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ABSTRACT
A dictionary — a set of instances belonging to the same con-
ceptual class — is central to information extraction and is a
useful primitive for many applications, including query log
analysis and document categorization. Considerable work
has focused on generating accurate dictionaries given a few
example seeds, but methods to date cannot obtain long-tail
(rare) items with high accuracy and recall.

In this paper, we develop a novel method to construct
high-quality dictionaries, especially for long-tail vocabular-
ies, using just a few user-provided seeds for each topic. Our
algorithm obtains long-tail (i.e., rare) items by building and
executing high-quality webpage-specific extractors. We use
webpage-specific structural and textual information to build
more accurate per-page extractors in order to detect the
long-tail items from a single webpage. These webpage-specific
extractors are obtained via a co-training procedure using
distantly-supervised training data. By aggregating the page-
specific dictionaries of many webpages, Lyretail is able to
output a high-quality comprehensive dictionary.

Our experiments demonstrate that in long-tail vocabulary
settings, we obtained a 17.3% improvement on mean average
precision for the dictionary generation process, and a 30.7%
improvement on F1 for the page-specific extraction, when
compared to previous state-of-the-art methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications-
Data Mining
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Set expansion; information extraction; long-tail dictionary

1. INTRODUCTION
In information extraction (IE), a dictionary (also known

as gazetteers) refers to a set of instances belonging to the
same conceptual class; for example, a camera brand dic-
tionary contains “Canon”, “Nikon” and so on. Dictionaries
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are extremely useful in many IE tasks. For example, many
information extraction systems use dictionaries along with
a set of textual features to extract entities (e.g. Person,
Organization, Location) and relationships between entities
(e.g. Person’s birth date or phone number) [?, ?]. Moreover,
dictionaries are a useful primitive for many real-life appli-
cations. For example, commercial engines such as Google
and Yahoo!, use dictionaries for query analysis, document
categorization, and ad matching [?]. The quality and cov-
erage of the dictionaries is essential to the success of those
applications [?].

Building dictionaries is an important task, and consider-
able work has been done to develop automated techniques
that can build a dictionary from only a few user-provided
seeds [?, ?]. For instance, a user can collect many popu-
lar camera brand names by giving seeds such as “Canon”
and “Nikon”. These approaches are largely frequency-based:
they require a candidate to be observed on multiple web-
pages before the system can decide whether the candidate
is a true dictionary item; as a result, these approaches often
cannot accurately extract items that appear infrequently.
However, many topics contain long-tail items that appear
very infrequently. These are highly valuable for downstream
applications [?]. For example, there are hundreds of cam-
era brands, including the less-known “Aigo” and “Acer”; and
thousands of colors, including“Amaranth Pink”and“Bazaar”.

In this paper, we propose a novel approach for construct-
ing high-quality dictionaries with only a few user-given seeds,
especially for long-tail vocabularies (i.e., dictionaries that
contain long-tail items). We observe that many long-tail
items only appear on a small number of webpages. Unlike
previous efforts, our approach is not a frequency-driven ap-
proach that requires items to appear on many webpages.
Instead, we leverage the webpage’s structural and textual
information to conduct more accurate extraction on each
single webpage, thus making it possible to detect long-tail
items that appear rarely.

Building high-quality page-specific extractors is challeng-
ing. For example, Figure 1 shows two example webpages
with extractable dictionary items for camera manufactur-
ers. Their formatting is entirely different: Figure 1 (a) uses
multiple HTML lists, and Figure 1 (b) uses HTML tables.
To obtain all the camera manufacturers, simply extracting
the entire list or table is not sufficient: the items are divided
into many sublists which contain both in-set and related
out-of-set items (e.g., the tripod manufacturer “Gitzo”).

Furthermore, obtaining training data for page-level ex-
tractors is difficult. The user only provides a few seeds; it



<li>...
  <dl>
    <dd><a href=...Canon'>Canon</a></dd>...
  </dl></li>
<li>...
  <dl>
    <dd><a href=...Casio'>Casio</a></dd>...
  </dl>...</li>
<li>...
  <dl>
    <dd><a href=...Gitzo'>Gitzo</a></dd>...
  </dl>...
</li>

(a) From valuebasket.com

(b) From forensic.belkasoft.com

<table…>...
  <tr>
    <td><b>Manufacturer</b></td>
    <td><b>Camera model</b></td></tr>
  <tr>
    <td>Acer</td>
    <td>A100</td></tr>...
  <tr>
    <td>Apple</td>
    <td>iPad</td></tr>...
</table>

Figure 1: A list of camera manufacturers from two
websites, with corresponding HTML source code.

is not practical to ask a user for labeled examples for each
page. We can use distant supervision techniques to build
per-page training examples [?]. Positive examples are often
easy to obtain: we can employ an existing set expansion
technique to obtain an initial dictionary to serve as positive
training examples. But, obtaining negative training data is
especially difficult in our application. One simple way is to
select candidates that are on the webpage but not present
in the initial dictionary. However, because the initial dic-
tionary is likely not complete, the randomly selected entity
could be a true dictionary entity that has simply not yet
been extracted. Finding candidates that are in an off-topic
existing knowledge base (KB) to produce negative training
examples [?] is also not applicable, because it is hard to find
an entry for a great number of the entities on the webpages
due to the poor coverage of these existing KBs [?].

Finally, sequence information is essential for a high-quality
page-specific extractor. For example in Figure 1, camera
manufacturers (e.g. “Canon”, “Leica”) and out-of-set items
(e.g.“Gitzo”, “Manfrotto”) are sequentially correlated. How-
ever, training an extractor with sequential features is chal-
lenging: it is impractical to ask humans for fully labeled
sequential training examples, and partially labeled sequence
data is not sufficient to train an accurate sequential model.

