uses Equation 1 to
find the average harmonic mean score (Fβ) for the topics.
We repeat this for both of our similarity metrics and β
settings of 0.25, 0.5, 1, 2, and 4.

We use a random forest classifier built using the scikit-
learn toolkit [31] and trained with past queries submitted
to the system, allowing the system to improve as usage
continues over time.3 We label training queries as high quality
if RaccoonDB’s output scores greater than a user-defined
threshold (we use 0.5 in our experiments) in both semantic
relevance and signal correlation and as poor quality, if not.

3When being brought online initially when no query history
exists, one can “prime” the alarm with conventional datasets.

Phenomenon Description

boxoffice US movie box office returns [1]
flu US reported flu cases [2]
gas US average gasoline price per gallon [6]
guns US gun sales [3]
temp New York City temperature [7]
unemployment US unemployment insurance claims [5]

Table 2: Target phenomena used in experiments. All targets are
measured weekly, except guns and temp, which we respectively
convert from monthly and daily to weekly.

6. EXPERIMENTS
In this section, we present our evaluation of our four main

claims about RaccoonDB’s performance and quality:
1. The optimizations in Section 4 allow RaccoonDB to

process queries in interactive time (Section 6.2).

2. The standard query model helps users with historical
ground truth data generate relevant and accurate esti-
mates of various real-world phenomena (Section 6.3).

3. The distant supervision query model helps users without
any ground truth data generate relevant and accurate
estimates of various real-world phenomena (Section 6.4).

4. The query quality alarm in Section 5 can accurately
detect low-quality queries (Section 6.5).

6.1 Experimental Setting
Target Phenomena — We evaluated RaccoonDB using
six publicly available datasets (Table 2). We chose these
datasets because: (1) their availability of ground truth data;
(2) their use in past nowcasting research [10,11,14,17]; and
(3) they describe a good mixture of both seasonal (e.g., flu)
and non-seasonal phenomena (e.g., guns). Additionally, we
evaluated RaccoonDB using a dozen other target phenom-
ena: those targeted by Google Finance’s Domestic Trends [4].
These latter targets are discussed in Section 6.4.

Social Media Data — Our experiments were run against
a corpus of 40 billion tweets, collected from mid-2011 to
the beginning of 2015. This represents roughly 10% of the
Twitter stream. We filtered out non-English messages using
a trained language classifier that shows 98% precision.

Topic Extraction — We extracted topics using a simple
string containment approach as described in Section 2. We
first applied “commodity” natural language preprocessing:
removing obscure punctuation, replacing low-frequency to-
kens with generic type-based tokens (e.g., URLs become
<URL>), and normalizing capitalization. We then populated
T by extracting n-grams from each message, enumerating
every consecutive sequence of four or fewer words (e.g., the
message “Merry Christmas” would be associated with three
topics: merry, christmas, and merry christmas). We then
removed all topics with fewer than 150 associated messages.
Instead of raw counts for the signal data, we use the counts
normalized by the size of M.

System Configuration — We ran our RaccoonDB and
PostgreSQL experiments on a 32-core (2.8GHz) Opteron
6100 server with 512GB RAM, and we ran our Apache Spark
experiments using Amazon c3.8xlarge EC2 instances.

6.2 Performance Evaluation
Summary: RaccoonDB answers nowcasting queries or-
ders of magnitude faster than nowcasting with popular data
management tools (PostgreSQL and Apache Spark). Our
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1 core 30 cores

Target
Post-

greSQL
Non
Op

Full
Op

Spark
Non
Op

Full
Op

boxoffice > 6 h 909 s 6.2 s 1141 s 62.0 s 1.5 s
flu > 6 h 935 s 1.4 s 1155 s 62.6 s 0.6 s
gas > 6 h 1003 s 1.6 s 1157 s 65.9 s 0.5 s
guns > 6 h 959 s 1.4 s 1173 s 64.7 s 0.8 s
temp > 6 h 1003 s 3.5 s 1197 s 66.1 s 1.1 s
unemp > 6 h 959 s 7.6 s 1215 s 68.2 s 2.5 s

Average > 6 h 962 s 3.6 s 1173 s 64.9 s 1.2 s

FullOp
Speedup

> 104x 424x - 1356x 75x -

Table 3: Query processing times for PostgreSQL, Apache Spark,
and two versions of RaccoonDB: one without our pruning opti-
mizations (NonOp) and another with them enabled (FullOp).

optimizations allow for interactive speed processing, with a
424x speedup over a non-optimized version of RaccoonDB.

