
DBExplorer: Exploratory Search in Databases

Manish Singh
Indian Institute of Technology

Hyderabad, India
msingh@iith.ac.in

Michael J. Cafarella
University of Michigan

Ann Arbor, USA
michjc@umich.edu

H.V. Jagadish
University of Michigan

Ann Arbor, USA
jag@umich.edu

ABSTRACT

A traditional relational database can evaluate complex queries
but requires users to precisely express their information need.
But users often do not know what information is available
in a database, and hence cannot correctly express their in-
formation need. Traditional databases do not provide con-
venient means for users to gain familiarity with the data.

In this paper, we study the problem of exploratory search,
which a user may wish to perform to get an understanding of
the data set. We note that users often have some decisions
already made, so what they need is not an overall database
summary, but rather a summary “in context” of the rele-
vant portion of the database. Towards this end, we devise a
novel data summarization technique called the Conditional
Attribute Dependency (CAD) View, which shows the condi-
tional dependencies between attribute values conditioned on
applied selections. The CAD View can help users to gain fa-
miliarity with structured datasets in an attribute-wise man-
ner.

To evaluate the CAD View, we perform a user study com-
prising three complex exploratory tasks on a real dataset.
Our studies show that users are able to do all the tasks
about 4-5 times faster and with better accuracy using the
CAD View compared to the data summary shown in faceted
navigation, which is currently the most popular search inter-
face for e-commerce and has support for exploratory search.

1. INTRODUCTION
Users today have access to many large databases, yet find

it difficult to access the records they want. In some cases,
the challenge is to write correct SQL. But databases today
often come with easy-to-use query interfaces. Users still find
it difficult to specify the precise query conditions, due to
limited familiarity with the data. Consider, for example, a
user on a travel web site looking to book a hotel in a big
city. If she knows her preferences for price, location, star
rating, and other such relevant attributes, she can easily
specify a query that will pull out a few good choices for

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

her to consider from among the hundreds of hotels in the
city. But, if she is unfamiliar with the city, she may not
understand what typical prices are in the city or how all
the 5-star hotels are clustered in the financial district or
how there is a tradeoff between location and price. Without
this knowledge of the data in the database, she is forced to
depend on other data sources, such as advice from friends
and relatives, social media, web documents, etc., to gain
data familiarity and pose the right queries. In consequence,
even after hours of effort she may be left with various doubts:
“Did I make a good choice?”“Did I explore all my options?”
“Did I spend more than I needed to?”

Our goal in this paper is to develop database facilities to
support exploratory search. There are two types of search:
lookup and exploratory [26, 24, 19]. In lookup search users
have a specific well-defined search goal. In contrast, in ex-
ploratory search, the users’ goal is to gain a comprehensive
understanding of data that will enable them to pose more
informed lookup queries.

Supporting data exploration is difficult because: (a) Datasets
are complex and heterogeneous, and (b) Users have diverse
needs. It is easy, for example, to provide the user with some
simple summary statistics, such as average price for a ho-
tel room. However, this number is of only limited value to
the user, perhaps because there is huge variance between
different parts of the city or perhaps because the user is a
backpacker looking for youth hostels whose price is poorly
correlated with those at fancy hotels. What the user needs
is a characterization of a portion of the data (which she has
identified to the system) along dimensions that are of inter-
est to her.

Let us consider an example task to better appreciate our
problem. For variety, we describe a car purchase task rather
than a hotel room booking task. For specificity, we write
all queries in SQL, even though we expect any real imple-
mentation to have a user-friendly interface layer on top the
query language.

Example 1. Consider a used car database, which con-
tains a single table D with n attributes where each tuple rep-
resents a car for sale. The table has numerous attributes
that describe details of the car, such as Price, Make, Model,
BodyType, Drivetrain, Mileage, EngineSize, NumCylin-

ders, Color, FuelEconomy, Power, Year, etc.
Consider a user Mary who is unfamiliar with cars and

wants to buy a relatively new SUV car. She has five initial
Make preferences (Ford, Chevrolet, Toyota, Honda and Jeep),
because she has friends who drive these Makes, but she is open
to explore any similar option. She starts her exploration

Series ISSN: 2367-2005 89 10.5441/002/edbt.2016.11

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.11

with an initial query: R = SELECT * FROM D WHERE
Mileage BETWEEN 10K AND 30K AND Transmission =
Automatic AND BodyType = SUV. This query leads to a
large result set with thousands of tuples. Mary has to specify
more constraints to get to a smaller result set that she can
explore in depth. She thinks a good place to start may be to
reduce the number of Makes she considers. Let’s look at her
difficulties in choosing between Makes.

Limitation 1. Understanding Attribute Values —
The attribute Make has more than 50 values. Even to choose
among the 5 Makes she has initially chosen, she needs to un-
derstand what is the main difference between SUVs from
any pair of manufacturers, such as Jeep and Chevrolet. Fur-
thermore, Mary knows that her initial set of 5 Makes is just
a rough starting point, so before she narrows it down fur-
ther she may also want to understand what other Makes are
similar, and therefore belong in her consideration set. For
example, she may want to know who else makes SUVs very
similar to those made by Chevrolet.

Comparison can be of two types: independent and condi-
tional. An independent comparison would be comparing the
general characteristics of Chevrolet vs. Jeep cars. A condi-
tional comparison would be based on the user’s already made
selections. For example, Mary might want to compare the
five Makes: Ford, Chevrolet, Toyota, Honda and Jeep, given
the following choices: BodyType = SUV, 10K ≤ Mileage

≤ 30K, Transmission = Automatic. Conditional compar-
isons are difficult even for users who are quite familiar with
the domain. For example, Mary might know what Make she
would prefer if there are no constraints on other attributes.
However, if there are constraints in other attributes, such as
Price, Year, Color, etc., it is hard to find Makes that will
lead to cars that maximally satisfy her preferences across all
the attributes.

With traditional relational database, result sets are pre-
sented as sets of tuples. To compare Chevrolet SUVs with
Jeep SUVs, Mary has to look at hundreds of instances in
each set. This is very difficult to do. Perhaps these tuples
could be sorted on some important attributes, such as Price,
so that corresponding tuples can be compared. But this re-
quires knowing enough of the database to choose important
attributes, and even so provides only limited assistance in
understanding.

Finding similarities and differences are two complemen-
tary aspects of comparison. We looked at the difference
case in the preceding paragraph. To find additional similar
Makes is even more difficult, because now we need to check
the hundreds of Chevrolet instances with the thousands of
instances from dozens of other manufacturers. We note fur-
ther Mary has a desired mileage range initially specified. As
she explores the data set, she may decide to change this.
If she is comparing Makes conditioned on her mileage selec-
tion, then she has a whole new comparison. The conditional
comparisons change with every change in the given query
condition.

Limitation 2. Querying Hidden Attributes — Often,
there are characteristics of the data item that are important
to the user but not explicitly recorded as an attribute in
the database. For example, Mary wants to choose a certain
car body look, but this field is not encoded anywhere in the
database. There may be a way to express her preference as a
selection on available attributes (perhaps as a combination

of low height, large wheel diameter and four doors). But
Mary does not know how to express her desired look in terms
of these other attributes.

Even worse, many database interfaces, for the sake of
simplicity, may limit the number of queriable attributes.
The number of cylinders in the engine may be an attribute
recorded in the database, but it is not available to Mary
through her forms-based interface for querying the database.
It is possible that queriable attributes, such as fuel efficiency,
can be used as surrogates to express her preference for a 4
cylinder engine. However, such cross-attribute relationships
are completely opaque to Mary, and she is unable to substi-
tute the surrogate for her desired attribute.