To tackle these challenges, we develop an extraction sys-
tem Lyretail. Using only a few user-given seeds, Lyre-
tail builds a unique extraction model that produces a high-
quality page-specific dictionary (PSD) for each input web-
page automatically. By aggregating the PSDs of many web-
pages retrieved from the web, Lyretail can compute a high-
quality comprehensive dictionary (CD) as the result.

Our contribution mainly lies in two parts: First, Lyre-
tail generates training data for building high-quality page-
specific extractors automatically: a form of distant super-
vision. In particular, it uses the co-occurrence information
from our large-scale crawled web lists dataset to obtain neg-

ative examples; our key insight is that negative examples
often co-occur with entities that do not belong to the initial
dictionary. For example, “Gitzo” is a negative example, as
none of its cooccurrence partners (e.g., “Manfrotto”) belong
to the initial dictionary generated by a few camera band
seed examples. Second, we propose a co-training framework
that can incorporate sequential features to jointly infer a
high-quality dictionary on each single webpage. We lever-
age the output from the extractor built on web lists to train
a semi-supervised conditional random field (CRF) as the re-
sulting page-specific extractor. As a result, we are able to
build high-quality page-specific extractors on each webpage;
these are often able to distinguish infrequently-observed true
extractions from incorrect ones. These results are then ag-
gregated into high-quality long-tail dictionaries.

There is an additional problem we face when exploiting
page-specific extraction: the intended target page-specific
dictionary (PSD) is sometimes ambiguous given only a few
seeds. For example, if a user provides examples of “At-
lanta Braves”, she could have intended a dictionary of Major
League Baseball (MLB) teams or a dictionary of all U.S.
sports teams. Fortunately, we can address this problem
by building training data at different granularities, each of
which yields a different PSD. For example, when we include
“Brooklyn Nets” as a negative example, we would build a
page extractor for the MLB teams; otherwise we would ex-
tract all the U.S. sports teams. This method is a convenient
side effect of our architecture.

Contributions and Outline — In this paper, we study
the problem of building a high-quality dictionary extraction
system, especially in long-tail vocabulary settings. Our con-
tributions include:

• Lyretail’s software architecture, which builds and ap-
plies many page-specific extractors to obtain high pre-
cision and recall on long-tail items (Section 2).

• A framework and algorithms for distant supervision
and training of the page-specific extractors. Our frame-
work allows us to build a customized joint-inference
extractor for each of many hundreds of pages, while
requiring just three explicit seeds from the user (Sec-
tion 3 and 4). By combining the outputs of multiple
page-specific extractors, we can produce high-precision
and high-recall dictionaries. (Section 5).

• A comprehensive evaluation, which shows that in long-
tail vocabulary settings, Lyretail has obtained 17.3%
improvement on mean averaged precision for the dic-
tionary generation process and 30.7% improvement on
F1 for the page-specific extraction, comparing to the
state-of-the-art methods (Section 6).

We also cover related work in Section 7, and finally con-
clude with Section 8.

2. SYSTEM OVERVIEW
In this section, we present the system framework of Lyre-

tail, as shown in Figure 2. Overall, Lyretail supports the
dictionary generation process: it takes in seeds and gen-
erates a high-quality comprehensive dictionary (CD) as the
output. Lyretail consists of three stages, as follows:

1. Webpages Fetcher — First, the seeds are used to fetch
webpages. To find webpages that are useful for the page-
specific extraction tasks, we use an existing search engine to
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Figure 2: The framework of Lyretail.

retrieve the top-k webpages to serve as the input webpages.
We simply concatenate all the seeds as the search query. For
example, if the seeds are {canon, nikon}, we formulate the
disjunctive search query as “canon nikon”. We discuss the
input webpages in detail in Section 2.1.

2. Page-specific Extractor — Second, the page-specific
extractor attempts to build a high-quality extractor model
for each single input webpage. Lyretail constructs a set of
resources for the PSD automatically: training examples and
webpage-parameterized features. In particular, the training
examples (both positive and negative examples) are gener-
ated from an initial dictionary produced using an existing
set expansion method Seal [?]. By generating different sets
of training examples, we can subtly change the page-specific
extractor to produce PSDs at different ”granularities”. We
discuss this idea further in Section 4.2.

3. Dictionary Aggregator — After obtaining a PSD on
each single webpage, the dictionary aggregator merges the
PSDs from many webpages and produces the unified high-
quality comprehensive dictionary (CD) as the output.

We experimented with making Lyretail an iterative pro-
cess, like other past extraction systems [?, ?, ?]: the CD
of each round of execution can be used as a newer initial
dictionary for the next round. In practice, we do not run
Lyretail iteratively, as the performance improvement after
the 1st round is not significant (as we discuss in Section 6.4).

2.1 Data Sources for Page-specific Extractor
The page-specific extractor uses two data sources: the

input webpages provide the dictionary entity candidates for
extraction, and the web lists are used to generate distantly-
supervised training data.

Input Webpage — An input webpage is our raw source
for target dictionary entities. Thus, we construct a unique
page-specific extractor for each input webpages, in order to
detect the true dictionary items as the PSD.

The webpages are generated by a search engine from the
user-given seeds and have a variety of formatting styles, as
shown in Figure 1. Because in this work we do not focus
on text segmentation, our crawler uses a handful of rules to
retain only “structure-segmented” pages, in which the candi-
date entities are already segmented by the HTML structure.
We treat each leaf HTML element in a webpage as a candi-
date for the PSD.

Lyretail is currently designed to handle a particular kind
of stylized text: those with recurrent patterns. In Figure 1,
“Canon” and “Gitzo” are in a recurrent pattern (though only
“Canon” is a correct camera brand extraction). We use the
positive examples to find all the dictionary entities on a web-
page. For each such entity, we define its xpath pattern to be
the list of tags of all the nodes along a path to the root in
the HTML DOM tree. Since the initial dictionary is often
a high-precision but small dictionary, we assume a xpath

pattern is a recurrent pattern if it contains at least one dic-
tionary entity found by the initial dictionary. Thus, we iden-
tify all the recurrent-pattern entities x = {x1, ..., xn} on the
webpage and use these as candidates for extraction by the
page-specific extractor. There may be more than one recur-
rent pattern on a webpage.