Overview — In this experiment, we measured the runtime
of several nowcasting query processing systems. An ideal
system would return results in interactive time so that users
can quickly iterate through revisions toward their final result.

Evaluation Metrics — We evaluated the performance of
RaccoonDB by measuring the query processing time for
each of our target phenomena. Additionally, since our pruning
optimizations eliminate candidates in part based on a 95%
confidence bound—potentially removing some high-quality
candidates—we also measured our optimized system’s recall
of R compared to a non-optimized version of RaccoonDB.

Baselines — We first measured how well two popular data
systems, PostgreSQL and Apache Spark, can be used for
declarative nowcasting. For PostgreSQL, we stored our topics
in a table and iterate over them using the built-in CORR()

function for signal scoring and our own UDF for semantic
scoring. For Apache Spark, we tested two clusters of Amazon
EC2 c3.8xlarge instances (each using 30 cores), the first with
1 node, the other with 10 nodes. The Spark-based system
was written in Python, and it preloaded topics into memory
and cached intermediate data between job stages.

Since PostgreSQL and Spark are more generalized systems,
we also compared RaccoonDB against a “non-optimized”
version of itself (NonOp), which lacks the optimizations
discussed in Sections 4.1 and 4.2, but does include the low-
level optimizations in Section 4.3 (vectorized operations,
parallelization, etc.), allowing us to measure the impact of
our core optimizations. NonOp, along with the optimized
system, were written in C++, with topics and optimization-
based data structures preloaded into memory.

Overall Performance Results — As Table 3 shows, our
optimized system (FullOp) averaged just 3.6 seconds per
query on a single processor core, achieving interactive query
processing times with very few resources. In contrast, Post-
greSQL was far from efficient, not finishing even after 6 hours
(at which point we ended the evaluation). RaccoonDB it-
self is far less efficient without its optimizations: using a
single core, FullOp yielded a 424x average speedup over
NonOp, which averaged 962 seconds (about 16 minutes) per
query—far from interactive time.

If we allow for parallelization, systems like Apache Spark
may appear to be reasonable choices; however, when using
30 cores (on one node), Spark averaged 1173 seconds (about
20 minutes) per query. In contrast, FullOp averaged just

boxoffice flu gas guns temp unemp
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Figure 2: Effects of different combinations of RaccoonDB’s
pruning optimizations. Results shown are for β = 1 on 1 core;
runtime in logarithmic scale.

NonOp FullOp

Semantic Scoring 214.6 s (22%) 0.97 s (27%)
Signal Scoring 737.8 s (77%) 1.16 s (32%)
Rank Aggregation 9.2 s (1%) 0.11 s (3%)
Optimization Overhead n/a (0%) 1.37 s (38%)

Total 961.6 s 3.61 s

Table 4: Breakdown of 1-core runtime for NonOp and FullOp,
averaged over all targets. Overhead includes pruning in FullOp.

1.2 seconds per query using 30 cores, with a 1356x average
speedup over Spark. Increasing the Spark cluster size to 300
cores (over 10 nodes) reduced the average runtime to 106.8
seconds, but our 30-core FullOp system was still on average
123x faster using only 10% of the computational resources.

To measure the direct benefit of our optimizations on
RaccoonDB with parallelization, we enabled parallelization
on our non-optimized system and compared it against our
optimized system. Using 30 cores, the non-optimized system
averaged 65 seconds per query, still too long to allow for
interactive, human-in-the-loop style querying. In contrast,
our optimized system’s 1.2 second average runtime resulted
in a 75.2x speedup over our 30-core non-optimized system.