In exploring a database, users have two problems: (a) Choos-
ing attributes that will enable them to efficiently and pre-
cisely reach to their desired result set, and (b) Choosing at-
tribute values for each chosen attribute. These choices are
challenging because there is complex dependency between
attribute values within and across attributes, and users also
have an unspecified, complicated preference function that
spans across multiple attributes. Moreover, their preference
function changes on seeing the comparison between available
choices.

In short, while exploring a data set, users often make
choices in sequence (with some backtracking where needed).
They need help to understand the fragment of the database
that is currently selected, and they would like to see this
fragment of the data set characterized in terms of the choices
(of attributes and attribute values) that the user is contem-
plating next. The alternation of browsing and querying in
user interaction with data has been well-documented, where
the purpose of browsing is mostly exploration. When data
sets become large, unfortunately, browsing is no longer effec-
tive because of the very large number of tuples to be viewed.
Therefore, this understanding of selected database fragment
is best provided as a context-sensitive summary that sup-
ports the user’s exploration need.

In this paper, we present a novel data summarization tech-
nique called the Conditional Attribute Dependency (CAD)
View, which allows users to systematically explore the con-
ditional dependencies between attribute values both within
and across attributes. It thereby lifts the two limitations
described in the motivating example above. Our proposed
CAD View can be integrated with any structured data pre-
sentation system.

Our key contributions are as follows:

• We identify two limitations that users face in exploring
databases due to limited data familiarity (Section 1).

• We propose a query model and a data summarization
technique called the CAD View that can help users gain
familiarity with structured datasets (Section 2).

• We present the algorithms and techniques necessary to
create and present the relevant CAD Views (Sections 3
and 4).

• We integrate CAD View with faceted navigation to make
the exploratory search process user-friendly. Moreover,
this also leads to a novel search interface that can support
both exploratory and lookup search. (Section 5).

• We evaluate the CAD View on real data with a detailed
user study. We find that users, on average, can perform

90

Make Compare Attrs. IUnit 1 IUnit 2 IUnit 3

Chevrolet

Model

Engine

Price

Drivetrain

Year

[Traverse LT] [Equinox LT]

[V6]

[25K-30K] [20K-25K]

[AWD]

[2011-2012]

[Suburban 1500 LT, Tahoe LT]

[V8]

[35K-40K] [40K-45K]

[4WD] [2WD]

[2011-2012]

[Captiva LS, Equinox LT]

[V4]

[15K-20K, 20K-25K]

[2WD]

[2011-2012]

Ford

Model

Engine

Price

Drivetrain

Year

[Escape XLT] [Escape Ltd.]

[V6, V4]

[20K-25K, 15K-20K]

[2WD][4WD]

[2011-2012] [2010-2011]

[Explorer XLT] [Explorer Ltd.]

[V6] [V8]

[30K-35K] [25K-30K]

[4WD] [2WD]

[2011-2012]

[Edge Ltd.] [Edge SEL]

[V6]

[25K-30K]

[AWD, 2WD]

[2011-2012] [2010-2011]

Honda

Toyota

Jeep

Model

Engine

Price

Drivetrain

Year

[Wrangler Unlimited]

[V6] [V8]

[25K-30K] [30K-35K]

[4WD]

[2011-2012] [2010-2011]

[Compass Sport, Patriot Sport]

[V4]

[15K-20K]

[4WD] [2WD]

[2011-2012]

[Liberty Sport]

[V6]

[15K-20K]

[4WD] [2WD]

[2011-2012] [2010-2011]

Table 1: This table shows a sample Conditional Attribute Dependency (CAD) View for comparing five
different car manufacturers. The first column Make is the Pivot Attribute. The second column Compare

Attributes shows the top-5 attributes that are most informative for comparing the five Makes. The last three
columns shows the top-3 IUnits for each Make. The user has selected BodyType = SUV, 10K ≤ Mileage ≤ 30K,
Transmission = Automatic. Each IUnit is a cluster label that summarizes a group of similar SUVs.

tasks that require data understanding with 4-5 times
greater efficiency and accuracy using our CAD View as
compared to faceted interface (Section 6).

Finally, we conclude with Section 8 after a discussion of
related work in Section 7.

2. SOLUTION ARCHITECTURE
In this section we describe our solution to the exploratory

search problem in complex databases — the Conditional At-
tribute Dependency (CAD) View. We also identify algorith-
mic challenges that must be solved for the CAD View to
fulfill its goals.

2.1 The CAD View
The CAD View is a novel data summarization technique

that shows the conditional relationship between values in a
given attribute with values in other attributes. It is best
introduced by example. A more formal treatment follows in
the next subsection.

2.1.1 Overview

Table 1 shows a sample CAD View, obtained from a real
dataset, for the example query discussed in Section 1. Mary’s
goal was to explore automatic transmission SUV cars that
have Mileage between 10K-30K from five different Makes.
The CAD View has several important components:

1. The Pivot Attribute organizes the information that
is shown in the CAD View. A user explicitly chooses one of
the attributes as Pivot Attribute fp and requests the system
to create a CAD View that facilitates comparison among
attribute values selected from the Pivot Attribute by show-
ing their relationship with values across other attributes. In
Table 1, Mary has chosen Make as the Pivot Attribute.

2. Compare Attributes are data attributes that inter-
act with the Pivot Attribute in “interesting” ways. All the

values in the Pivot Attribute are compared using the same
set of Compare Attributes. These attributes can be auto-
matically determined based on the result set and the Pivot
Attribute or explictly provided by the user. For example,
one can use correlation to quantify interesting interaction.
In Table 1, the system has given five Compare Attributes:
Model, Engine, Price, Drivetrain, and Year.

3. An IUnit (Interaction Unit) is an “interesting” group of
values for the Compare Attributes. In Table 1, each IUnit
is described using the five Compare Attributes mentioned
above. Each IUnit is chosen to be relevant to a Pivot At-
tribute value: Chevrolet, Ford, Honda, etc. The top-left IU-
nit in this table (containing Traverse LT and Equinox LT)
identifies a set of midsized Chevrolet SUVs: they share an
engine size and a drivetrain, and have similar prices. One
can think of an IUnit as a cluster of database values with
two special differences: it is a cluster on a partition of the
database determined by each Pivot Attribute value, and the
cluster is labeled using the chosen Compare Attribute labels
and Compare Attribute values.

The Overall CAD View is a tabular combination of the
above three components. It displays one row for each value
of the user-selected Pivot Attribute. In the second column
the system shows an ordered list of Compare Attributes, one
for each row of the table. The rest of the table shows each
row’s top IUnits, sorted left-to-right in descending order of
relevance to the row’s Pivot Attribute value. If an IUnit
cluster can be represented equally well by multiple values in
a single Compare Attribute, then an IUnit will show multiple
attribute values in square brackets (e.g. Traverse LT and

Equinox LT).
Note that there are competing ways to rank IUnits from

left-to-right within each row. They can be ranked left to
right in order of their salience for the row’s Pivot Attribute
value. Or we could try to ensure that all of the IUnits in
a single column can be compared across all Pivot Attribute

91

values so that, e.g., the IUnit 1 for Chevrolet is similar to
IUnit 1 for Ford (and thereby addressing Limitation 1).

However, not all Pivot Attribute values may share compa-
rable IUnits, forcing our system into an impossible tradeoff
between IUnit quality and columnar IUnit “comparability.”
Thus, we chose to rank IUnits strictly by their relevance
to the row’s Pivot Attribute value. We use other means
to satisfy the comparability goal as described below in Sec-
tion 2.1.3.

2.1.2 Query Model

We use the following extension of SQL to express an ex-
ploratory search query:

CREATE CADVIEW cadview_name AS

SET pivot = pivot_attr

SELECT attr1, attr2,...,attrN

FROM table1, table2...