Web Lists — To generate resources for the page-specific
extractor, we use data from a large number of web-crawled
HTML lists. We obtained HTML lists from the ClueWeb09
crawl1, using the regular expression “〈ul(.∗?)〈/ul〉”, where
each 〈li〉 item represents a list item. The web lists data can
be very noisy. There are many non-entity elements (such
as hyperlinks) in lists. Thus, we used the following heuris-
tics to filter the noisy lists: we only keep lists with more
than four items; we remove an item if its string length is
above a predefined threshold or it contains more than five
tokens. We also de-duplicate the crawled lists by their In-
ternet domains: if a list appears in one domain many times,
we only count it once. In the end, we obtained 83 million
web HTML lists, then used a 9 million sample of this dataset
(due to efficiency issues) as our web lists dataset.

3. PAGE-SPECIFIC EXTRACTION
In this section, we introduce Lyretail’s page-specific ex-

tractor. We formulate the page-specific extraction problem
as a classification task. Let s = {s1, ..., sm} be the set of
m seeds, and x be the candidates for the PSD on this input
webpage. Each entity x ∈ x takes a label l(x) ∈ {true, false},
representing whether x is a true dictionary entity or not.
Therefore, the page-specific extractor’s task is to assign a
label to each x ∈ x such that {x|l(x) = true} represents the
extracted PSD.

Now we introduce our two distinct feature sets and distantly-
supervised training examples to construct the page-specific
extraction model.

3.1 Two Distinct Sets of Features
We are able to derive two distinct sets of features: web list

features from the web lists dataset, and webpage-parameterized
features from the target extraction webpage.

3.1.1 Web List Features
We are able to define a set of features on the web lists

dataset, as some of the lists are more likely to contain pos-
itive or negative instances. We formally define the web
list features as fd = {fdi(x)}, where each fdi(x) ∈ fd is
a boolean function represents whether an entity x belongs
to a unique list Li from the web lists dataset. The raw
number of the web list features could be large, but we re-
move any feature that assigns the same value to all entities,
then employ feature selection methods [?] to pick the top-k
features.

3.1.2 Webpage-parameterized Features
For each webpage, we synthesize a large number of webpage-

parameterized features without direct human knowledge of
the page. These features are not written by hand and do not
embody direct human knowledge of each webpage. How-
ever, they are also not the same as traditional “domain-
independent” features which are fixed for a large set of web-
pages. Instead, the feature set differs from webpage to web-

1
http://lemurproject.org/clueweb09.php



No. Features

1 Current element’s HTML tag
2 Current element’s HTML attributes
3 Previous item’s HTML tag
4 Previous item’s HTML attributes
5 Next item’s HTML tag
6 Next item’s HTML attributes
7 Parent item’s HTML tag
8 Parent item’s HTML attributes
9 Preceding word
10 Following word

Table 1: The HTML structural property features.

page. These webpage-parameterized features are feasible be-
cause we are able to generate webpage-specific training data.

We parse the HTML code and construct two families of
features for each dictionary candidate x on a webpage, entity
features and sequential dependency, as follows:

Entity Features — The entity features describe the prop-
erties associated with each entity x, and they contain three
categories of properties. The first category describes enti-
ties’ HTML structural properties, as shown in Table 1. They
operate on each entity x ∈ x. Each feature serves as a
boolean function, representing whether the entity has this
property. For example, “Canon” in Figure 1 generates the
structural property features, including whether the current
element’s tag is “〈a〉” (Feature 1).

The xpath properties are boolean functions for each entity
x ∈ x based on its xpath. The xpath for each entity consists
of a set of HTML elements along the path to the root in
the HTML DOM tree. For each xpath, we use all the xpath
elements with tag information to generate the xpath prop-
erty feature space. For example, the xpath “/html/table[2]”
(i.e., the second “table” HTML element under “html”) has
the elements“html”and“table[2]”, where“table” is the tag of
the element“table[2]”. The xpath“/html/table[2]”generates
xpath features, including whether “table[2]” is the depth-2
xpath element, and whether“table” is the depth-2 xpath tag.

Finally, we created three textual properties: whether the
current element contains letters; whether the current ele-
ment contains numbers; and whether the current element
contains punctuations.

In the end, we merge all the features mentioned above
but remove a feature if it assigns the same value to all the
entities, yielding the entity features fk = {fk(x, l)}. The
resulting number of the webpage-parameterized features is
often small, and we give more details in Section 6.2.

Sequential Dependency — The sequential dependency
characterizes the sequential pattern of adjacent entities. If
we consider all the elements as a sequence according to its
appearance in textual order, labels for adjacent elements
may follow transition patterns. This observation can be in-
corporated as linear-chain pairwise transition features f ′k =
{f ′k(xi, li, xi+1, li+1)}.

3.2 Training Data Construction
Training data is a critical need for our page-specific ex-

tractor. Direct human supervision is too expensive, so we
use a distant supervision based method to generate training
data. Figure 3 shows the training examples of the webpage
entities and the desired output. Now we discuss how to gen-
erate the positive and negative training data.

As mentioned earlier, our training examples are generated
using the low-precision, high-recall web lists data presented

True

True
Unknown

Unknown
False

Canon
Leica
Nikon

Gitzo
Manfrotto

True
True
True

False
False

Training Example Desired OutputWebpage Entities

Unknown
Olympus TrueTrue
Pentax True

Figure 3: An example of the training data and the
desired output for a part of entities in Figure 1 (a).

in Section 2.1. The web lists data is of a large scale and
contains a broader range of entities than existing knowledge
bases (e.g., Freebase). The key insight (observed in [?]) is
that in web lists, entities belonging to the same set tend to
co-occur frequently, and entities that are not members of the
same set are less likely to co-occur.