Impact of Pruning on Recall — Unlike RaccoonDB’s
semantic pruning, the confidence interval-based signal prun-
ing is lossy; the 95% confidence interval used for pruning
may cause the pruning away of high-quality topics. We can
measure the impact of lossy pruning by measuring the recall
of the optimized system’s R against the non-optimized R.
In the experiments for Table 3, RaccoonDB achieved 100%
recall with signal pruning (i.e., never losing a single topic).

Impact of Pruning on Runtime — Figure 2 shows the
impact of our different pruning optimization methods on
runtime using a single core. With no optimizations (NonOp),
query processing took 962 seconds on average for our target
phenomena. Using signal pruning alone (SigOnly) reduced
runtime by 62.5% to 360 seconds (6 minutes) on average.
Using semantic pruning alone (SemOnly) reduced NonOp’s
runtime by 99.3% to 7 seconds. Using both pruning tech-
niques together further reduced the runtime to 3.6 seconds—a
48% reduction from SemOnly and a 99.6% reduction overall.

Semantic pruning was so effective because it is able to
cheaply identify items that can be eliminated, removing
over 99% of topics on average for our target queries. Signal
pruning eliminated a similar percentage of topics, but because
it requires semantic scores be computed, using signal pruning
alone resulted in a much smaller computational savings.

Table 4 shows how the non-optimized (NonOp) and opti-
mized (FullOp) versions of RaccoonDB spent their time
(in this case, using 1 core). NonOp spent the majority of its
time scoring, plus a small amount on combining the scores.
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Figure 3: Runtimes for the non-optimized (NonOp) and opti-
mized (FullOp) systems with different values of β on 1 core.

For FullOp, a significant portion of its total runtime was
due to pruning overhead. Of course, the absolute runtimes
for the optimized system are drastically smaller.

Impact of β on Runtime — As discussed in Section 4,
there is an interaction between β and our optimizations. In
this experiment, we measured how this interaction affects
runtime. Figure 3 shows the results of varying β for Rac-
coonDB (with 1 core), averaged over all nowcasting queries.
When β weights signal scores more heavily, our semantic
pruning had a smaller effect. In the extreme case of Signal-
Rank, in which the semScores do not impact the final output
at all, nothing can be pruned semantically. Fortunately, this
is an unusual use case of RaccoonDB, where the goal is
generally to use both query components to select topics.
However, these runtimes can be improved to interactive time
by increasing the number of cores.

6.3 Quality of Standard Query Model
Summary: Compared to our baseline methods of users man-
ually searching for topics or ranking them by similarity scores,
results generated with RaccoonDB’s standard query model
require far less work from users and are of higher quality.

Overview — In this experiment, we measured the result
quality from RaccoonDB and our baselines performing a
traditional nowcasting task in which high-quality historical
data is available to the user. An ideal result should closely
estimate the target phenomenon and should be generated
from relevant topics. An effective nowcasting query system
should be able to beat our baselines (see below) for at least
some setting of β, and ideally should do it for many settings.

Evaluation Metrics — We evaluated signal quality using
a standard nowcasting evaluation model [10]: using the avail-
able social media signals at time t, we generated a statistical
model to estimate a value at time t+ 1; then, the updated
social media signals at time t + 1 are used to build a new
model and estimate for t + 2. This process repeats for the
data’s entire time period, starting one year into the dataset.
Pearson correlation is then used to evaluate these forecasts
against the ground truth data for the same time period.

In order to measure semantic relevance, we asked a set
of human evaluators (via Amazon Mechanical Turk) to rate
topic labels as relevant or not when applied to a given now-
casting query. Evaluators rated 10 topic labels for a single
query—chosen randomly from the top-100 R results returned
by RaccoonDB—with the majority vote from five evalu-
ators deciding if the topic label is relevant. The semantic
relevance for a nowcasting result is the normalized number
of topic labels that were marked as relevant.

Baselines — We compared RaccoonDB to several base-
line approaches that we created to simulate the workflow
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Figure 4: RaccoonDB (RacDB) evaluated on nowcasting for
β = {0, 0.125, 0.25, 1, 128,∞} with our user study baseline (Man-
ual); SignalRank (β = 0) and SemanticRank (β =∞) are the
end points on the RacDB line.