[WHERE Clause]

[LIMIT COLUMNS M] [IUNITS K]

[ORDER BY attr_name, attr_name ASC|DESC]

In the above expression, the list of attributes shown in the
SELECT clause are the attributes that the user has explictly
selected as Compare Attributes. The LIMIT COLUMNS
clause is used to limit the number of Compare Attributes.
The CAD View will have total of M columns as Compare
Attributes, in which N are explicitly provided by the user
and the remaining (M-N) are automatically selected based
on the query result and the Pivot Attribute. The number of
IUnits per row K is determined using the keyword IUNITS.
The ORDER BY keyword can be used to sort the IUnits by
one or more columns.

CREATE CADVIEW CompareMakes AS

SET pivot = Make

SELECT Price

FROM UsedCars

WHERE Mileage BETWEEN 10K AND 30K AND

Transmission = Automatic AND BodyType = SUV AND

(Make = Jeep OR Make = Toyota OR Make = Honda OR

Make = Ford OR Make = Chevrolet)

LIMIT COLUMNS 5 IUNITS 3

For example, Mary’s query can be expressed as above. The
Price attribute has been explicitly selected as a Compare
Attribute, and the remaining four attributes (Model, Engine,
Drivetrain and Year) are automatically determined.

2.1.3 Finding Similar Information

If there are V values in the Pivot Attribute and the user
has requested k IUnits per attribute value, then the CAD
View will have k|V| IUnits. As discussed in Section 1, one of
the primary goal of exploratory search is comparison, which
includes finding similarities and differences. To facilitate
comparison, we support the following two search operations
within the CAD View: (i) Finding similar top ranked IUnits,
and (ii) Finding similar attribute values within the Pivot
Attribute.

For example, if a user likes a particular IUnit from one of
the selected Pivot Attribute values (e.g., Chevrolet), then the
user may want to efficiently locate similar top-ranked IUnits
that belong to other Pivot Attribute values. Similarly, if
the user likes multiple IUnits of a particular Pivot Attribute
value, then the user might be interested to find out other
Pivot Attribute values that have similar IUnits.

Let’s say Mary likes IUnit 3 of Chevrolet. She can create a
new CAD View where all the IUnits that are similar to this
IUnit gets highlighted by using the following query:

HIGHLIGHT SIMILAR IUNITS

IN CompareMakes

WHERE SIMILARITY(Chevrolet, 3) > 3.5

In the similarity function the user gives the Pivot At-
tribute value and the IUnit ID. The above query will high-
light all the IUnits (e.g., IUnit 1 of Ford, IUnit 2 of Jeep) in
the CAD View CompareMakes with similarity score greater
than 3.5. As discussed later, for five Compare Attributes
the max similarity score can be 5.0.

Similarly, to find Makes that are similar to Chevrolet, one
can reorder the rows of the CAD View such that the Pivot
Attribute values are ordered in terms of decreasing similar-
ity with respect to Chevrolet. The similarity between two
Pivot Attribute values can be measured by measuring the
similarity between their IUnits. This query can be expressed
as follows:

REORDER ROWS

IN CompareMakes

ORDER BY SIMILARITY(Chevrolet) DESC

2.1.4 Design Goals

We can now examine the extent to which the CAD View
addresses the limitations described in the motivating exam-
ple above:

Limitation 1. Understanding Attribute Values —
With the traditional tuplewise presentation of result set, it
was difficult for Mary to find the Makes that are similar to
Chevrolet, or see the difference between Chevrolet and Jeep.
However, using the CAD View it is easy to see that IUnits of
Chevrolet and Ford are quite similar, and thus one can infer
that both Chevrolet and Ford offer SUVs at roughly similar
capacities and price points. One can also see that SUVs from
Chevrolet and Jeep are quite different, and they primarily
differ in Price and Drivetrain. Moreover, the CAD View
can show conditional comparisons. Since Mary had selected
Mileage between 10K and 30K, the CAD View shows her
comparison between SUVs in Year range 2011-2012.

Limitation 2. Querying Hidden Attributes — Also
recall that Mary was unable to choose cars with V4 engines,
because the interface did not expose Engine type as an op-
tion in the query panel even though the information was
contained in the database (i.e., Engine was a non-queriable
attribute). Moreover, she was not familiar enough with the
database to indirectly find V4 engines by selecting values in
the queriable attributes. In contrast, the CAD View identi-
fies V4 engines as a characteristic of specific IUnits for each
body style. Mary can select the desired tuples using the
corresponding queriable attributes.

2.2 Problem Definition

2.2.1 Assumptions

The CAD View is a tabular structure whose size must be
small enough for the summary information to be absorbed
effectively by the user. For example, the width must be small
enough not to require horizontal scrolling when displayed on
the user’s screen. We reflect this constraint on the width by
limiting the number of IUnits we can show for each attribute

92

value. Let this number be k. We assume that k is given
to us, either by the user explicitly, or through the system
gaining knowledge of the user’s set up.

The length of the table must also be constrained for the
same reason. There are two variables that control table
length. The first is the number of distinct values for the
pivot attribute. By default, we will show all of them. If the
user is focused on only specific values, these can be listed
explicitly in the CAD View specification. Mary has chosen
5 specific Makes in the example above. The second variable
affecting table length is the number of Compare Attributes
in each row. We assume that this number c is given to
us, just as k is. Furthermore, if the user is interested in
specific attributes, she can insist that these be included in
the Compare Attributes that the system selects.

For categorical attributes or attributes with small discrete
numerical domain, the attribute values are directly obtained
from the domain. Where the number of values is very large,
such as for most numerical domains, ranges of values are
binned together to create a small number of discrete at-
tribute values. Such attribute value cardinality reduction is
necessary for effective summarization. However, this cardi-
nality does not itself play a role in the CAD View generation
algorithm. Therefore, we mention it here as a pre-processing
step, but do not go into details of exactly how this binning
is done. We suggest following the well-developed techniques
in histogram construction[17] for this purpose.

In this section we describe the problems that needs to be
solved to create the CAD View. Our goals are (i) to pop-
ulate this structure effectively, making the most of limited
screen real-estate available, and (ii) to arrange and present
the information populated in this structure to maximize its
value to the user.

For the first goal, we have to find the best (i.e., most
informative) Compare Attributes, the best IUnit clusters,
and (for each IUnit) the best value labels to describe the
IUnit’s data.

The CAD View structure already lays out IUnits in rows,
one per attribute value for the Pivot Attribute. For the
second goal, the system must further decide how to order
IUnits within each row, how to indicate similarity between
IUnits in different rows, and how to indicate similarities and
differences between rows as a whole.

2.2.2 Creating the CAD View

The CAD View is created for a given result data set R
and a Pivot Attribute. Populating the CAD View entails one
main task: obtaining the k IUnits of interest for each value
of the pivot attribute. This task can be written formally as:

Problem 1 (Generate IUnits): Given a result set R, a
Pivot Attribute fp, a set of attribute values V selected from
fp, and a threshold value k, find for each attribute value
v ∈ V a list of k IUnits Sv, where Sv = {sv1 , s

v
2 , ..., s

v
k} and

svj is the jth IUnit for attribute value v.

The first task could be accomplished as finding k clusters
with our favorite clustering algorithm. However, we observe
that our goal is to explain the main structure of this frag-
ment of the data set to the user. Therefore, there are two
important ways in which we deviate from the basic problem
statement above. The first is that we restrict the clustering
to be on the basis of only the attributes selected as Compare
Attributes. These are the attributes that will be displayed in

the CAD View. In other words, these are the attributes that
will be used to label each cluster (IUnit). Therefore, it is
the values of these attributes that we wish to have clustered
together in each IUnit rather than some other attributes not
shown to the user. The second point we note is that we are
under no obligation to cover all points in the data set with
the clusters produced. We do not want outliers to distort
the clusters. To this end, we choose to solve the clustering
problem with a larger number l, and then choose the top-
k IUnits from among these l clusters. l can be chosen by
iterating through all plausible l values and evaluating the
quality of the resulting CAD View for each. Or it could be
obtained as a system tuning parameter, such as l = 1.5k.