Positive Examples — Positive examples are derived from
both a low-recall but high-precision initial dictionary d and
the web lists data.

First, for each entity x ∈ x, we test whether x is contained
in d. If x ∈ d, then x is a positive instance; otherwise it is
not. We generate the initial dictionary d using an existing
set expansion technique (e.g., Seal [?]). For example, given
seeds “Canon” and “Nikon”, we can use Seal to produce a
ranked list of popular camera brand names as d.

In addition, if an entity co-occurs often with the entities
in the initial dictionary d, it should also be a positive in-
stance. We use the initial dictionary similarity (IDSim) to
characterize the similarity between an entity x and the ini-
tial dictionary d as follows:

IDSim(x,d) =
1

|d|
∑
e∈d

Sim(x, e) (1)

where Sim(x, e) =
|LSi∩LSj |
|LSi∪LSj |

, (LSi and LSj represent the

set of lists that contain the entity ei and ej , respectively).
It represents how frequently two entities co-occur in one
list [?]. If IDSim(x,d) ≥ λp, we know that the entity x
is relatively likely to co-occur with entities in d and x is a
positive instance; otherwise it is not.

In summary, for each x ∈ x, if x ∈ d or IDSim(x,d) ≥
λp, x is a positive instance; otherwise it is not. In practice
we chose λp = 0.01.

Negative Examples — Negative examples are essential
in constructing an effective extraction model, but finding
them automatically in our application is not straightforward.
The key insight is that if an entity strongly co-occurs only
with entities excluded by the initial dictionary, we have some
evidence this entity is a negative example. For example, in
Figure 1, we might observe that“Gitzo”often co-occurs with
“Manfrotto” and so on but rarely with an entity in the initial
dictionary; thus, we believe “Gitzo” is a negative example.

We choose the negative training example based on the
following two properties. First we use the initial dictionary
similarity (IDSim) to determine if the testing entity x is
relatively unlikely to co-occur with entities in the initial dic-
tionary d: if IDSim(x,d) ≤ λd (where λd is a predefined
threshold), we know that the co-occurrence between x and
the entities in d is unlikely.

Second, we ensure an entity must have a certain level of
popularity in the web lists, to ensure we have enough evi-



dence to label it as negative. We define an entity x’s popu-
larity using its frequency, freq(x). Thus, if freq(x) ≥ λf ,
where λf is a pre-defined threshold, we assume x is popular;
otherwise, it is not.

In summary, we assume an entity x ∈ x is a negative ex-
ample if IDSim(x,d) ≤ λd and freq(x) ≥ λf , where λf and
λd are two predefined thresholds.2 We also call λd the nega-
tive example threshold. In practice, we set λf = 50 but vary
the value of λd to produce negative training examples at dif-
ferent granularities. The resulting negative training sets can
further be used to produce page-specific dictionaries at dif-
ferent granularities. We discuss this dictionary granularity
problem in Section 4.2.

4. IMPLEMENTING PAGE-SPECIFIC EX-
TRACTORS

A conventional way to construct the page-specific extrac-
tor is to simply combine the two sets of features mentioned
in Section 3.1 and build a single classifier that labels can-
didate dictionary items as “in-dictionary” or not. However,
in our setting the two feature sets are derived from two dis-
tinct data sources, one from the web lists data and one from
the input webpage; in similar situations, past researchers
have had success with co-training methods. These methods
train multiple distinct classifiers to maximize their mutual
agreement in order to improve learning performance [?]. We
pursue a similar strategy (and show in Section 6 that we can
thereby beat the conventional approach).

Thus, we develop two distinct classifiers defined on two
distinct sets of features: the list extractor Elist defined
on the web lists features and the webpage extractor Epage
defined on the webpage-parameterized features.

The list extractor Elist is a non-page-specific classifier.
Let x = {x} be the set of candidates for the PSD on the
input webpage. Let l = {l(x)} be the corresponding labels
for each x ∈ x, where each l(x) ∈ {true, false} represents
whether the entity x is a true dictionary entity or not. The
probability distribution of the classifier Elist is defined as:

Plist(l | x) =
1

Z
exp (

∑
x

wdfd)

where fd are the web list features mentioned in Section 3.1.1,
wd are associated weights, and Z is a normalization factor.

Similarly, the webpage extractor Epage is page-specific
and uses a conditional random field defined on the PSD can-
didates x. The joint distribution of the classifier Epage is:

Ppage(l | x) =
1

Z′
exp (

∑
x

(wkfk + wk′ fk′))

where fk and fk′ are the webpage-parameterized features
mentioned in Section 3.1.2, wk and wk′ are associated weights,
and Z′ is a normalization factor.

4.1 Combining Two Extractors
To combine the two classifiers is not straightforward. The

list extractor may fail to distinguish items that are lacking
information in the web lists: while the web lists is of a large
scale, for some extremely rare entities, it is possible that we
find no information in the web lists. On the other hand,
the webpage extractor is able to produce expressive features

2
We also used heuristics to filter out “obviously bad” candidates as

negative examples. E.g., we remove items that were extremely long
in either character length or token length.

Algorithm 1 Co-training Algorithm

1: Train Elist on D
2: mscore = mean accuracy(Elist(x0),y0)
3: Pdefault = {p(x = l|x ∈ x0) = pll(1− pl)

1−l}
4: Plist = (mscore > θa)?Elist(x);Pdefault
5: Train Epage by optimizing Equation 2
6: Return Epage(x)

for all testing dictionary candidates, but it requires further
information: we are not able to train an accurate CRF with
only partial labels of the sequence data.

