
KnowItNow: Fast, Scalable Information Extraction from the Web

Michael J. Cafarella, Doug Downey, Stephen Soderland, Oren Etzioni
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

{mjc,ddowney,soderlan,etzioni}@cs.washington.edu

Abstract

Numerous NLP applications rely on
search-engine queries, both to ex-
tract information from and to com-
pute statistics over the Web corpus.
But search engines often limit the
number of available queries. As a
result, query-intensive NLP applica-
tions such as Information Extraction
(IE) distribute their query load over
several days, making IE a slow, off-
line process.
This paper introduces a novel archi-
tecture for IE that obviates queries to
commercial search engines. The ar-
chitecture is embodied in a system
called KNOWITNOW that performs
high-precision IE in minutes instead
of days. We compare KNOWITNOW
experimentally with the previously-
published KNOWITALL system, and
quantify the tradeoff between re-
call and speed. KNOWITNOW’s ex-
traction rate is two to three orders
of magnitude higher than KNOW-
ITALL’s.

1 Background and Motivation
Numerous modern NLP applications use the Web as their
corpus and rely on queries to commercial search engines
to support their computation (Turney, 2001; Etzioni et al.,
2005; Brill et al., 2001). Search engines are extremely
helpful for several linguistic tasks, such as computing us-
age statistics or finding a subset of web documents to an-
alyze in depth; however, these engines were not designed
as building blocks for NLP applications. As a result,
the applications are forced to issue literally millions of
queries to search engines, which limits the speed, scope,
and scalability of the applications. Further, the applica-

tions must often then fetch some web documents, which
at scale can be very time-consuming.

In response to heavy programmatic search engine use,
Google has created the “Google API” to shunt program-
matic queries away from Google.com and has placed hard
quotas on the number of daily queries a program can is-
sue to the API. Other search engines have also introduced
mechanisms to limit programmatic queries, forcing ap-
plications to introduce “courtesy waits” between queries
and to limit the number of queries they issue.

To understand these efficiency problems in more detail,
consider the KNOWITALL information extraction sys-
tem (Etzioni et al., 2005). KNOWITALL has a generate-
and-test architecture that extracts information in two
stages. First, KNOWITALL utilizes a small set of domain-
independent extraction patterns to generate candidate
facts (cf. (Hearst, 1992)). For example, the generic pat-
tern “NP1 such as NPList2” indicates that the head of
each simple noun phrase (NP) in NPList2 is a member of
the class named in NP1. By instantiating the pattern for
class City, KNOWITALL extracts three candidate cities
from the sentence: “We provide tours to cities such as
Paris, London, and Berlin.” Note that it must also fetch
each document that contains a potential candidate.

Next, extending the PMI-IR algorithm (Turney, 2001),
KNOWITALL automatically tests the plausibility of the
candidate facts it extracts using pointwise mutual in-
formation (PMI) statistics computed from search-engine
hit counts. For example, to assess the likelihood that
“Yakima” is a city, KNOWITALL will compute the PMI
between Yakima and a set of k discriminator phrases that
tend to have high mutual information with city names
(e.g., the simple phrase “city”). Thus, KNOWITALL re-
quires at least k search-engine queries for every candidate
extraction it assesses.

Due to KNOWITALL’s dependence on search-engine
queries, large-scale experiments utilizing KNOWITALL
take days and even weeks to complete, which makes re-
search using KNOWITALL slow and cumbersome. Pri-
vate access to Google-scale infrastructure would provide

sufficient access to search queries, but at prohibitive cost,
and the problem of fetching documents (even if from a
cached copy) would remain (as we discuss in Section
2.1). Is there a feasible alternative Web-based IE system?
If so, what size Web index and how many machines are
required to achieve reasonable levels of precision/recall?
What would the architecture of this IE system look like,
and how fast would it run?

To address these questions, this paper introduces a
novel architecture for web information extraction. It
consists of two components that supplant the generate-
and-test mechanisms in KNOWITALL. To generate ex-
tractions rapidly we utilize our own specialized search
engine, called the Bindings Engine (or BE), which ef-
ficiently returns bindings in response to variabilized
queries. For example, in response to the query “Cities
such as ProperNoun(Head(〈NounPhrase〉))”, BE will
return a list of proper nouns likely to be city names. To
assess these extractions, we use URNS, a combinatorial
model, which estimates the probability that each extrac-
tion is correct without using any additional search engine
queries.1 For further efficiency, we introduce an approx-
imation to URNS, based on frequency of extractions’ oc-
currence in the output of BE, and show that it achieves
comparable precision/recall to URNS.