We can then restate the CAD View generation problem
as the following sequence of sub-problems:

Problem 1.1 (Compare Attributes): Given a result set
R, a Pivot Attribute fp, and set of attribute values V selected
in fp, find a subset of Compare Attributes I s.t. I generate
the most contrast among values in V.

Choosing Compare Attributes is a feature selection prob-
lem [12, 22] with a specialized way of evaluating the quality
of a feature: good features (that is, Compare Attributes)
yield sharply contrasting IUnits across the different Pivot
Attribute values. One can discriminate among Compare At-
tributes as follows: Given a multi-class problem, a feature X
is preferred to another feature Y if X induces a greater con-
trast between the multi-class conditional probabilities than
Y. X and Y are indistinguishable if they induce the same
amount of contrast.

Problem 1.2 (Generate Candidate IUnits): Given a
result set R, a Pivot Attribute fp, a set of attribute values
V selected from fp, a set of Compare Attributes I, and a
threshold value l, find for each attribute value v ∈ V a list of
l candidate IUnits Sv, where Sv = {sv1 , s

v
2 , ..., s

v
k} and svj is

the jth candidate IUnit for attribute value v.
Problem 1.2 is now stated as a clustering problem, with

each resulting cluster being a candidate IUnit. We finally
need to choose k IUnits from among these l candidates.

Problem 2 (Top-k IUnits): Given a list of IUnits Sv for
attribute value v, and a preference function P , find the top-
k IUnits T v in Sv according to preference P , where T v =
{tv1 , t

v
2 , ..., t

v
k} and T v ⊆ Sv.

The IUnits could be ranked based on a function that is
rooted in the clustering algorithm; for example, we could
prefer “tight” clusters by ranking them in ascending order
of minimum pairwise similarity. However, we can pursue
some application-specific goals by ranking IUnit clusters in
a manner that is distinct from the IUnit creation mechanism.
For example, our car navigation interface might, by default,
rank clusters in ascending order of cluster price. In contrast,
the fleet manager for a taxi company might have a different
preference function that ranks IUnits in descending order
of car mileage. Therefore, we have defined this ranking in
terms of a specific preference function. If no function is
specified by the user, we can use a simple system default,
such as cluster size.

2.2.3 Finding Similar Information

The two search operations within the CAD View can be
stated as following two problems:

Problem 3 (Similar IUnits): Given two attribute values

93

x and y from the Pivot Attribute, and an IUnit txi from T x,
find all IUnits tyj s.t. tyj ∈ T y and sim(txi , t

y
j) ≥ τ .

We can use any similarity function for this purpose, and
any user or system specified threshold τ . We describe the
specifics of the similarity function in Section 4.1.

Problem 4 (Similar Attribute Value): Given two at-
tribute values x and y and their top-k list of IUnits T x and
T y, find the similarity between x and y by measuring the
similarity of their top-k IUnits.

If a user shows preference for a particular attribute value,
it implies that the user has liked most of the top-k IUnits
that has been shown for that attribute value. The user would
be interested to see other attribute values that have similar
IUnits both in terms of content and rank. We describe the
specifics in Section 4.2.

3. CREATING THE CAD VIEW
In this section, we describe how we create and sort IUnits

(problems 1 and 2 above) for the CAD View.

3.1 Generating Candidate IUnits
Generating uniformly labeled IUnits consists of two steps:

finding good Compare Attributes I that can show contrast
in Pivot Attribute values V; and then generating l IUnits for
each value v ∈ V.

3.1.1 Finding Compare Attributes

The problem of finding Compare Attributes is similar to
feature selection in a multi-class classification problem. To
provide efficient user interaction and understanding, we use
a feature selection algorithm that is computationally effi-
cient and returns all the relevant features.

To determine the number of Compare Attributes we con-
sider two factors: the available screen space and the rele-
vance score of each informative facet. The user’s available
screen space determines the maximum number c of Compare
Attributes that can be shown for any Pivot Attribute. How-
ever, all Pivot Attribute may not have c informative facets
that have relevance greater than a required minimum thresh-
old relevance score. A relevant Compare Attribute always
provides additional useful information. However, if a Com-
pare Attribute is not informative about the Pivot Attribute,
including it will lower the quality of generated IUnits and
waste valuable screen space.

We use the ChiSquare feature selection algorithm [23].
ChiSquare evaluates the worth of an attribute by comput-
ing the value of the chi-squared statistic with respect to the
class. For ChiSquare test one can determine the threshold
relevance using p-values, such as significance level equal to
0.01, 0.05, or 0.10. Even with this simple technique, ranking
Compare Attributes in order of decreasing relevance yields
a few interesting observations that a typical user might not
know. For example, it might seem that Mileage should be
the best Compare Attribute when distinguishing among dif-
ferent Year values: older cars will naturally accrue more
miles. However, it turns out that Model is better, as specific
car models (Suburban 1500 LT, not simply Suburban) are re-
leased frequently, and a specific model is prominent in the
database for only a short period of time.

3.1.2 Finding Important Attribute Interactions

To create IUnits for a Pivot Attribute value v ∈ V, we
take all tuples from the result set R that contain the given
value v, and allocate those tuples to l clusters. We derive
an IUnit from each of these l clusters. We cluster the tuples
using only the above-chosen Compare Attributes.

Since the CAD View is a user-facing application, we want
to create it within interactive time limits, well under 1 sec.
There are various factors that can slow down a clustering
algorithm: (i) clustering a dataset with large numbers of tu-
ples or dimensions, (ii) trying to infer the ideal number of
clusters using the clustering algorithm, and (iii) clustering
with large numbers of cluster centers. Since there are stan-
dard existing techniques to address each of these factors,
we defer their discussion to experimental evaluation (Sec-
tion 6.3).

The quality of IUnits depends on the quality of the clus-
tering algorithm. Since both efficiency and quality are major
concerns of our system, we use standard k-means algorithm.
Our main contribution in the clustering step is the dynamic
variation of system parameters to achieve real-time perfor-
mance, as discussed later in Section 6.3.

Our key contribution in creating the IUnits is the post-
clustering step of cluster labeling, which is often ignored in
clustering research. Although clustering is a very nice data-
categorization technique, it is very hard for most users to un-
derstand the large amount of information that is contained
in each cluster, or be able to compare multiple clusters.

There are existing systems to visually explore clusters of
structured data [5, 21, 29]. Some of these systems are not
easy to explore when the data is high-dimensional or cate-
gorical. For normal end-users, the commonly used cluster
labeling technique is to show the centroid of each cluster,
which is useful when all clusters are spherical. For complex
shaped clusters, it is considered more informative to show
multiple tuples that can show the whole cluster boundary [5].
It is very hard to understand a high-dimensional cluster by
seeing just one centroid or some boundary points. When a
user sees a high-dimensional representative tuple, it is not
easy to infer the dimensions that are most significant. We
need to label the clusters in such a way that we can convey
large amount of information in a summarized manner and
also emphasize the important information.

The way we label the clusters has many benefits. We la-
bel all IUnits uniformly and use ranking at all levels. We
rank the Compare Attributes to highlight the attributes that
are most significant. Similarly, in each IUnit we rank the
Compare Attribute values and show only the most impor-
tant representatives. Instead of showing few representative
tuples from each cluster, we try to summarize statistical
distribution of each Compare Attribute. To label both cate-
gorical and numerical attributes in uniform manner, we dis-
cretize the numerical attributes. We rank attribute values
based on frequency count and then group multiple values if
they have similar frequency count. We use two thresholds
— max display count and statistical difference between fre-
quency counts — to determine the representative Compare
Attribute values for each cluster.