Standard Dist. Supervision
Query Model Query Model

Method
Sig.

Corr.
Sem.
Rel.

SS-
F1

Sig.
Corr.

Sem.
Rel.

SS-
F1

RaccoonDB 0.82 0.94 0.88 0.67 0.97 0.79
Manual 0.53 0.80 0.64 0.53 0.80 0.64
SemanticRank 0.35 0.94 0.51 0.35 0.94 0.51
SignalRank 0.92 0.19 0.31 0.79 0.06 0.11

Table 5: Nowcasting quality results for RaccoonDB’s two query
models and our baselines. SS-F1 is the harmonic mean of the
signal correlation and semantic relevance scores of each method.
All values range from 0–1, with 1 being best.

found in existing nowcasting literature. For the first baseline
(Manual), we performed a user study designed to mimic the
interactive string-picking procedure followed by most past
nowcasting projects. We asked eleven technically sophisti-
cated users to build a nowcasting model for our six target
phenomena. We gave users a search tool that would take
a topic label as input and then display the corresponding
topic signal (assuming it was found in T ). After each search,
we also displayed a composite signal, which our system gen-
erated by following the aggregation procedure described in
Section 3. We allowed the users to add or remove up to
fifteen topics without any time limit. We chose each user’s
best result for each nowcasting target and we averaged the
signal relevance and semantic correlation scores of all users.

For the next two baselines, we mimicked the nowcasting
workflow of ranking candidate topics by a similarity metric.
The first of these (SemanticRank) is an “all semantics”
method that uses only semantic-based ranking of topics from
a nowcasting query string (e.g., [12]). The second (Signal-
Rank) is an “all signal” technique that ranks topics based
on their signal correlation with a nowcasting query signal
(e.g., [17]). RaccoonDB can emulate SemanticRank and
SignalRank by setting β to extreme values (β = 0,∞).

Overall Results — Figure 4 and Table 5 summarize these
results. On the x-axis of each plot is the semantic relevance
(measured by human judges), and on the y-axis is the signal
correlation (measured by Pearson correlation on held-out
ground truth signal). RaccoonDB results are shown as a line
to indicate the possible answers RaccoonDB provides based
on different β parameter values. On these figures, we display
RaccoonDB results for β = {0, 0.125, 0.25, 1, 128,∞}, with
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the extreme settings being our baselines SemanticRank
(β = 0) and SignalRank (β =∞). Our user study baseline
(Manual) is shown as an individual point.

Not surprisingly, Manual and SemanticRank had great
semantic relevance (on average, 0.83 and 0.94), but their
signal correlation was mediocre for many targets (flu was an
exception), averaging 0.53 and 0.35. In contrast, SignalRank
had high signal correlation (0.92), but the semantic relevance
was very low (0.19), indicating that the high signal correlation
was likely due to spurious statistical correlations with the
user query signal r. Conversely, RaccoonDB performed
well on both signal correlation and semantic relevance (0.82
and 0.94), with results that dominate Manual and often
SemanticRank and SignalRank as well. More balanced β
settings (i.e., closer to 1) generally performed best.

The strongly seasonal targets like flu and temp were eas-
ier to estimate with RaccoonDB and the baselines, while
other less-seasonal targets like guns were harder to estimate
accurately. On average, if we set β = 1, RaccoonDB used
relevant topics and correlated quite well with the target sig-
nal, correlating 57% better than Manual and 135% better
than SemanticRank. While SignalRank correlated well
with the ground truth signal, its topics had virtually no
semantic relevance, so a user would not accept its results.

6.4 Quality of Distant Supervision Model
Summary: RaccoonDB can reasonably estimate real-world
phenomena using no ground truth data, requiring far less
work and producing higher-quality results than our baseline
methods. Further, with a few query revisions, RaccoonDB
results can improve significantly.

Overview — As mentioned in Section 2, it is often possible
for researchers to encode domain knowledge (unemployment
follows Christmas or movies are popular in summer) in a
hand-made distantly supervised signal. The obvious risk here
is that providing RaccoonDB with low quality signal data
will yield low-grade or misleading nowcasting results.