Our contributions are as follows:

1. We present a novel architecture for Information Ex-
traction (IE), embodied in the KNOWITNOW sys-
tem, which does not depend on Web search-engine
queries.

2. We demonstrate experimentally that KNOWITNOW
is the first system able to extract tens of thousands
of facts from the Web in minutes instead of days.

3. We show that KNOWITNOW’s extraction rate is two
to three orders of magnitude greater than KNOW-
ITALL’s, but this increased efficiency comes at the
cost of reduced recall. We quantify this tradeoff for
KNOWITNOW’s 60,000,000 page index and extrap-
olate how the tradeoff would change with larger in-
dices.

Our recent work has described the BE search engine
in detail (Cafarella and Etzioni, 2005), and also analyzed
the URNS model’s ability to compute accurate probability
estimates for extractions (Downey et al., 2005). However,
this is the first paper to investigate the composition of
these components to create a fast IE system, and to com-
pare it experimentally to KNOWITALL in terms of time,

1In contrast, PMI-IR, which is built into KNOWITALL, re-
quires multiple search engine queries to assess each potential
extraction.

recall, precision, and extraction rate. The frequency-
based approximation to URNS and the demonstration of
its success are also new.

The remainder of the paper is organized as follows.
Section 2 provides an overview of BE’s design. Sec-
tion 3 describes the URNS model and introduces an ef-
ficient approximation to URNS that achieves similar pre-
cision/recall. Section 4 presents experimental results. We
conclude with related and future work in Sections 5 and
6.

2 The Bindings Engine
This section explains how relying on standard search en-
gines leads to a bottleneck for NLP applications, and pro-
vides a brief overview of the Bindings Engine (BE)—our
solution to this problem. A comprehensive description of
BE appears in (Cafarella and Etzioni, 2005).

Standard search engines are computationally expen-
sive for IE and other NLP tasks. IE systems issue multiple
queries, downloading all pages that potentially match an
extraction rule, and performing expensive processing on
each page. For example, such systems operate roughly as
follows on the query (“cities such as 〈NounPhrase〉”):

1. Perform a traditional search engine query to find
all URLs containing the non-variable terms (e.g.,
“cities such as”)

2. For each such URL:

(a) obtain the document contents,
(b) find the searched-for terms (“cities such as”) in

the document text,
(c) run the noun phrase recognizer to determine

whether text following “cities such as” satisfies
the linguistic type requirement,

(d) and if so, return the string

We can divide the algorithm into two stages: obtaining
the list of URLs from a search engine, and then process-
ing them to find the 〈NounPhrase〉 bindings. Each stage
poses its own scalability and speed challenges. The first
stage makes a query to a commercial search engine; while
the number of available queries may be limited, a single
one executes relatively quickly. The second stage fetches
a large number of documents, each fetch likely resulting
in a random disk seek; this stage executes slowly. Nat-
urally, this disk access is slow regardless of whether it
happens on a locally-cached copy or on a remote doc-
ument server. The observation that the second stage is
slow, even if it is executed locally, is important because
it shows that merely operating a “private” search engine
does not solve the problem (see Section 2.1).

The Bindings Engine supports queries contain-
ing typed variables (such as NounPhrase) and

string-processing functions (such as “head(X)” or
“ProperNoun(X)”) as well as standard query terms. BE
processes a variable by returning every possible string
in the corpus that has a matching type, and that can be
substituted for the variable and still satisfy the user’s
query. If there are multiple variables in a query, then all
of them must simultaneously have valid substitutions.
(So, for example, the query “<NounPhrase> is located
in <NounPhrase>” only returns strings when noun
phrases are found on both sides of “is located in”.) We
call a string that meets these requirements a binding for
the variable in question. These queries, and the bindings
they elicit, can usefully serve as part of an information
extraction system or other common NLP tasks (such as
gathering usage statistics). Figure 1 illustrates some of
the queries that BE can handle.

president Bush <Verb>

cities such as ProperNoun(Head(<NounPhrase>))
<NounPhrase> is the CEO of <NounPhrase>

Figure 1: Examples of queries that can be handled by
BE. Queries that include typed variables and string-
processing functions allow NLP tasks to be done ef-
ficiently without downloading the original document
during query processing.