3.2 Top-k IUnits
Without an explicit user preference function, we choose a

preference function that depends on the size of the IUnit’s
underlying cluster, as well as overall result diversity. IU-
nits that represent large clusters are desirable because they

94

summarize attribute interactions for larger number of tu-
ples. Moreover, they may give more reliable insight than
smaller outlier-prone clusters. However, when we select the
top-k IUnits based purely on the cluster size, many are quite
similar and appear redundant to the user.

Thus we use the generic top-k algorithm proposed in [25]
to compute diversified top-k IUnits. It requires the follow-
ing measures: preference score of each IUnit sxi , denoted as
score(sxi); similarity between two IUnits sxi and syj , denoted
as sim(sxi , s

y

j); and a user defined threshold similarity value
τ . Two IUnits sxi and syj are considered similar, denoted as
sxi ≈ syj , if sim(sxi , s

y
j) ≥ τ .

Diversified Top-k IUnits: Given a list of IUnits Sv =
{sv1 , s

v
2 , ...} for a attribute value v, and an integer k, the

diversified top-k IUnits for v, denoted as T v = {tv1 , t
v
2 , ...},

is the list of IUnits that satisfy the following conditions:
1) T v ⊆ Sv and |T v| ≤ k
2) For any two different IUnits svm and svn, if s

v
m ≈ svn then

{ivm, ivn} 6⊆ T v

3) Σtv
i
∈Tv score(tvi) is maximized.

To create the CAD View, we need to compute the diversi-
fied top-k IUnits for each attribute value v. The diversified
top-k problem can be reduced to the NP-Hard maximum
independent set problem on graphs [25]. Greedy solutions
often lead to good approximate results in many NP-Hard
problems, but for this problem a greedy algorithm can lead
to arbitrarily bad solutions, with no bounded constant fac-
tor solution [25]. Because in our problem the size |Sv | is
generally not large, Qin, et al.’s basic div-astar algorithm
works well.

4. FINDING SIMILAR INFORMATION
In this section, we decribe how to find similar components

in the CAD View. These are solutions to Problems 3 and 4.

4.1 Finding Similar IUnits
If a user likes one of the IUnits, say IUnit txi from T x, the

user can find all the IUnits t in the CAD View s.t. txi ≈ t
(in other words, sim(txi , t) ≥ tau). This approach allows
us to address the IUnit sorting problem mentioned in Sec-
tion 2.1.1; we can now sort IUnits from left-to-right by order
of salience to the row’s Pivot Attribute value, while still al-
lowing the user to compare similar IUnits.

Computing similarity between IUnits is equivalent to com-
puting similarity between clusters. For a numerical dataset,
one can compute cluster distance by measuring the distance
(such as Euclidean distance) between cluster centroids. For
a categorical dataset, one can use any distance measure that
is used in existing categorical clustering algorithms to com-
pute cluster distance [11]. However, things become more
complicated when we have a mixed dataset, having both
numerical and categorical attributes. The distance measure
that is used in categorical datasets is quite different com-
pared to those used in numerical datasets. To compute simi-
lar IUnits, we propose a new distance measure that can treat
both numerical and categorical attributes in a uniform man-
ner. We use discretization to convert numerical attributes
into categorical attributes. Then we use a modified form of
cosine-similarity to compute IUnit similarity.

Let txi and tyj be two top-k IUnits for selected attribute
values x and y, and I be their set of Compare Attributes. We
measure the similarity of txi and tyj by summing their cosine

Algorithm 1 IUnit Pair Similarity

Input: txi : IUnit 1
tyj : IUnit 2
I: set of informative dimensions

Output: s: similarity between the two IUnits
Method:

1: s← 0
2: for all d ∈ I do
3: s← s+ cosine-similarity(txi .d, t

y

j .d)
4: end for
5: return s

similarities along each dimension d s.t. d ∈ I. We use the
frequency count of each attribute value in the corresponding
cluster as the attribute value’s term frequency. Since the
range of cosine-similarity function is [0, 1], the range of the
above similarity function is [0, |I|]. Based on the specific
data domain, one can choose the IUnit similarity threshold
value τ as some α.|I|, where α ∈ (0, 1).

Algorithm 2 Attribute-value Pair Similarity

Input: T x = {tx1 , t
x
2 , ..., t

x
k} top-k IUnits for attribute value x

T y = {ty
1
, ty

2
, ..., tyk} top-k IUnits for attribute value y

Output: d: distance between T x and T y

Method:

1: d← 0
2: for all txi ∈ Tx do

3: if ∃t ∈ T y s.t. t ≈ txi then

4: index← j s.t. txi ≈ t
y
j and argmin

j

|j − i|

5: else

6: index← |T y|+ 1
7: end if

8: d← d+ |i− index|
9: end for

10: for all t
y
j ∈ T y do

11: if ∃t ∈ Tx s.t. t ≈ t
y
j then

12: index← i s.t. txi ≈ t
y
j and argmin

i

|j − i|

13: else
14: index← |Tx|+ 1
15: end if

16: d← d+ |j − index|
17: end for

18: return d

4.2 Finding Similar Attribute Values
If a user has preference for a Pivot Attribute value, the

user can create a CAD View where the first row contains
IUnits for the preferred value, and the remaining Pivot At-
tribute values are shown in decreasing order of similarity
to the preferred value. Two attribute values are considered
similar if their top-k IUnits lists are similar. Two ranked
IUnit lists T x and T y should be similar if they have similar
IUnits, and similar IUnits have similar rank.

To the best of our knowledge, there is no existing distance
metric to compute similarity between two ranked lists hav-
ing a disjoint set of items. In Algorithm 2, we propose a
distance measure that can compute distance between two
given ranked lists by taking into consideration the similarity
between their items both in terms of information content
and rank.

95

Figure 1: This screen capture from cars.com repre-
sents an example of a faceted navigation interface.

In lines 2-9, we compare how IUnits in T x compare to
IUnits in T y. In line 3, we check whether the list T y has
some IUnit which is similar to IUnit txi from T x. If there
is no similar IUnit (line 6), we assume that txi is similar to
the IUnit that has highest rank amongst non-selected IUnits
(i.e., Sy \ T y), and thus has rank |T y| + 1. In lines 3-4, if
there are multiple IUnits in T y that are similar to txi , then
we take the IUnit whose rank is closest to rank of txi in T x,
which is i. In line 8, we sum the rank differences for all
IUnits in T x. Lines 10-16 show the same steps for list T y.

5. FACETED SEARCH WITH CAD VIEW
The CAD View defined above can be used with any rela-

tional database, independent of any front ends used. In fact,
we have even suggested small SQL extensions to capture this
concept. Nevertheless, we recognize that most end-users are
unlikely to be SQL programmers, and are likely to be ac-
cessing relational data through some user-friendly interface.
In this section, we consider one such popular interface, and
describe how we have integrated CAD View with it.

Shoppers in e-commerce applications are a major target
for our work: they are often exploring unfamiliar web sites
before they actually buy. Since most e-commerce web sites
use faceted navigation, that is the interface that we chose
to integrate CAD View into. Figure 1 is a screenshot of
a typical faceted interface for browsing a database of cars.
In this section, we describe a novel two-phased faceted in-
terface, called TPFacet, which integrates CAD View with
faceted browsing.

A basic faceted interface has two main component pan-
els: a query panel and a results panel. The latter typically
occupies the majority of the screen real estate and shows
the set of currently selected items. The former is usually on
the left side, and offers both user interface controls as well
as a summary digest of the current query and result set.
This summary digest typically comprises all the attribute
values (attribute values) that appear in the selected items,
grouped by their corresponding attribute (attribute). The
tuple count for each attribute value may also be included.