To test this scenario, we evaluated RaccoonDB with the
same target phenomena described in Section 6.1, but we re-
placed the query signal r with a degraded replacement meant
to emulate crude user domain knowledge. We transformed
each r into a low-quality r′ by replacing each human-marked
signal peak with a synthetic parameterized peak character-
ized by just one of four possible amplitude values, one of
four widths, and a hand-chosen maximum.

Evaluation Metrics and Baselines — We used the same
evaluation metrics and baselines as in Section 6.3.

Overall Results — As Table 5 shows, RaccoonDB’s signal
correlation dropped from 0.82 to 0.67 when going from the
standard query model to the distant supervision model, but
RaccoonDB still achieved a higher signal correlation than
Manual (0.52) and SemanticRank (0.35)—all methods
with more than acceptable semantic relevance scores. As with
the standard query model, SignalRank achieved a high
signal correlation (0.79), but the terrible semantic relevance
(0.06) leads us to not trust this result.

Iterative Querying Quality — In this experiment, we
evaluated how RaccoonDB result quality improves when
users iteratively revise their queries. We assumed that users
revise queries when the result has a semantic relevance below
0.5. For example, in an effort to improve the second query for

Target Manual
Sem-
Rank

Sig-
Rank

RacDB
Iter-

RacDB

Air Travel 0.62 0.00 0.06 0.37 -
Auto Finance 0.28 0.00 0.29 0.48 0.76
Bankruptcy 0.45 0.00 0.47 0.25 0.50
Construction 0.41 0.02 0.61 0.79 -
Credit Cards 0.62 0.00 0.49 0.73
Dur. Goods 0.03 0.00 0.12 0.81 -
Education 0.83 0.72 0.65 0.86 -
Furniture 0.36 0.00 0.42 0.45 -
Insurance 0.12 0.00 0.25 0.41 0.69
Mobile 0.92 0.35 0.86 0.88 -
Real Estate 0.04 0.08 0.19 0.51 0.70
Shopping 0.27 0.04 0.07 0.92 -

Average 0.41 0.10 0.37 0.62 0.71†

Std. Dev. 0.28 0.21 0.24 0.22 0.17†

Table 6: RaccoonDB result quality improvements after revising
queries with poor semantics (IterRacDB). Values are the har-
monic mean of semantic relevance and signal correlation. †These
statistics include RacDB results if no revisions were made.
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coverage, insurer,
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Result topics R
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at allstate insurance
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<NUM> allstate
aarp sells insurance
#jobs #insurance
...

Figure 5: A distant supervision query and nowcasting result for
the target phenomenon of Insurance (using IterRacDB).

Insurance, we added several insurance company names (e.g.,
Aetna and Geico). Since users can easily identify irrelevant
topics, this is more analogous to RaccoonDB’s real-world us-
age. We tested this using 12 new target phenomena that lack
ground truth data (chosen from Google Domestic Trends [4]).
For each target, we generated queries with synthetic signals
(as described above), and we measured signal correlation
with the original Google Trends estimate. We used the same
baselines as above, except for Manual, where we use the
keywords listed by Google. Figure 5 shows the query and
result for Insurance after one round of revising.

As Table 6 shows, RaccoonDB with only one round of
querying (RacDB) generated higher-quality results than our
baselines for 9 out of 12 targets, with an average harmonic
mean between semantic relevance and signal correlation of
0.62. When allowing for query revisions (IterRacDB), result
quality improved to 0.71, beating our baselines on 10 out of
12 targets and achieving a 73% increase on average over using
the Google-chosen keywords (Manual). For consistency,
these results used β = 1.0; however, some targets had higher-
quality results with a different weighting preference (e.g.,
Air Travel with β = 2.0 had a harmonic mean score of 0.63).
RaccoonDB allows users to explore these different results.