BE’s novel neighborhood index enables it to process
these queries with O(k) random disk seeks and O(k) se-
rial disk reads, where k is the number of non-variable
terms in its query. As a result, BE can yield orders of
magnitude speedup as shown in the asymptotic analysis
later in this section. The neighborhood index is an aug-
mented inverted index structure. For each term in the cor-
pus, the index keeps a list of documents in which the term
appears and a list of positions where the term occurs, just
as in a standard inverted index (Baeza-Yates and Ribeiro-
Neto, 1999). In addition, the neighborhood index keeps
a list of left-hand and right-hand neighbors at each posi-
tion. These are adjacent text strings that satisfy a recog-
nizer for one of the target types, such as NounPhrase.

As with a standard inverted index, a term’s list is pro-
cessed from start to finish, and can be kept on disk as a
contiguous piece. The relevant string for a variable bind-
ing is included directly in the index, so there is no need
to fetch the source document (thus causing a disk seek).
Expensive processing such as part-of-speech tagging or
shallow syntactic parsing is performed only once, while
building the index, and is not needed at query time. It
is important to note that simply preprocessing the corpus
and placing the results in a database would not avoid disk
seeks, as we would still have to explicitly fetch these re-
sults. The run-time efficiency of the neighborhood index

Query Time Index Space
BE O(k) O(N)

Standard engine O(k + B) O(N)

Table 1: BE yields considerable savings in query time
over a standard search engine. k is the number of con-
crete terms in the query, B is the number of variable
bindings found in the corpus, and N is the number of
documents in the corpus. N and B are typically ex-
tremely large, while k is small.

comes from integrating the results of corpus processing
with the inverted index (which determines which of those
results are relevant).

The neighborhood index avoids the need to return to
the original corpus, but it can consume a large amount
of disk space, as parts of the corpus text are folded into
the index several times. To conserve space, we perform
simple dictionary-lookup compression of strings in the
index. The storage penalty will, of course, depend on the
exact number of different types added to the index. In our
experiments, we created a useful IE system with a small
number of types (including NounPhrase) and found that
the neighborhood index increased disk space only four
times that of a standard inverted index.

Asymptotic Analysis:
In our asymptotic analysis of BE’s behavior, we count

query time as a function of the number of random disk
seeks, since these seeks dominate all other processing
tasks. Index space is simply the number of bytes needed
to store the index (not including the corpus itself).

Table 1 shows that BE requires only O(k) random disk
seeks to process queries with an arbitrary number of vari-
ables whereas a standard engine takes O(k + B), where
k is the number of concrete query terms, and B is the
number of bindings found in a corpus of N documents.
Thus, BE’s performance is the same as that of a standard
search engine for queries containing only concrete terms.
For variabilized queries, N may be in the billions and B

will tend to grow with N . In our experiments, eliminating
the B term from our query processing time has resulted
in speedups of two to three orders of magnitude over a
standard search engine. The speedup is at the price of a
small constant multiplier to index size.

2.1 Discussion
While BE has some attractive properties for NLP compu-
tations, is it necessary? Could fast, large-scale informa-
tion extraction be achieved merely by operating a “pri-
vate” search engine?

The release of open-source search engines such as
Nutch2, coupled with the dropping price of CPUs and

2http://lucene.apache.org/nutch/

8.16

0.06
0
1
2
3
4
5
6
7
8
9

10

BE Nutch

E
la

ps
ed

 m
in

ut
es

Figure 2: Average time to return the relevant bindings
in response to a set of queries was 0.06 CPU minutes
for BE, compared to 8.16 CPU minutes for the com-
parable processing on Nutch. This is a 134-fold speed
up. The CPU resources, network, and index size were
the same for both systems.

disks, makes it feasible for NLP researchers to operate
their own large-scale search engines. For example, Tur-
ney operates a search engine with a terabyte-sized index
of Web pages, running on a local eight-machine Beowulf
cluster (Turney, 2004). Private search engines have two
advantages. First, there is no query quota or need for
“courtesy waits” between queries. Second, since the en-
gine is local, network latency is minimal.