Thus, we propose a co-training method that trains the two
classifiers so as to encourage consensus decisions. As shown
in Algorithm 1, we utilize the list extractor to construct an
accurate webpage extractor. Let Elist be the list extractor,
and Epage be the webpage extractor. Let D = {x0, l0} be
the automatically generated training data as discussed in
Section 3.2. We first train the list extractor Elist using the
training data D, and measure Elist’s mean accuracy of pre-
diction on x0 with respect to l0. If the accuracy score is
fairly accurate and above a predefined threshold θa, we ob-
tain Elist’s predicted probability distribution on x0 as the
prior distribution Plist; otherwise we use the default prior
distribution Pdefault.

3

To estimate the parameters for the webpage extractor Epage,
we utilize a semi-supervised conditional random field frame-
work [?] that ensures Epage produces a similar probabil-
ity distribution to Elist. We estimate the unknown param-
eters w = {wk,w

′
k} by maximizing the likelihood of the

objective function Ppage(l | x), based on the training data
D′ = {x, Elist(x)}. The goal is to maximize the regularized
log likelihood, as follows:

max
w

∑
x

wkfk +
∑
x

w′kf ′k − logZ(wk,k′)

−λD(Pk||Plist)−
∑
k w

2

2σ2
(2)

where
∑

k w
2
k

2σ2 is a common choice of regularization to avoid
overfitting, based on the Euclidean norm of w and on a
regularization parameter 1

2σ2 .
After obtaining the values for w = {wk,w

′
k}, we infer the

most likely assignment for each variable x ∈ x by employing
a dynamic programming algorithm (i.e., Viterbi) [?, ?].

4.2 Webpage Dictionary Granularity
With just a few user-given seeds, the extraction target

may be ambiguous. For example, given seeds“Atlanta Braves”
and “Chicago Cubs”, it is not clear what is the ideal PSD:
the user may intend to get all the MLB teams or all of the
U.S. sports teams. It worth noting that the granularity is-
sue only applies to certain categories; not all the dictionary
categories have the ambiguous granularity. For example, the
seeds “Amaranth Pink” and “Red” can be used to indicate a
dictionary of color in a straightforward way.

We can address this PSD ambiguity problem by manip-
ulating the negative example threshold λd. Consider the
seeds “Atlanta Braves” and “Chicago Cubs” in relation to
entities “Brooklyn Nets” and “Football”. If a user intends to
extract MLB teams, both “Brooklyn Nets” and “Football”
should be negative examples; if a user intends to extract
all U.S. sports teams, “Football” should be a negative ex-

3
In practice we simply set θa = 0.8, pl = 0.95



Algorithm 2 PSDGranularities

Input: a set of negative example thresholds {λd}, a webpage
wp
Output: PSDs of granularities G

1: G = []
2: for each λd in {λd} do
3: Get positive training data {xpos}
4: Get negative training data {xneg} using λd
5: Train page-specific extractor E using {xpos} and {xneg}
6: Apply E on webpage wp and extract a PSD g.
7: G← G ∪ g
8: end for

ample while “Brooklyn Nets” should not be. If “Brooklyn
Nets” has a higher IDSim than “Football”, we are able to
construct different training sets by varying λd. By using a
tighter threshold we can obtain a training set that is tai-
lored for just MLB teams; by using a looser threshold we
can obtain a training set that admits all the sports teams
on the page. We demonstrate the PSD granularities with
two examples in Section 6.2.

5. DICTIONARY AGGREGATOR
In this section, we present the algorithm of Lyretail’s

dictionary aggregator. The dictionary aggregator merges
PSDs from a set of input webpages and produces a high-
quality CD as the output. Similar to Seal, we employ the
lazy walk process technique [?] to merge PSDs. The goal of
this method is to formulate a quality score for each unique
entity in PSDs, and the score represents the similarity be-
tween the entity and items in the initial dictionary.

The lazy walk process technique is defined on a random
walk graph. To construct the random walk graph, we create
a node for each webpage and a node for each unique entity
in PSDs. An edge exists between a webpage node and an
entity node if the entity appears on the webpage.

Our transition process is similar to Seal [?]. To transit
from a source node x, one randomly picks an adjacent node
y with a uniform distribution proportional to the degree
of node x. More specifically, p(y|x) = 1

degree of x
. At each

step, there is also some probability α of staying at x. Putting
everything together, the probability of reaching any node z
from x is computed recursively as follows: P (z|x) = αI(x =
z) + (1 − α)

∑
y P (y|x)P (z|y), where I(x = z) is a binary

function that returns 1 if node x and node z are the same, 0
otherwise. We used Seal’s setting for this lazy walk process
(e.g., choosing α = 0.5), except for the starting source nodes.

To capture the similarity of an entity to items in the ini-
tial dictionary d, we define the starting source nodes as a
probability distribution p0 over a set of entity nodes ns in
the graph s.t. for each n ∈ ns, n ∈ d. Recall that d is a
ranked list and its top m entities are the seeds. It is intu-
itive that an entity ranked higher in d should have a higher
probability in p0 than one ranked lower. We use a power-
law distribution to characterize this property. Let β be the
decay ratio and 0 < β < 1 (in practice we chose β = 0.9).
Let σ is a normalization factor to ensure the sum of p0 to
be 1. The initial distribution p0 is defined as follows: for
di ∈ d where i represents di’s rank in d, p0(di) = 1

σ
if i ≤ m,

and p0(di) = βk−i

σ
if i > m; for e /∈ d, p0(e) = 0.

Category Seed Examples

Common Vocabulary Dictionaries
country nepal, hungary, burkina faso
mlb-team chicago white sox, san francisco giants, pittsburgh pirates
nba-team new york knicks, charlotte bobcats, san antonio spurs
nfl-team philadelphia eagles, cleveland browns, san diego chargers
us-president andrew jackson, john quincy adams, thomas jefferson
us-state delaware, virginia, michigan

Long-tail Vocabulary Dictionaries
disease alopecia, cold sore, scabies
mattress sealy, serta, simmons
camera fujifilm, minolta, huawei
cmu-building resnik house, fraternity quadrangle, mellon institute
color metal navy, windsor tan, rose quartz

Table 2: Three seed examples of 11 dictionary cate-
gories for the page-specific extraction evaluation.