Additional Results — To explore RaccoonDB’s capabili-
ties in light of low-quality data, we introduced varied levels of
error into our original distant supervision queries (boxoffice,
etc.). RaccoonDB still did surprisingly well. Due to limited
space, these results are presented in a separate article [8].
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Alarm
Model

Semantic
Relevance

Signal
Correlation

Harmonic
Mean Score

None 0.57 0.35 0.43
Alarm 0.61 (5.4%) 0.45 (30.4%) 0.52 (19.6%)
Alarm + User 0.84 (46.0%) 0.43 (24.2%) 0.57 (31.6%)

Table 7: Average result quality improvement from excluding
queries that triggered the alarm (Alarm) and also excluding results
with low semantic relevance (Alarm + User).

6.5 Effectiveness of Quality Alarm
Summary: Through a user study, we show that our query
quality alarm is able to identify low-quality queries, improv-
ing average result quality by 31.6%.

Overview — In this experiment, we evaluated how well our
query quality alarm can identify queries that produce low-
quality results. The failure mode our alarm guards against
is in our distant supervision query model when the user
provides a very poor query signal r without intending to,
and as a result, gets a very surprising query result. To test our
alarm, we collected a labeled training set from a user study,
then we used leave-one-out cross validation, training on all
but one target phenomenon for each round of evaluation.
We presented each of our 18 study participants with each of
our target phenomena and asked them to provide the query
tuple (q, r); they used an online drawing tool to provide a
distantly supervised version of r. To allow us to train and
test our classifier on a substantial number of user queries,
we synthesized new queries by taking the Cartesian product
of the query strings and signals provided by our 18 users.
This method allowed us to create an additional 306 synthetic
queries for each of the 6 nowcasting targets.

Evaluation Metrics — We measured the average improve-
ment of semantic relevance and signal correlation before
and after filtering out alarmed results. We also measured
precision and recall of our alarm’s ability to identify low-
quality queries. To simplify our analysis, we used β = 1 for
all queries; however, it is worth noting that for some queries,
a different β value achieved higher-quality results.

Overall Results — Table 7 shows the result of applying the
query quality alarm in two different settings, with each result
averaged over our six target phenomena. None shows the
average quality across all queries. Alarm shows the results
for those queries that did not trigger the alarm, increasing
average signal correlation 30.4% (from 0.35 to 0.45).

In the second setting, Alarm + User, we assumed that
users perform an additional step of pre-filtering results with
a semantic relevance below 0.5. Since users can easily identify
irrelevant topics, this is more analogous to RaccoonDB’s
real-world usage. The signal correlation increased to 0.43
(a 24.2% increase over not using the alarm). While this is
not quite as large an increase as using the alarm alone, this
method did show a significant increase in semantic relevance.
This simple extended alarm had a precision of 0.74 and a
recall of 0.89, with a false positive rate of 16% over all of the
targets. For all targets, both the average semantic relevance
and signal correlation scores showed improvement.

7. RELATED WORK
There are several areas of research that are related to our

work, which we discuss below.

Nowcasting — Several research projects [12, 14,17,34], in-
cluding our own work [10], have used ad hoc social media

nowcasting to estimate real-world phenomena, relying on
either slow and tedious manual searching or automated sta-
tistical approaches that are prone to spurious and low-quality
results. We extend this work by proposing a general-purpose
declarative nowcasting query system that quickly generates
high-quality results with little user effort. Our work is also
similar to Google Trends [14]—where users can search for
social media topics by keyword—and Google Correlate [29]—
where users can rank topics by signal correlation. However,
in contrast to our system, neither take advantage of both
criteria at the same time. Our work is also distinct from Socio-
scope [38], which assumes relevant topics have already been
identified. While nowcasting has faced some criticism due to
model failures [24] and the cherry-picking of results [25], we
view nowcasting as a tool that can be used either effectively
or maliciously—like statistics in general—and with proper
domain knowledge and training, these issues can be avoided.

At the end of Section 1, we discuss how our current work
differs from our past nowcasting work [9–11].