However, to support IE, we must also execute the sec-
ond stage of the algorithm (see the beginning of this sec-
tion). In this stage, each document that matches a query
has to be retrieved from an arbitrary location on a disk.3

Thus, the number of random disk seeks scales linearly
with the number of documents retrieved. Moreover, many
NLP applications require the extraction of strings match-
ing particular syntactic or semantic types from each page.
The lack of linguistic data in the search engine’s index
means that many pages are fetched only to be discarded
as irrelevant.

To quantify the speedup due to BE, we compared it to a
standard search index built on the open-source Nutch en-
gine. All of our Nutch and BE experiments were carried
out on the same corpus of 60 million Web pages and were
run on a cluster of 23 dual-Xeon machines, each with two
local 140 Gb disks and 4 Gb of RAM. We set all config-
uration values to be exactly the same for both Nutch and
BE. BE gave a 134-fold speed up on average query pro-
cessing time when compared to the same queries with the
Nutch index, as shown in Figure 2.

3Moving the disk head to an arbitrary location on the disk
is a mechanical operation that takes about 5 milliseconds on
average.

3 The URNS Model
To realize the speedup from BE, KNOWITNOW must also
avoid issuing search engine queries to validate the cor-
rectness of each extraction, as required by PMI compu-
tation. We have developed a probabilistic model obviat-
ing search-engine queries for assessment. The intuition
behind this model is that correct instances of a class or
relation are likely to be extracted repeatedly, while ran-
dom errors by an IE system tend to have low frequency
for each distinct incorrect extraction.

Our probabilistic model, which we call URNS, takes the
form of a classic “balls-and-urns” model from combina-
torics. We think of IE abstractly as a generative process
that maps text to extractions. Each extraction is modeled
as a labeled ball in an urn. A label represents either an
instance of the target class or relation, or represents an
error. The information extraction process is modeled as
repeated draws from the urn, with replacement.

Formally, the parameters that characterize an urn are:

• C – the set of unique target labels; |C| is the number
of unique target labels in the urn.

• E – the set of unique error labels; |E| is the number
of unique error labels in the urn.

• num(b) – the function giving the number of balls
labeled by b where b ∈ C ∪ E. num(B) is the
multi-set giving the number of balls for each label
b ∈ B.

The goal of an IE system is to discern which of the
labels it extracts are in fact elements of C, based on re-
peated draws from the urn. Thus, the central question we
are investigating is: given that a particular label x was
extracted k times in a set of n draws from the urn, what
is the probability that x ∈ C? We can express the prob-
ability that an element extracted k of n times is of the
target relation as follows.

P (x ∈ C|x appears k times in n draws) =∑
r∈num(C)(

r
s
)k(1 − r

s
)n−k

∑
r′∈num(C∪E)(

r′

s
)k(1 − r′

s
)n−k

(1)

where s is the total number of balls in the urn, and the
sum is taken over possible repetition rates r.

A few numerical examples illustrate the behavior of
this equation. Let |C| = |E| = 2, 000 and assume
for simplicity that all labels are repeated on the same
number of balls (num(ci) = RC for all ci ∈ C, and
num(ei) = RE for all ei ∈ E). Assume that the ex-
traction rules have precision p = 0.9, which means that
RC = 9 × RE — target balls are nine times as common
in the urn as error balls. Now, for k = 3 and n = 10, 000
we have P (x ∈ C) = 93.0%. Thus, we see that a small
number of repetitions can yield high confidence in an ex-
traction. However, when the sample size increases so that

n = 20, 000, and the other parameters are unchanged,
then P (x ∈ C) drops to 19.6%. On the other hand, if
C balls repeat much more frequently than E balls, say
RC = 90×RE (with |E| set to 20,000, so that p remains
unchanged), then P (x ∈ C) rises to 99.9%.

