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Abstract
Many real networks that are collected or inferred from data are incomplete due to missing

edges. Missing edges can be inherent to the dataset (Facebook friend links will never be

complete) or the result of sampling (one may only have access to a portion of the data). The

consequence is that downstream analyses that “consume” the network will often yield less

accurate results than if the edges were complete. Community detection algorithms, in par-

ticular, often suffer when critical intra-community edges are missing. We propose a novel

consensus clustering algorithm to enhance community detection on incomplete networks.

Our framework utilizes existing community detection algorithms that process networks

imputed by our link prediction based sampling algorithm and merges their multiple partitions

into a final consensus output. On average our method boosts performance of existing algo-

rithms by 7% on artificial data and 17% on ego networks collected from Facebook.

Introduction
Many types of complex networks exhibit community structure: groups of highly connected
nodes. Communities or clusters often reflect nodes that share similar characteristics or func-
tions. For instance, communities in social networks can reveal user’s shared political ideology
[1]. In the case of protein interaction networks, communities can represent groups of proteins
that have similar functionality [2]. Since networks that exhibit community structure are com-
mon in many disciplines, the last decade has seen a profusion of methods for automatically
identifying communities.

Community detection algorithms rely on the topology of the input network to identify
meaningful groups of nodes. Unfortunately, real networks are often incomplete and suffer
from missing edges. For example, social network users seldom link to their complete set of
friends; authors of academic papers are limited in the number of papers they can cite, and can
clearly only cite already-published papers. Missing edges can also be a result of the data collec-
tion process. For instance, Twitter often limits its data feed to only a 10% “gardenhose” sample:
constructing the mention graph from this data would yield a graph with many missing edges
[3]. Datasets crawled from social networks with privacy constraints can also lead to missing
edges. In the case of protein-protein interaction networks, missing edges result from the noisy
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experimental process used to measure pairwise interactions of proteins [4]. Community detec-
tion algorithms rarely consider missing edges and so even a “perfect” detection algorithm may
yield wrong results when it infers communities based on incomplete network information.

One straightforward approach for improving community detection in incomplete networks
is to first “repair” the network with link prediction, and then apply a community detection
method to the repaired network [5]. The link prediction task is to infer “missing” edges that
belong to the underlying true graph. A link prediction algorithm examines the incomplete ver-
sion of the graph and predicts the missing edges. Although link prediction is a well-studied
area [6, 7], little attention has been given to how it can be used to enhance community detec-
tion. Imputing missing edges using link prediction can result in the addition of both correct
intra-community and incorrect inter-community links. If one were to simply run a link predic-
tor and cluster the resulting network, the output can only be improved if the link predictor
accurately predicts links that reinforce the true community structure.

We propose the EDGEBOOST method (Fig 1), which repeatedly applies a non-deterministic
link prediction process, thereby mitigating the inaccuracies in any single link-predictor run.
Our method first uses link prediction algorithms to construct a probability distribution over
candidate inferred edges, then creates a set of imputed networks by sampling from the con-
structed distribution. It then applies a community detection algorithm to each imputed net-
work, thereby constructing a set of community partitions. Finally, our technique aggregates the
partitions to create a final high-quality community set.

An important and desirable quality of our method is that it is ameta-algorithm that does
not dictate the choice of specific link prediction or community detection algorithms. Moreover,
the user does not have to manually specify any parameters for the algorithm. We propose an
easy-to-implement, black-box mechanism that attempts to improve the accuracy of any user-
specified community detection algorithm. The open-source implementation of EDGEBOOST can
be found at https://github.com/mattburg/EdgeBoost

RelatedWork
Community Detection Overview—There are many variants of the community detection
problem: communities can be disjoint, overlapping, or hierarchical. The problem of detecting
disjoint communities of nodes is the most popular and what we focus on in this work. While
the other variants, especially overlapping community detection, are of growing interest, detect-
ing strict partitions is still a hard and relevant problem. In fact, recent work [8], has shown that

Fig 1. SystemDiagram.Diagram describing processing steps of EDGEBOOST.

doi:10.1371/journal.pone.0153384.g001
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disjoint algorithms can perform better than overlapping algorithms on networks with overlap-
ping ground truth. We chose a collection of six algorithms to test our system on: Louvain [9],
InfoMap [10], Walk-Trap [11], Label-Propagation [12], Significance [13] and Surprise [14,
15]. We chose Louvain and Infomap for many of our experiments because both performed
well in recent comparisons [8, 16, 17]; Infomap is typically superior in quality while Louvain is
more scalable.