Feature Selection — Feature selection is a well-studied
problem in the statistics and machine learning domains.
Guyon and Elisseeff have a survey on the subject [18], where
they discuss different classes of selection methods such as us-
ing domain knowledge, ranking methods, and dimensionality
reduction techniques. In our work, we borrow ideas and meth-
ods from all three of these categories. More recently, Zhang
et al. [40] introduce a system for fast interactive feature
selection. We share their motivation of improving human-in-
the-loop feature selection, but our semantic-based approach
to scoring candidates takes this a step further by automating
much of the human-driven relevance evaluation. Additionally,
much of their work focuses on combining selection with model
construction, but the scale of our topic database requires
RaccoonDB to use a ranking-based selection process.

Query Optimization — Query optimization is a well-
studied problem in database literature and has been applied
to other domains, though standard RDBMS optimization
techniques do not apply in our setting. Optimizations based
on confidence interval pruning have been implemented in
a number of works, including top-k query processing over
probabilistic data [32] and in recommending visualizations
for large datasets in the SeeDB project [36]. While simi-
lar to these other projects, our confidence interval signal
pruning works in tandem with our novel semantic scoring
pruning method, requiring dynamic parameter configuration
on a query-by-query basis. Herodotou et al. [19] developed a
system to identify good system parameters for MapReduce
jobs, but they computed these separately from the actual
job execution. RaccoonDB instead dynamically adjusts its
parameters as the query is being executed.

Multi-criteria Ranking — The goal of multi-criteria rank-
ing, or rank aggregation, is to combine multiple ranked or-
derings to produce a top-k list without evaluating all items.
Rank-Join [21] and Fagin’s algorithm [16] are two popular
approaches. Our work also needs to achieve a top-k list with
multiple scoring metrics; however, in our case, the scoring of
candidates is most expensive, so we have to rely on a different
set of optimizations (discussed in Section 4). Additionally, our
work hints at a relationship to skyline queries [23]; however,
our massive number of topics requires that we approximate
the skyline by selecting one point from it (the top topic in a
result) and aggregate it with k − 1 of its neighbors.
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Query Formulation — This area of work focuses on using
external information—such as query logs [22] or the data be-
ing queried [39]—to expand query results to include relevant
items that user queries do not exactly describe. Our work
shares a similar goal, but we can further improve results by
evaluating them in their final usage in a nowcasting model.

Complex Event Processing (CEP) — CEP focuses on
extracting trends from a stream of events, and could be used
to identify topic-based signals; however, doing so would be
extremely slow since CEP systems identify patterns across
events directly (e.g., taking 30 seconds to process a simple
“W” pattern match on 500K tuples [30]). Further, since they
lack semantic-based topic selection, they would require the
tedious manual topic selection that RaccoonDB avoids.

Sequential Pattern Mining — Note that our work is
quite distinct from sequential pattern mining [27], in which
the goal is to identify latent interesting events from time-
stamped data. Rather, our task is to choose the most useful
few sequences from a vast set of candidates.

8. CONCLUSION AND FUTURE WORK
In this work, we proposed a novel query model and frame-

work for declaratively specifying a nowcasting model and
yielding high-quality results with little user effort. Our query
optimizations and quality alarm aid the human-in-the-loop
nature of nowcasting by allowing for fast query iteration on
many phenomena—even those lacking historical ground truth
data. In the future, we would like to deploy RaccoonDB.
We also see an opportunity for applying its principles to
building other socially driven dataset construction tools.
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optimizations for feature selection workloads. In SIGMOD,
2014.

156

http://www.boxofficemojo.com/weekly/
http://www.google.org/flutrends/data.txt
http://fbi.gov/services/cjis/nics
http://www.google.com/finance/domestic_trends
http://research.stlouisfed.org
http://eia.gov/petroleum/gasdiesel/
http://wunderground.com/history/airport/KNYC/

	Introduction
	Problem Statement
	System Architecture
	Scoring and Ranking
	Aggregation

	Query Optimizations
	Candidate Pruning
	Confidence Interval Signal Pruning
	Semantic Scoring Pruning

	Dynamic Query Optimizations
	Low-Level Optimizations
	Time Complexity

	Detecting Poor User Queries
	Experiments
	Experimental Setting
	Performance Evaluation
	Quality of Standard Query Model
	Quality of Distant Supervision Model
	Effectiveness of Quality Alarm

	Related Work
	Conclusion and Future Work
	References