The above examples enable us to illustrate the advan-
tages of URNS over the noisy-or model used in previous
work. The noisy-or model assumes that each extraction is
an independent assertion that the extracted label is “true,”
an assertion that is correct a fraction p of the time. The
noisy-or model assigns the following probability to ex-
tractions:

Pnoisy−or(x ∈ C|x appears k times) = 1 − (1 − p)k

Therefore, the noisy-or model will assign the same
probability — 99.9% — in all three of the above exam-
ples, although this is only correct in the case for which
n = 10, 000 and RC = 90×RE . As the other two exam-
ples show, for different sample sizes or repetition rates,
the noisy-or model can be highly inaccurate. This is not
surprising given that the noisy-or model ignores the sam-
ple size and the repetition rates.

URNS uses an EM algorithm to estimate its parameters,
and currently the algorithm takes roughly three minutes
to terminate.4 Fortunately, we determined experimen-
tally that we can approximate URNS’s precision and recall
using a far simpler frequency-based assessment method.
This is true because good precision and recall merely re-
quire an appropriate ordering of the extractions for each
relation, and not accurate probabilities for each extrac-
tion. For unary relations, we use the simple approxima-
tion that items extracted more often are more likely to
be true, and order the extractions from most to least ex-
tracted. For binary relations like CapitalOf(X,y),
in which we extract several different candidate capitals y
for each known country X, we use a smoothed frequency
estimate to order the extractions. Let freq(R(X, y)) de-
note the number of times that the binary relation R(X, y)
is extracted; we define:

smoothed freq(R(X, y)) =
freq(R(X, y))

maxy′ freq(R(X, y′)) + 1

We found that sorting by smoothed frequency (in de-
scending order) performed better than simply sorting by
freq for relations R(X, y) in which different known X val-
ues may have widely varying Web presence.

Unlike URNS, our frequency-based assessment does
not yield accurate probabilities to associate with each ex-
traction, but for the purpose of returning a ranked list of
high-quality extractions it is comparable to URNS (see

4This code has not been optimized at all. We believe that
we can easily reduce its running time to less than a minute on
average, and perhaps substantially more.

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

Correct Extractions

P
re

ci
si

on

KnowItNow-freq KnowItNow-URNS
KnowItAll-PMI

Figure 3: Country: KNOWITALL maintains some-
what higher precision than KNOWITNOW throughout
the recall-precision curve.

Figures 3 through 6), and it has the advantage of being
much faster. Thus, in the experiments reported on below,
we use frequency-based assessment as part of KNOWIT-
NOW.

4 Experimental Results
This section contrasts the performance of KNOWITNOW
and KNOWITALL experimentally. Before considering the
experiments in detail, we note that a key advantage of
KNOWITNOW is that it does not make any queries to Web
search engines. As a result, KNOWITNOW’s scale is not
limited by a query quota, though it is limited by the size
of its index.

We report on the following metrics:

• Recall: how many distinct extractions does each
system return at high precision?5

• Time: how long did each system take to produce
and rank its extractions?

• Extraction Rate: how many distinct high-quality
extractions does the system return per minute? The
extraction rate is simply recall divided by time.

We contrast KNOWITALL and KNOWITNOW’s preci-
sion/recall curves in Figures 3 through 6. We com-
pared KNOWITNOW with KNOWITALL on four rela-
tions: Corp, Country, CeoOf(Corp,Ceo), and
CapitalOf(Country,City). The unary relations
were chosen to examine the difference between a relation
with a small number of correct instances (Country) and
one with a large number of extractions (Corp). The bi-
nary relations were chosen to cover both functional rela-
tions (CapitalOf) and set-valued relations (CeoOf—
we treat former CEOs as correct instances of the relation).

5Since we cannot compute “true recall” for most relations
on the Web, the paper uses the term “recall” to refer to the size
of the set of facts extracted.

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200

Correct Extractions

P
re

ci
si

on

KnowItNow-freq KnowItNow-URNS
KnowItAll-PMI

Figure 4: CapitalOf: KNOWITNOW does nearly as
well as KNOWITALL, but has more difficulty than
KNOWITALL with sparse data for capitals of more ob-
scure countries.

For the two unary relations, both systems created ex-
traction rules from eight generic patterns. These are hy-
ponym patterns like “NP1 {,} such as NPList2” or ”NP2
{,} and other NP1”, which extract members of NPList2
or NP2 as instances of NP1. For the binary relations,
the systems instantiated rules from four generic patterns.
These are patterns for a generic “of” relation. They are
“NP1 , rel of NP2”, “NP1 the rel of NP2”, “rel of NP2
, NP1”, and “NP2 rel NP1”. When rel is instantiated for
CeoOf, these patterns become “NP1 , CEO of NP2” and
so forth.