To fit the CAD View within users’ limited screen space,

we propose a slightly changed interaction model for faceted
navigation: at any one time, the interface will display either
the results panel or the CAD View. The user explicitly
toggles between them, though it is easy to imagine a system
that intelligently chooses a default view, based on the size
of query results. We imagine the user will interact with
the system in two distinct phases: the query revision phase
focuses on the CAD View, while the result set phase focuses
on the results panel, with the user exploring individual items
of interest in the result set.

Faceted navigation is an interaction based search system.
We need to modify the faceted search interface so that users
can create the CAD View or find similar components within
the CAD View using interactive search techniques. We made
the following three modifications: (i) Make each queriable
attribute selectable (using html radio buttons) so that users
can select them as Pivot Attribute, (ii) When users click on
an IUnit in the CAD View we highlight all the other similar
IUnits, and (iii) When users click a Pivot Attribute value
in the CAD View we reorder all the rows in the CAD View
in decreasing order of similarity w.r.t. the clicked attribute
value. We call the faceted interface with these changes as
TPFacet system.

6. EVALUATION
The goal of the CAD View is to facilitate exploratory

search in complex datasets. As such, the primary evaluation
of the CAD View is by means of a user study. In particu-
lar, we compare the use of the CAD View with a standard
faceted interface for three exploratory search tasks. As a
baseline for comparison, we use Apache Solr [2], which is
a popular open source enterprise search platform. Apache
Solr has support for faceted navigation and is used by many
e-commerce sites. Apache Solr has many configuration set-
tings. We chose a setting that is closest to the CAD View
query model. We discuss the user study in depth in Sec-
tion 6.2.

A secondary question is one of performance. Since the
summaries shown in the CAD View are quite complex, we
have to make sure that they can be computed in reasonable
(interactive) time for the data set complexities and sizes that
we expect. We discuss this issue in Section 6.3.

6.1 Implementation and Environment
We integrated the CAD View with Apache Solr to design

the TPFacet system (see Section 5). We input the users’
query from faceted interface, compute the CAD View and
all similarity scores in the backend server, and return the
resulting CAD View and similarity information using HTML
and Javascript. To do feature selection and clustering, we
use ChiSquare and SimpleKMeans algorithm respectively.
Both algorithms are available in Weka [13].

We used two real datasets—YahooUsedCar and Mush-

room [9]— to do the evaluation. We scraped Yahoo’s used
car site [1] to create a table comprising 40,000 tuples with
11 attributes. The Mushroom dataset has 8124 tuples with
23 attributes. These numbers are at the lower end of what
one sees in a typical e-commerce dataset. The CAD View
will become more valuable in datasets that have more num-
ber of attributes or tuples. The Mushroom dataset is very
popular in machine learning. It is simple to understand for
a non-expert, since it describes familiar properties, such as
color and smell, but has data that most of us (and all of our

96

users) have no knowledge of, forcing us to learn patterns by
examining the data set afresh without reliance on previous
knowledge.

6.2 User Study
We devised a diverse set of carefully specified information

exploration tasks, described in the subsections that follow,
each of which tests (some aspects of) the users’ understand-
ing of the database. These tasks roughly correspond to the
two motivating limitations discussed in Section 1. The first
two tasks correspond to Limitation 1, where we evaluate
users’ ability to perform comparisons in the form of find-
ing differences and similarities respectively. The third task
corresponds to Limitation 2, where we test users’ ability
to query non-queriable attributes using available queriable
attributes. We used the Mushroom data set, which was
unfamiliar to all our users.

We compare TPFacet and Solr in terms of their usability
in users’ task completion time and quality of response to
given tasks. For all the tasks we report the results using
statistical analysis.

We performed our user study using eight graduate stu-
dents from our university. As we will see in the following
subsections, statistical analysis show that the conclusions
we draw from these eight users are statistically significant.

We gave all the users a demo explaining all features of
the TPFacet and the steps to do the tasks using both the
interfaces. We allowed the users to do the tasks remotely
to minimize effect of any environmental factors. We created
3 matched pairs of tasks, one pair for each type described
below. We divided the eight users into two equal groups.
We indicate each user by their user id U1-U8. Users with id
U1-U4 were assigned to group 1 and U5-U8 to group 2. For
a task pair (A,B) we asked one of the groups to do task A
using TPFacet and task B using Solr. We reversed the task
assignment for the other group. In other words, if a task
was done by group 1 users using Solr, then the same task
was done by group 2 users using TPFacet, and vice versa.

For all the three tasks we have performed linear mixed
model statistical analysis [28]. We use Display type as fixed
effect and User ID as random effect. Computing p-values for
mixed models aren’t as straightforward as they are for linear
models. The most popular way to obtain p-value is to use
the Likelihood Ratio test as a means to attain p-values. The
logic of the likelihood ratio test is to compare the likelihood
of two models with each other. First, the model without
the factor that one is interested in (the null model) and
then the model with the factor that one is interested in.
By comparing these two models, one can determine whether
the factor one is considering is significant or not. We use
ANOVA to compare the two models.

6.2.1 Simple Classifier

This task illustrates the benefits of the CAD View in find-
ing differences between attribute values. We asked users to
build a simple classifier. Classification is an important ma-
chine learning problem where given a training data with
multiple class labels, one builds a classification model by
which one can find the set of classes (categories) a new
test observation belongs. In this task, we build a classi-
fier for binary class data. We assume a simple classification
model that consists of selecting at most two attribute values
that maximizes the number of tuples retrieved from a given

target class, and minimizes the number of tuples from the
other class. Although problems like classification are rarely
done manually for large datasets, human ability in this task
demonstrates an understanding of crucial database themes.
We evaluate the goodness of the classifier using standard F1
accuracy score. A sample task was to build a classifier for
target class Bruises = true, where the given classes were
Bruises = {true, false}.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U1 U2 U3 U4 U5 U6 U7 U8

F1
 S

co
re

User ID

Solr TPFacet

Figure 2: Simple Classifier

0

2

4

6

8

10

12

14

16

18

U1 U2 U3 U4 U5 U6 U7 U8

T
im

e
 (

in
 m

in
)

User ID

Solr TPFacet

Figure 3: Simple Classifier
Figure 2 shows the F1 scores for the classifiers that users

got for this task. Statistical analysis shows that TPFacet
affects the quality of classfier by (χ2(1) = 5.572, p = 0.018),
increasing the F1 score by about 0.078 ± 0.0285. Moreover,
the variation in F1 score is much lower when users use the
TPFacet system as compared to Solr because the exploration
using TPFacet is more methodical. In Figure 3, we show
the time taken by the users to build the classifiers. Statis-
tical analysis shows that TPFacet affects the time taken by
(χ2(1) = 8.54, p = 0.003), lowering it by about 5.44 ± 1.56
minutes.

6.2.2 Most Similar Facet Value Pair

This task illustrates the benefits of the CAD View in find-
ing similar (or equivalent) attribute values. In this task, we
gave users a list of four attribute values from an attribute
and asked them to find the two most similar attribute values.
For example, given attribute = GillColor and attribute val-
ues = {buff, white, brown, green}, find the two most similar
gill colors.

In the traditional faceted interface, users can Compare
Attribute values by comparing their summary digest. We
gave users a cosine-similarity based distance metric to com-
pare the summary digests. We asked users to select each of
the given attribute values, one at a time, and compare their
summary digest. In the CAD View, we didn’t show the com-
puted similarity scores, but allowed users to use interactive
effects to find similar IUnits and attribute values.