6. EXPERIMENTS
In this section, we evaluate and demonstrate that Lyre-

tail is able to produce high-quality dictionaries especially in
long-tail vocabulary settings. First, we measure the perfor-
mance of the page-specific extraction and also demonstrate
that it can produce page-specific dictionaries (PSDs) at dif-
ferent granularities. Second, we evaluate the quality of the
comprehensive dictionary (CD) emitted by the Lyretail
dictionary generation process. Finally we test Lyretail’s
system configuration by trying different parameter settings.

6.1 Experiment Setup
To evaluate our system, we have collected 11 dictionary

categories, as shown in Table 2. They are cmu-building,
country, disease, mlb-team, nba-team, nfl-team, us-president,
us-state, camera-marker, color, and mattress-maker. These
categories are chosen based on previous work [?, ?]. We
use cmu-building, mattress, camera, disease and color to il-
lustrate long-tail vocabularies (i.e., dictionaries that con-
tain long-tail entities); we use the remaining 6 categories
to illustrate common vocabularies that contain only popu-
lar entities. We selected three random seeds from each of
the 11 categories as follows: for the first eight categories,
we randomly sample from the dictionary instances collected
from [?]; for camera and color, we randomly selected three
seeds from Wikipedia;4 for mattress, the seeds were ran-
domly selected from a manually collected dictionary.

Lyretail uses a mix of code from several languages and
projects. The core Lyretail code is in Python. We used
an existing HTML parsing tool, BeautifulSoup, to obtain all
the elements from an HTML webpage. Our page-specific ex-
tractor was implemented based on the Mallet Java library.5

We also use the Python scikit-learn library for its logistic
regression method.6

6.2 Page-specific Extractor
In this section, we evaluate the performance of the page-

specific extractor. We also show the result of extracting
PSDs at multiple granularities.

We prepared the data sources as follows. We followed
the seed selection process described in Section 6.1; the three
randomly selected seeds for each category are shown in Ta-
ble 2. For each category, we sent the three seeds to Google
and obtained top-100 webpages as the input webpages. We

4
http://en.wikipedia.org/wiki/List_of_digital_camera_brands

http://en.wikipedia.org/wiki/List_of_colors
5
Mallet: http://mallet.cs.umass.edu

6
scikit-learn: http://scikit-learn.org/



Method Feature Training Data Model

List-rand Section 3.1.1 Random Classification
List-basic Section 3.1.1 Section 3.2 Classification
LT-basic Section 3.1.1 and 3.1.2 Section 3.2 Classification
Lyretail Section 3.1.1 and 3.1.2 Section 3.2 Section 4

Table 3: Methods for the lesion study.

skipped webpages that cannot be downloaded and those that
did not satisfy the recurrent pattern criteria mentioned in
Section 2.1. Also, we only kept webpages containing more
than three dictionary instances as the evaluation set. In
the end, we kept 444 webpages (56.4% of the total) for all
the categories. We then asked human experts to identify all
of the correct dictionary entities on a webpage for each of
the 11 categories. For long-tail (common) vocabulary set-
tings, We produced an average number of 57.3 (55.1) unique
training examples among 177.7 (72.8) entities with 8.4 (8.6)
webpage-parameterized features and the top-10 web list fea-
tures for each page-specific extractor.7

Methods — We compared the following methods:

• Seal uses the wrapper of Seal [?] to obtain the PSD.8

• SealDict uses Seal [?] to first generate a dictionary
(from multiple pages), then constructs the PSD as the
intersection between the Seal dictionary and entities
on a target webpage.

• Lyretail is our proposed page-specific extractor as de-
scribed in Section 4.

In addition we compare Lyretail with the following three
methods to study the influence of each component in the
Lyretail framework. The detailed configurations of the
three methods can also be found in Table 3. We used logistic
regression classification for all three basic methods. We also
tried other classification methods (e.g., SVM and decision
tree), which performed comparably or worse.

• List-rand is a logistic regression classifier based on the
web lists features. It randomly selects negative exam-
ples from the entities on the webpage excluded by the
positive examples.

• List-basic is a logistic regression classifier based on the
web lists features. It uses our distant supervised train-
ing data as described in Section 3.2.

• LT-basic is a basic version of our page-specific extrac-
tor: it is a logistic regression classifier using both the
webpage-parameterized and web lists features.

We report the averaged per-page F1 score for each cate-
gory, and we tried a set of settings for the above 5 methods:
For SealDict, we vary the dictionary size from 10 to 2000
and report the best F1 score. For List-rand, we randomly
selected the negative examples for 10 times and report the
averaged per-page F1. For List-basic, LT-basic and Lyretail,
we obtained the top 20 items using Seal as the initial dic-
tionary, and tested 7 settings from 0 to 0.01 for the negative
example threshold and chose the best per-page F1 score.9

7
We have tried different feature selection methods [?] for the web

lists features to obtain the top-k features according to F1, accuracy,
or Chi-Squared. The differences are not significant.
8
Seal’s code: https://github.com/TeamCohen/SEAL.

9
We choose the top 20 items produced by Seal as the initial dictionary

to maintain a high-precision though low-recall set. The averaged pre-
cision of the initial dictionary is 0.999 for common vocabularies and
0.746 for long-tail vocabularies by randomly picking seeds from the
ground-truth for 10 rounds.

(a) (b)
Figure 4: The summarized performance on Lyre-
tail’s page-specific extraction and dictionary gener-
ation on common and long-tail vocabulary settings.
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Figure 5: The F1 performance of the page-specific
extractors in long-tail vocabulary categories. We
compare Lyretail with simple methods based on the
previous work Seal.