Both KNOWITNOW and KNOWITALL merge extrac-
tions with slight variants in the name, such as those dif-
fering only in punctuation or whitespace, or in the pres-
ence or absence of a corporate designator. For binary
extractions, CEOs with the same last name and same
company were also merged. Both systems rely on the
OpenNlp maximum-entropy part-of-speech tagger and
chunker (Ratnaparkhi, 1996), but KNOWITALL applies
them to pages downloaded from the Web based on the re-
sults of Google queries, whereas KNOWITNOW applies
them once to crawled and indexed pages.6 Overall, each
of the above elements of KNOWITALL and KNOWIT-
NOW are the same to allow for controlled experiments.

Whereas KNOWITNOW runs a small number of vari-
abilized queries (one for each extraction pattern, for
each relation), KNOWITALL requires a stopping crite-
rion. Otherwise, KNOWITALL will continue to query
Google and download URLs found in its result pages over
many days and even weeks. We allowed a total of 6 days
of search time for KNOWITALL, allocating more search
for the relations that continued to be most productive. For
CeoOf KNOWITNOW returned all pairs of Corp,Ceo

6Our time measurements for KNOWITALL are not affected
by the tagging and chunking time because it is dominated
by time required to query Google, waiting a second between
queries.

0.75

0.8

0.85

0.9

0.95

1

0 5,000 10,000 15,000 20,000 25,000

Correct Extractions

P
re

ci
si

on

KnowItNow-freq KnowItNow-URNS
KnowItAll-PMI

Figure 5: Corp: KNOWITALL’s PMI assessment main-
tains high precision. KNOWITNOW has low recall up
to precision 0.85, then catches up with KNOWITALL.

in its corpus; KNOWITALL searched for CEOs of a ran-
dom selection of 10% of the corporations it found, and
we projected the total extractions and search effort for all
corporations. For CapitalOf, both KNOWITNOW and
KNOWITALL looked for capitals of a set of 195 coun-
tries.

Table 2 shows the number of queries, search time, dis-
tinct correct extractions at precision 0.8, and extraction
rate for each relation. Search time for KNOWITNOW is
measured in seconds and search time for KNOWITALL
is measured in hours. The number of extractions per
minute counts the distinct correct extractions. Since we
limit KNOWITALL to one Google query per second, the
time for KNOWITALL is proportional to the number of
queries. KNOWITNOW’s extraction rate is from 275 to
4,707 times that of KNOWITALL at this level of preci-
sion.

While the number of distinct correct extractions from
KNOWITNOW at precision 0.8 is roughly comparable to
that of 6 days search effort from KNOWITALL, the sit-
uation is different at precision 0.9. KNOWITALL’s PMI
assessor is able to maintain higher precision than KNOW-
ITNOW’s frequency-based assessor. The number of cor-
rect corporations for KNOWITNOW drops from 23,128 at
precision 0.8 to 1,116 at precision 0.9. KNOWITALL is
able to identify 17,620 correct corporations at precision
0.9. Even with the drop in recall, KNOWITNOW’s ex-
traction rate is still 305 times higher than KNOWITALL’s.
The reason for KNOWITNOW’s difficulty at precision 0.9
is due to extraction errors that occur with high frequency,
particularly generic references to companies (“the Seller
is a corporation ...”, “corporations such as Banks”, etc.)
and truncation of certain company names by the extrac-
tion rules. The more expensive PMI-based assessment
was not fooled by these systematic extraction errors.

Figures 3 through 6 show the recall-precision curves
for KNOWITNOW with URNS assessment, KNOWIT-
NOW with the simpler frequency-based assessment, and

Google Queries Time Extractions Extractions per minute
NOW ALL NOW (sec) ALL (hrs) NOW ALL NOW ALL ratio

Corp 0 (16) 201,878 42 56.1 23,128 23,617 33,040 7.02 4,707
Country 0 (16) 35,480 42 9.9 161 203 230 0.34 672
CeoOf 0 (6) 263,646 51 73.2 2,402 5,823 2,836 1.33 2,132
CapitalOf 0 (6) 17,216 55 4.8 169 192 184 0.67 275

Table 2: Comparison of KNOWITNOW with KNOWITALL for four relations, showing number of Google queries
(local BE queries in parentheses), search time, correct extractions at precision 0.8, and extraction rate (the
number of correct extractions at precision 0.8 per minute of search). Overall, KNOWITNOW took a total of
slightly over 3 minutes as compared to a total of 6 days of search for KNOWITALL.