Figure 4 shows users response quality for this task. Since
there are four attribute values, there are 6 possible attribute
value pairs. We computed the defined similarity score for
each pair and ranked them from 1 to 6, with the most simi-
lar pair being ranked as 1. Since computing exact similarity
score is very hard for humans, we purposely chose attributes

97

0

1

2

3

4

5

6

7

U1 U2 U3 U4 U5 U6 U7 U8

Si
m

il
a

r
P

a
ir

 R
a

n
k

User ID

Solr TPFacet

Figure 4: Most Similar Attribute Value Pair

and attribute values that would make the task humanly fea-
sible in Solr. The similarity between gill colors brown and
white was so high as compared to other choices that all the
eight users got correct answer for this task. Group 1 users
(U1-U4) did this task using TPFacet and group 2 users using
Solr. However, the other similarity task was slightly harder.
For the other task, users U7 and U8 got the most similar
attribute value pair according to attribute value similarity
we defined in Section 4, but according to the metric defined
in this task, they turned out to be second most similar pair.
Statistical analysis shows that there is no difference in users
response quality by using the two types of interface.

0

2

4

6

8

10

12

14

16

U1 U2 U3 U4 U5 U6 U7 U8

T
im

e
 (

in
 m

in
)

User ID

Solr TPFacet

Figure 5: Most Similar Attribute Value Pair
Figure 5 shows the time users took to finish this task. Sta-

tistical analysis shows that TPFacet affects the time taken
by (χ2(1) = 12.04, p = 0.0005), lowering it by about 6.00±
1.23 minutes. All users, except user U7, finished the task
around four times faster using TPFacet as compared to Solr.
Since the users were doing this task for the first time, some
of them were trying to manually compare the IUnits. Users
could have got the desired answer for this task much faster
by just using the interactive effects, as seen in case of users
U4, U8 and U1.

6.2.3 Alternative Search Condition

This task illustrates the benefits of the CAD View in
querying non-queriable attributes using queriable attribute
values. In this task, we gave users a set of selection condi-
tions that lead to some result set R. We asked users to find
another set of selection conditions that would lead to same
result set R, but not using any of the already given selection
conditions. One can see the given selection conditions as se-
lection conditions on non-queriable attributes that the users
cannot query. Only an informed user can precisely access
the desired result set using an alternate option. A sample
task was to find an alternative selection condition using at
most two attribute values that would lead to the same result
as selecting: StalkShape = enlarged and SporePrintColor

= chocolate.
To evaluate users response quality, we checked the simi-

larity between the query result obtained from the given se-
lection condition and the users alternate selection condition.
To measure similarity between the two results, we measured
the similarity between their faceted summary digest.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

U1 U2 U3 U4 U5 U6 U7 U8

R
et

ri
ev

al
 E

rr
o

r

User ID

Solr TPFacet

Figure 6: Alternative Search Condition

Figure 6 shows users response quality for this task. Statis-
tical analysis shows that TPFacet affects the users alterna-
tive search condition by (χ2(1) = 3.28, p = 0.07), lowering
the retrieval error by about 0.329 ± 0.172. Using TPFacet
most users were able to do the task with five times lower
retrieval error. In this task pair, the task that group 1 users
did using Solr, turned out to be quite easier compared to the
one they had to do using TPFacet. We can see this differ-
ence by seeing that users U3 - U8 have very low and similar
error for this task. For the easier task, just one attribute
value was sufficient to get to the desired result set. All the
users in group 2 had come up with slightly variant solutions,
but exactly the same retrieval error (48 missing tuples out of
1344). Since TPFacet allows users to do this type of task in
more methodical approach compared to Solr, we find much
lower variation in users response quality. For the slighly
harder task, we see slight variation in retrieval error among
group 1 users who did this task using TPFacet, but the error
variation is much higher for group 2 users who did it using
Solr. Group 2 users, such as U5, U6 and U8, who had much
lower error compared to user U7 had to spend significantly
more amount of time as seen in Figure 7.

0

2

4

6

8

10

12

14

U1 U2 U3 U4 U5 U6 U7 U8

Ti
m

e
 (

in
 m

in
)

User ID

Solr TPFacet

Figure 7: Alternative Search Condition
Figure 7 shows the time users took to finish this task. Sta-

tistical analysis shows that TPFacet affects the time taken
by (χ2(1) = 2.58, p = 0.108), lowering it by about 2.00±1.14
minutes. Most users were able to do the task 1.5 to 2 times
faster using TPFacet as compared to Solr. This task re-
quired more time because users had to manually differenti-
ate the IUnits. The main benefit of TPFacet was that users
didn’t have to try various options using hit-and-trial. They
had to look through the IUnits to find the discriminating at-
tribute values, but then it was just trying very few possible
alternate choices to see which one gives the best result.

6.3 Performance
Computational time is a crucial constraint for all user fac-

ing applications because users expect almost instantaneous
response. In this subsection, we evaluate whether TPFacet
can provide interactive responses. We performed all our per-
formance experiments on the YahooUsedCar dataset with
40K tuples and 11 attributes. When users browse over e-
commerce sites, they rarely deal with result size that is more
than 30K-40K tuples and 5-10 queriable attributes. Thus

98

we evaluate our system using all the tuples of our used-car
dataset as query result, with all its attributes being used as
queriable attributes.

Our experiments show that TPFacet can give acceptable
performance by just using computationally efficient feature
selection and clustering algorithms. Each of our experimen-
tal graphs are based on average readings of 50 simulations,
where for each simulation we generate a different query re-
sult by randomly selecting a subset of tuples and/or at-
tributes. The default parameters in these experiments are:
the number of Compare Attribute I = 11, the number of
generated IUnits l = 10, the number of IUnits shown k = 6,
and the number of attribute-values selected in the Pivot At-
tribute V = 5. In these experiments, we assume that if the
total size of the query result set is |R|, then each attribute
value v ∈ V has |R|/|V| tuples.

����

����

����

����

����

����

����

�
��
��
��

�	

���	
��
��������
� ����
�
��������
� �
��
�

�

���

����

����

����

�� ��� ��� ��� ��� ��� ��� ���

�
��

�
��
�

����
����������

Figure 8: Worst Case System Performance

Figure 8 shows the total time to compute the CAD View
for different sizes of query result. In the shown graph, we
do not do any optimizations, except using a computation-
ally efficient feature selection and clustering algorithm, that
can lead to better system performance. Moreover, we chose
system parameter values to demonstrate the worst-case per-
formance of our system. For example, we kept |I| = 11
and l = 15. When we consider interaction between many
attributes (large |I|) or try to compute many interactions
(large l), then it decreases system performance, as shown
in later experiments. We divide the total time into three
parts: time to compute Compare Attribute, time to gen-
erate IUnits and time for all remaining steps, such as top-k
ranking, and similarity between IUnits and attribute-values,
that we represent collectively as others. We can see that the
most computationally intensive parts of TPFacet is comput-
ing the top Compare Attribute and generating candidate
IUnits. Total time for all other steps is negligible because of
the small values of k and |V| established due to user’s display
constraint. We can see that even this naive solution is ac-
ceptable when the result size is less 15K. But as we increase
the result set size, we can see that the time to compute CAD
View increases and becomes almost 4.5 secs for 40K tuples.
Since the result set size is likely to be the largest in the ini-
tial stages of exploration, and since this is also likely to be
when the user really needs interactive response to freely try
alternatives, a multi-second response time is too slow. To
alleviate this problem, we developed several optimizations.

Optimization 1. Sampling — Sampling can improve
both feature selection and clustering. For all our attributes,
when we computed the set of top ranked Compare Attribute
using a small random sample of size 5K-10K, we always got
almost the same set, as we got from any larger sample size,
including the full dataset. As shown in Figure 8, computing

Compare Attribute takes only 20-50 ms for 5K-10K tuples,
as compared to 1700 ms for 40K tuples. Quality of Compare
Attribute is more crucial when users are towards the end of
their exploration, and at that time even the exact computa-
tion will take very short time due to small result size. Even
if there were some degradation in quality due to sampling,
it may not matter much in the intial stages. Similarly, we
can also reduce the time for generating IUnits by generating
IUnits from a small sample.