Performance — We now compare Lyretail with Seal and
SealDict, simple methods based on Seal. Figure 4 (a) shows
the average F1 performance for Lyretail’s page-specific ex-
traction on common and long-tail vocabularies. As shown
in the Figure, we can see that Lyretail (with an average F1
of 0.892) is able to produce high-precision, high-recall PSDs
in almost all the categories. Moreover, we achieved compa-
rable performance in the common vocabulary settings and
obtained 30.7% improvement in the long-tail vocabulary set-
tings. It demonstrates that Lyretail is able to construct
high-quality page-specific extractors that can obtain even
infrequently-observed dictionary entities.

Figure 5 shows the detail results for the averaged F1 of the
three methods on the five long-tail vocabulary categories.
SealDict (with average precision of 0.827 and recall of 0.569)
loses to Lyretail because SealDict uses the dictionaries gen-
erated by Seal, thus failing to recognize some out-of-set
items on webpages. We noticed that many extraction errors
of SealDict is due to failing to detect infrequent observed
dictionary items. (Which itself is sometimes due to expres-
sion diversity for certain items. For example, “New York
Yankees” can also be written as “NY Yankees”. For the
six common vocabulary categories (e.g., mlb-team and us-
states), our system always beats Seal, but loses slightly to
SealDict. The reason is that Lyretail attempts to infer true
dictionary entities based on a small initial dictionary of size
20, while SealDict uses an already high-quality dictionary to
find any matching dictionary entities on the webpage.

Lesion Study — We now examine which components of
Lyretail are the most influential, by comparing Lyretail
with three basic versions of the page-specific extractor: List-
rand, List-basic and LT-basic. Figure 6 shows the F1 perfor-
mance of the four methods in long-tail vocabulary settings:
Lyretail is better than the other three methods. For the six
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Figure 6: The F1 performance of the page-specific
extractors in long-tail vocabulary categories. We
compare Lyretail with two baseline methods.

common vocabulary settings, all four methods perform sim-
ilarly. It demonstrates that our mechanism of training data
generation and co-training framework is effective for build-
ing a high-quality page-specific extractor.

Granularity — We now demonstrate our page-specific ex-
tractor is able to produce different granularities of the PSD,
by varying the negative example threshold from 0 to 0.3.

Figure 7 shows the dictionary sizes under each setting of
the negative example thresholds on two webpages, rantsport.com
and bestchoicemattress.com. As shown in the Figure, we
identified five semantically meaningful plateaus out of nine
granularities, and measured the page-specific precision and
recall for each identified granularity. For example, the gran-
ularity at the 2nd plateau is identified to be MLB teams,
with page-specific precision and recall both equal to 1. It
indicates that at this granularity, we correctly obtained all
the available MLB teams on rantsport.com.

By varying the negative example threshold, we observe
that the plateaus exist in almost every webpage, though not
all the granularities generated are semantically meaningful.

In summary, the page-specific extractor is able to produce
a high-quality dictionary per webpage, especially in long-tail
vocabulary settings. Also, it is able to present meaningful
dictionary granularities.

6.3 Lyretail Dictionary Generation
To evaluate Lyretail’s ability to generate CDs, we again

selected three random seeds for each of the 11 dictionary
categories. We followed the seed selection process as descried
in Section 6.1, and we fetched top-100 webpages for each set
of seeds from Google. We repeated this seed selection and
webpage fetching process 10 times and report the averaged
precision for top-k results.10 We removed the seeds if none
of the methods can produce any results (as was the case
for 2 seed selections for cmu-building and 1 seed selection for
color). For each instance in the top-k result, we asked human
experts to determine whether it belongs to the dictionary.

Methods — We compared the following methods:

• Seal, a previous set expansion algorithm [?].

• Seisa, another previous set expansion algorithm [?].

• Lyretail, our proposed system.

We also compare Lyretail with List-rand, List-basic, and LT-
basic for a lesion study. List-rand, List-basic, and LT-basic are

10
We do not use the actual recall because it is usually difficult to

enumerate the universe of instances for every category.

MLB Teams
(30 items, P=1, R=1)

MLB+NBA+NFL Teams
(92 items, P=1, R=1)

 MBL+NBA+NFL+NHL Teams
(122 items, P=1, R=1)

P: Page-specific precision of the granularity. 
R: Page-specific recall of the granularity. 

rantsports.com

1
2

3

4
5

Mattress Brand
(39 items, P=0.79, R=0.97)

Mattress Brand + Type
(41 items, P=1, R=0.98)

bestchoicemattress.com

6

7
8

9

P: Page-specific precision of the granularity. 
R: Page-specific recall of the granularity. 

Figure 7: The granularities of the dictionary pro-
duced from two websites by trying a set of negative
example thresholds.

all built on the Lyretail framework but use the List-rand,
List-basic, and LT-basic page-specific extractor, respectively.

We report the averaged precision for top-k results over 10
times, and we set up the above five methods as follows: For
Seal, we directly used its code from Github. It is not possi-
ble to compare to Seisa directly, because their original web
list dataset is not available; we reimplemented the Seisa’s
algorithm on our web crawled HTML lists. For List-basic,
LT-basic, and Lyretail, we obtained the top 20 items using
Seal as the initial dictionary, and set the negative example
threshold to be 1e-6.

Performance — We now compare Lyretail with the two
previous techniques, Seal and Seisa. Figure 4 (b) shows the
mean averaged precision (MAP) for Lyretail’s dictionary
generation on common and long-tail vocabularies. As shown
in the Figure, we can see that in common vocabulary set-
tings, Lyretail matches Seal and Seisa; in long-tail vocabu-
lary, Lyretail substantially outperforms those other methods
by 17.3%. It demonstrates that Lyretail is able to con-
struct high-quality dictionaries in both common and long-
tail vocabulary settings.