0.75

0.8

0.85

0.9

0.95

1

0 2,000 4,000 6,000

Correct Extractions

P
re

ci
si

on

KnowItNow-freq KnowitNow-URNS
KnowItAll-PMI

Figure 6: CeoOf: KNOWITNOW has difficulty dis-
tinguishing low frequency correct extractions from
noise. KNOWITALL is able to cope with the sparse
data more effectively.

KNOWITALL with PMI-based assessment. For each of
the four relations, PMI is able to maintain a higher pre-
cision than either frequency-based or URNS assessment.
URNS and frequency-based assessment give roughly the
same levels of precision.

For the relations with a small number of correct in-
stances, Country and CapitalOf, KNOWITNOW is
able to identify 70-80% as many instances as KNOW-
ITALL at precision 0.9. In contrast, Corp and CeoOf
have a huge number of correct instances and a long tail
of low frequency extractions that KNOWITNOW has dif-
ficulty distinguishing from noise. Over one fourth of
the corporations found by KNOWITALL had Google hit
counts less than 10,500, a sparseness problem that was
exacerbated by KNOWITNOW’s limited index size.

Figure 7 shows projected recall from larger KNOW-
ITNOW indices, fitting a sigmoid curve to the recall
from index size of 10M, 20M, up to 60M pages. The
curve was fitted using logistic regression, and is restricted
to asymptote at the level reported for Google-based
KNOWITALL for each relation. We report re-
call at precision 0.9 for capitals of 195 coun-
tries and CEOs of a random selection of the
top 5,000 corporations as ranked by PMI.
Recall is defined as the percent of countries with a

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

KnowItNow index size (millions)
R

ec
al

l a
t 0

.9
 p

re
ci

si
on

KnowItNow CeoOf

Google CeoOf

KnowItNow CapitalOf

Google CapitalOf

Figure 7: Projections of recall (at precision 0.9) as a
function of KNOWITNOW index size. At 400 million
pages, KNOWITNOW’s recall rapidly approaches the
recall achieved by KNOWITALL using roughly 300,000
Google queries.

correct capital or the number of correct CEOs divided by
the number of corporations.

The curve for CeoOf is rising steeply enough that a
400 million page KNOWITNOW index may approach the
same level of recall yielded by KNOWITALL when it uses
300,000 Google queries. As shown in Table 2, KNOW-
ITALL takes slightly more than three days to generate
these results. KNOWITNOW would operate over a cor-
pus 6.7 times its current one, but the number of required
random disk seeks (and the asymptotic run time analy-
sis) would remain the same. We thus expect that with a
larger corpus we can construct a KNOWITNOW system
that reproduces KNOWITALL levels of precision and re-
call while still executing in the order of a few minutes.

5 Related Work
There has been very little work published on how to make
NLP computations such as PMI-IR and IE fast for large
corpora. Indeed, extraction rate is not a metric typically
used to evaluate IE systems, but we believe it is an im-
portant metric if IE is to scale.

Hobbs et al. point out the advantage of fast text
processing for rapid system development (Hobbs et al.,
1992). They could test each change to system parameters

and domain-specific patterns on a large sample of docu-
ments, having moved from a system that took 36 hours to
process 100 documents to FASTUS, which took only 11
minutes. This allowed them to develop one of the highest
performing MUC-4 systems in only one month.

While there has been extensive work in the IR and
Web communities on improvements to the standard in-
verted index scheme, there has been little work on effi-
cient large-scale search to support natural language ap-
plications. One exception is Resnik’s Linguist’s Search
Engine (Elkiss and Resnik, 2004), a tool for searching
large corpora of parse trees. There is little published in-
formation about its indexing system, but the user man-
ual suggests its corpus is a combination of indexed sen-
tences and user-specific document collections driven by
the user’s AltaVista queries. In contrast, the BE system
has a single index, constructed just once, that serves all
queries. There is no published performance data avail-
able for Resnik’s system.