����

����

����

����

����

��
�
��
��
�
��

�	

����	
��
�

����	
��
�

����	
��
�

�

���

����

� � � � � � � � �� �� �� �� �� ��

��
�
�

����
��������
�����������

����	
��
�

����	
��
�

Figure 9: Number of Generated IUnits vs Time

Optimization 2. Varying Generated IUnits — Fig-
ure 9 shows the effect of number of generated IUnits l on
computation time for different result sizes. We observed that
as we increased the number of generated IUnits, it increases
computation time due to increased time for clustering. For
small 10K result size, computation time is small, less than
500 ms, even when we generate 15 IUnits per attribute value.
However, if the result set is large and we generate large num-
ber of IUnits, as shown in Figure 8 for 40K tuples with l =
15, then it slows down system performance. When users are
in their beginning stages of exploration, it is hard to know
their preference because their query is too broad. Generat-
ing more IUnits and finally ranking is meaningful when we
know users’ preference more precisely, which typically hap-
pens near the end-stages of exploration. Thus we generate
fewer IUnits when the result set is very large, so that we
can provide a good summary of all options. As users narrow
down their exploration, we increase the number of generated
IUnits and return better top-k IUnits.

����

����

����

����

��
��
��
�
��

�	

�����	
��

�����	
��

�����	
��

�

���

����

� � � � � � � � � �� ��

��
�
��

����
��������
�������������

�����	
��

�����	
��

Figure 10: Number of Compare Attributes vs Time

Optimization 3. Fewer Compare Attributes — Fig-
ure 10 shows the effect of number of Compare Attributes
on computing clusters for different result sizes. As we in-
crease the number of Compare Attributes, it increases com-
putation time because we need to look at the interaction
between larger number of attributes. By showing few Com-
pare Attributes we can cluster even 40K tuples in less than
500 ms.

By combining all the above optimizations in creating the
CAD View, we can greatly increase the performance of TP-
Facet system. For example, we can get an CAD View for
40K tuples in less than 500 ms.

99

7. RELATED WORK
Exploratory search [26, 27, 24, 19] has recently become

an important research problem in IR, HCI and database
communities. We defined a new exploratory search prob-
lem in databases. In evaluating exploratory search systems
we cannot separate human behavior from the search system.
Since users have diverse background knowledge and informa-
tion need, it is difficult to evaluate exploratory search sys-
tems. Designing evaluation metrics and methodologies for
exploratory search system is a challenging research prob-
lem [26]. We presented a detailed user-study, based on
explicit exploration/understanding tasks with quantitative
measures, to evaluate our system.

The CAD View is a summary of important interactions
between attributes. Measuring attribute interactions is a
part of broader feature selection problem [12, 22, 18] in
machine learning. In databases, attribute interactions are
often measured in form of functional dependencies [8, 16]
and referential integrities. Although standard feature selec-
tion can find the interaction between attributes, a Bayesian
network [15] can provide a more accurate description of at-
tribute interactions by giving probabilistic dependencies be-
tween attributes. These techniques can be used to create
CAD Views with other types of data summaries.

Large volumes of relational data are often summarized us-
ing data warehousing and OLAP technology [10]. There are
also many data mining techniques, such as clustering [20, 3]
and decision trees [4, 6], that can group data into meaningful
groups according to some user given notion of similarity. A
central property of these algorithms is that they depend on
the data and are independent of the user’s interest. There-
fore, the results are often not related to the user’s specific
exploratory goal. In this paper, we presented a context de-
pendent summarization technique.

Faceted categorization and clustering are both grouping
techniques. Hearst [14] presents a nice comparison of how
these two techniques complement each other. Various us-
ability studies have shown that users prefer the predictable
faceted categorization over clustering [7]. In this paper, we
combined faceted browsing with clustering to build the TP-
Facet system that has benefits of both faceted navigation
and clustering.

8. CONCLUSION
In this paper, we presented an exploratory search system

for relational databases. Our solution relies on a novel data
summarization technique called the CAD View, which pro-
vides a context dependent summary of relational result set.
We showed through an extensive user study that the CAD
View can help users gain quick data familiarity with complex
datasets. Although computing the CAD View is computa-
tionally intensive, we provided optimizations that enable it
to be easily integrated with existing search interfaces, with-
out compromising system performance.

9. REFERENCES
[1] Yahoo used-car. http://autos.yahoo.com/used_cars.html.
[2] Apache solr. http://lucene.apache.org/solr/, 2014.
[3] P. Berkhin. A survey of clustering data mining techniques.

In GMD, pages 25–71. Springer, 2006.
[4] K. Chakrabarti, S. Chaudhuri, and S. Hwang. Automatic

categorization of query results. In SIGMOD, pages
755–766. ACM, 2004.

[5] K. Chen and L. Liu. Clustermap: Labeling clusters in large
datasets via visualization. In CIKM, pages 285–293. ACM,
2004.

[6] Z. Chen and T. Li. Addressing diverse user preferences in
sql-query-result navigation. In SIGMOD, pages 641–652.
ACM, 2007.

[7] J. C. Fagan. Usability studies of faceted browsing: A
literature review. ITL, 29(2):58–66, 2013.

[8] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. TKDE, 23(5):683–698,
2011.

[9] A. Frank and A. Asuncion. UCI Machine Learning
Repository, 2010.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and
Knowledge Discovery, 1(1):29–53, 1997.

[11] S. Guha, R. Rastogi, and K. Shim. Rock: A robust
clustering algorithm for categorical attributes. In ICDE,
pages 512–521. IEEE, 1999.

[12] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. JMLR, 3:1157–1182, 2003.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data mining
software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[14] M. A. Hearst. Clustering versus faceted categories for
information exploration. Communications of the ACM,
49(4):59–61, 2006.

[15] D. Heckerman. A tutorial on learning with Bayesian
networks. Springer, 2008.

[16] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: automatic discovery of correlations
and soft functional dependencies. In SIGMOD, pages
647–658. ACM, 2004.

[17] H. Jagadish and T. Suel. Optimal histograms with quality
guarantees. In VLDB, pages 275–286, 1998.

[18] I. Kononenko. Estimating attributes: analysis and
extensions of relief. In ECML, pages 171–182. Springer,
1994.

[19] G. Koutrika, L. V. Lakshmanan, M. Riedewald, and
K. Stefanidis. Exploratory search in databases and the web.
In EDBT/ICDT Workshops, pages 158–159, 2014.

[20] C. Li, M. Wang, L. Lim, H. Wang, and K. Chang.
Supporting ranking and clustering as generalized order-by
and group-by. SIGMOD, 2007.

[21] B. Liu and H. Jagadish. Using trees to depict a forest.
VLDB, 2009.

[22] H. Liu and L. Yu. Toward integrating feature selection
algorithms for classification and clustering. TKDE,
17(4):491–502, 2005.

[23] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to information retrieval, volume 1. Cambridge University
Press Cambridge, 2008.

[24] G. Marchionini. Exploratory search: from finding to
understanding. Communications of the ACM, 49(4):41–46,
2006.

[25] L. Qin, J. X. Yu, and L. Chang. Diversifying top-k results.
VLDB Endowment, 5(11):1124–1135, 2012.

[26] R. W. White and R. A. Roth. Exploratory search: Beyond
the query-response paradigm. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 1(1):1–98,
2009.

[27] M. L. Wilson, R. W. White, et al. Evaluating advanced
search interfaces using established information-seeking
models. ASIST, 60(7):1407–1422, 2009.

[28] B. Winter. A very basic tutorial for performing linear
mixed effects analyses, 2001.

[29] T. Wu, X. Li, D. Xin, J. Han, J. Lee, and R. Redder.
DataScope: viewing database contents in Google Maps’
way. VLDB, 2007.

100

	DBExplorer: Exploratory Search in DatabasesManish Singh, Michael Cafarella, Hosagrahar Visvesvar Jagadish