Figure 8 shows the detailed results for the precision of
the top-k results of the three methods on the five long-tail
vocabulary categories. For the other six categories (e.g.,
mlb-team and us-states), there is not much difference among
the three methods. These are relatively small vocabularies,
and existing methods largely do well at them. Lyretail is
able to match the previous systems’ performance.

Lesion Study — We now examine which components of
Lyretail are the most influential, by comparing Lyretail
with the three baselines, List-rand, List-basic and LT-basic.
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Figure 8: The precision of the top-k dictionary. We
compare Lyretail with two previous methods.

Figure 9 shows the precision of the top-k results for the four
methods in long-tail vocabulary settings: Lyretail outper-
forms the three baselines. For the other six common vocab-
ulary settings, all four methods perform similarly. Again, it
demonstrates that Lyretail’s good results are primarily due
to our training data and extractor construction mechanism.

In summary, we have demonstrated that Lyretail is able
to generate high-quality dictionaries. Especially in long-
tail settings, Lyretail has obtained 17.3% improvement on
mean averaged precision (MAP) for the dictionary genera-
tion process and 30.7% improvement on F1 for page-specific
extraction, comparing to the state-of-the-art methods.

6.4 System Configuration
In this section, we evaluate the influence of three factors

that influence the quality of CD for Lyretail: the number
of iterations, the negative example threshold, and the initial
dictionary size. We used the same setting as in Section 6.3.

Iterative Process – First we evaluate the influence of Lyre-
tail’s iterative framework on the dictionary quality. We
used the same setting as in Section 6.3 (initial dictionary size
of 20 and negative example threshold of 1e-6), but emit dic-
tionaries of 5 iterations. The performance increases slightly
when we do multiple rounds of iterations, but the differ-
ences of precision for top-k results are not huge at less than
0.05. During the iterations, the initial dictionary is the only
changed input, and it indicates that the changes on the 20
initial dictionary entities are not huge enough to influence
the performance significantly.

Negative Example Threshold — We tried a set of set-
tings for the negative example threshold λd from 0 to 0.1 on
all categories. We observed that a lower λd — perhaps un-
surprisingly — tends to lead to a lower precision for highly-
ranked values of k, but higher recall later. In most of the
cases, the differences are not huge at less than 0.1, But the
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Figure 9: The precision of the top-k dictionary. We
compare Lyretail with two baseline methods.

precision can drop significantly in categories such as camera
and color. For example, the top-100 precision dropped by
0.2 by changing λd from 0.005 to 0.1 in camera. However,
the differences of the precision are not significant at less than
0.1 when we varying λd between 0 and 1e-5.

Initial Dictionary Size — To evaluate the influence of the
initial dictionary size on the dictionary quality. We tried a
set of settings for the initial dictionary size from 10 to 500
on all categories, and measured the precision of the top-k
results. We observe that the performance tends to be better
when we use a high-precision initial dictionary of a larger
size. But, the differences of the precision on top-k results
are not huge at less than 0.1, with the exception of color,
where the precision of the top-1000 results increases by 0.12
when changing the initial dictionary size from 10 to 20.

6.5 Limitations
Lyretail relies on web lists information to produce high-

quality training examples. If we were to apply the system
to obscure topics for which there is no web lists support —
consider technical categories from intranet pages, such as
industry-specific chemical compounds — Lyretail would
likely be ineffective. In such cases, manual training examples
or other intranet-derived domain knowledge base might need
to be provided in order to produce more accurate results.

7. RELATED WORK
The goal of Lyretail is similar that of research into set

expansion, including Seal [?, ?, ?, ?] and Seisa [?]. Seal
uses a simple pattern matching (i.e., suffixes and prefix-
based extractors) method to obtain candidate entities from
many webpages, then employs a graph-based random walk
to rank candidates entities according to their closeness to the
seeds on the graph. As a result, the method is able to accu-
rately identify frequently mentioned items but fail to detect
infrequently mentioned long-tail items. Seisa is an iterative



algorithm to aggregate dictionaries using the co-occurrence
frequency between each pairwise dictionary item in the web
HTML lists dataset and Microsoft query logs. The method
relies entirely on the co-occurrence frequency information,
and thus also tends to ignore infrequently-observed entities.
Rong et al. [?] focuses on distinguishing multi-faceted clus-
ters of the expanded entities by fusing ego-networks and
existed ontology. In contrast, we build high-quality page-
specific extractors to better identify long-tail dictionary items.

The series of work on wrapper induction [?, ?, ?] can be
used for page-specific extraction, but these methods are rule-
based and are inapplicable to produce high-quality page-
level webpage extractors in our cases. More recently, Dalvi
et al. [?] proposed the framework for wrapper induction on
large scale data, and Pasupat and Liang [?] developed page-
specific models to extract entities of a find-grained category.
However both methods require a decent amount of training
data while we at most have a few seeds.

Our page-specific extractor is similar to co-training work [?,
?, ?, ?], which exploits conditionally-independent features to
improve classification performance. Unlike past work, our
page-specific extractors contain sequential properties and it
is not practical to train it with only partial labeled data.

Our page-specific extractor uses a distant supervision
based method. Distant supervision based method has been
widely used on entity and relationship extraction from the
web [?, ?, ?, ?], and these work derive training examples
from predefined heuristics or from existing KBs. However,
those approaches are not practical in our case: heuristics
cannot capture the semantics of the entities; and in the ex-
isting KBs, it is hard to find an entry for a great number of
the entities on the webpages due the KBs’ poor coverage [?].
Instead we uses a noisy but large-scale web list dataset to
derive the negative training data. Hoffmann, et al. [?] also
uses web HTML lists but their goal is to learn semantic lex-
icons in order to expand the training data.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated that Lyretail is able

to generate high-quality dictionaries: as good as previous
work in the case of small vocabularies, and substantially
better than previous work in large vocabulary settings. In
the future we aim to improve Lyretail by exploiting the
dictionary information in novel ways, such as new search
engines that combine data search with some elements of data
integration systems.
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