6 Conclusions and Future Directions
In previous work, statistical NLP computation over large
corpora has been a slow, offline process, as in KNOW-
ITALL (Etzioni et al., 2005) and also in PMI-IR appli-
cations such as sentiment classification (Turney, 2002).
Technology trends, and open source search engines such
as Nutch, have made it feasible to create “private” search
engines that index large collections of documents; but as
shown in Figure 2, firing large numbers of queries at pri-
vate search engines is still slow.

This paper described a novel and practical approach
towards substantially speeding up IE. We described
KNOWITNOW, which extracts thousands of facts in min-
utes instead of days. Furthermore, we sketched URNS,
a probabilistic model that both obviates the need for
search-engine queries and outputs more accurate prob-
abilities than PMI-IR. Finally, we introduced a simple,
efficient approximation to URNS, whose probability esti-
mates are not as good, but which has comparable preci-
sion/recall to URNS, making it an appropriate assessor for
KNOWITNOW.

The speed and massively improved extraction rate of
KNOWITNOW come at the cost of reduced recall. We
quantified this tradeoff in Table 2, and also argued that as
KNOWITNOW’s index size increases from 60 million to
400 million pages, KNOWITNOW would achieve in min-
utes the same precision/recall that takes KNOWITALL
days to obtain. Of course, a hybrid approach is possi-
ble where KNOWITNOW has, say, a 100 million page
index and, when necessary, augments its results with a
limited number of queries to Google. Investigating the
extraction-rate/recall tradeoff in such a hybrid system is
a natural next step.

While our experiments have used the Web corpus, our

approach transfers readily to other large corpora; exper-
imentation with other corpora is another topic for future
work. In conclusion, we believe that our techniques trans-
form IE from a slow, offline process to an online one.
They could open the door to a new class of interactive IE
applications, of which KNOWITNOW is merely the first.

7 Acknowledgments
This research was supported in part by NSF grant IIS-
0312988, DARPA contract NBCHD030010, ONR grant
N00014-02-1-0324, and gifts from Google and the Tur-
ing Center.

References
R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern Informa-

tion Retrieval. Addison Wesley.

E. Brill, J. Lin, M. Banko, S. T. Dumais, and A. Y. Ng. 2001.
Data-intensive question answering. In Procs. of Text RE-
trieval Conference (TREC-10), pages 393–400.

M. Cafarella and O. Etzioni. 2005. A Search Engine for Nat-
ural Language Applications. In Procs. of the 14th Interna-
tional World Wide Web Conference (WWW 2005).

D. Downey, O. Etzioni, and S. Soderland. 2005. A Probabilistic
Model of Redundancy in Information Extraction. In Procs.
of the 19th International Joint Conference on Artificial Intel-
ligence (IJCAI 2005).

E. Elkiss and P. Resnik, 2004. The Linguist’s Search Engine
User’s Guide. University of Maryland.

O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates. 2005. Un-
supervised named-entity extraction from the web: An exper-
imental study. Artificial Intelligence, 165(1):91–134.

M. Hearst. 1992. Automatic Acquisition of Hyponyms from
Large Text Corpora. In Procs. of the 14th International
Conference on Computational Linguistics, pages 539–545,
Nantes, France.

J.R. Hobbs, D. Appelt, M. Tyson, J. Bear, and D. Israel. 1992.
Description of the FASTUS system used for MUC-4. In
Procs. of the Fourth Message Understanding Conference,
pages 268–275.

A. Ratnaparkhi. 1996. A maximum entropy part-of-speech tag-
ger. In Procs. of the Empirical Methods in Natural Language
Processing Conference, Univ. of Pennsylvania.

P. D. Turney. 2001. Mining the Web for Synonyms: PMI-IR
versus LSA on TOEFL. In Procs. of the Twelfth European
Conference on Machine Learning (ECML-2001), pages 491–
502, Freiburg, Germany.

P. D. Turney. 2002. Thumbs up or thumbs down? semantic
orientation applied to unsupervised classification of reviews.
In Procs. of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL’02), pages 417–424.

P. D. Turney, 2004. Waterloo MultiText System. Institute for
Information Technology, Nat’l Research Council of Canada.