Ensemble Community Detection—Though single-technique community detection is by
far the most common, a number of recent projects have proposed ensemble techniques [16, 18,
19]. Aldecoa et al. describe an ensemble of partitions generated by different community detec-
tion algorithms, which differs from our approach of using the same algorithm and creating the
ensemble by creating different networks. Both [18] and [19] present techniques for consolidat-
ing partitions generated by repeatedly running the same stochastic community detection algo-
rithm. We implemented both of their methods but neither was suitable for consolidating
clusters in our system; this is most likely because the partitions generated from our system
have more variation than partitions generated from multiple runs of a stochastic algorithm. At
a high-level, our proposed technique is a type of ensemble. Most ensemble solutions take the
network as-is and assume that a “vote” between algorithms will produce more correct clusters.
While this may work in some situations, bad input will often reduce the performance of all
constituent algorithms (possibly in a systematic way) and therefore the overall ensemble. Our
proposed method is novel in its iterative application of link prediction to increase the efficacy
of community detection algorithms.

Ensemble Clustering—Ensemble data clustering (for a survey see [20]), first proposed by
Strehl et al. [21], involves the consolidation of multiple partitions of the data into a final, hope-
fully higher quality partitioning. While many of the ensemble clustering methods share a simi-
lar work flow to our method, the fact that these techniques were developed for data clustering
and not community detection make them distinct from our work. For instance, Dudoit et al.
use bootstrap samples of the data to generate an ensemble of partitions, which in the case of
network community detection would be difficult since networks have an interdependency
between nodes, and nodes cannot be sampled with replacement like data in euclidean spaces.
Monti et al. [22] propose a consensus clustering technique with the goal of determining the
most stable partition over various parameter settings of the input algorithm. Similar to our
work, many ensemble clustering algorithms [21–24] use a consensus matrix as a data structure
to aggregate the ensemble of partitions. Unlike previous methods [21, 23], which use agglomer-
ative clustering to compute the final partition we propose an aggregation algorithm that uses
connected components, which is not possible on data clustering problems.

Community Significance—In the community detection literature, techniques have been
proposed for both evaluating the significance/robustness of communities, as well as, for detect-
ing significant communities. Karrer et al. [25] propose a network perturbation algorithm for
evaluating the robustness of a given network partition. Methods have also been developed [26,
27] that measure the statistical significance of individual communities. Our goal, however, is
not to generate confidence metrics on communities but rather to generate more accurate com-
munities overall. Previous work has also proposed techniques for finding significant communi-
ties using sampling based techniques [10, 28, 29]. Rosvall et al. and Mirshahvalad et al. propose
algorithms for detecting significant communities by clustering bootstrap sample networks and
identifying communities that occur consistently amongst the sample networks. The method
proposed by Gfeller et al. attempts to identify significant communities by finding unstable
nodes using a method based on sampling edge weights. Their methods differ from ours in that
they create samples from the existing network topology. Most similar to our work is the paper
by Mirshahvalad et al. [5] which attempts to solve the problem of identifying communities in

Link-Prediction Enhanced Consensus Clustering for Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0153384 May 20, 2016 3 / 23



sparse networks by adding edges that complete triangles. Their method is simply to add a fixed
percentage of triangle completing edges and cluster the resulting network; in contrast, our
approach involves the repeated application of any link prediction algorithm.

Community Granularity—The problem of detecting communities at various levels of gran-
ularity is a well studied and related problem. Work by [30, 31] has analyzed the “resolution
limit” of detecting communities at all granularities. In response to this resolution problem,
many methods [32–35] have been proposed for community detection at different granularities.
New objective functions that improve the resolution limit [34] as well as tunable objectives [32,
35] that allow community detection at various resolutions have been proposed. Delvenne et al.
propose a method for identifying the stability of communities by using the Markov time of a
random walk on the network. Granularity is a related problem in that missing edges can lead
to communities detected at wrong granularities. However, these methods do not address the
problem of detecting communities on incomplete networks.

Problem Formulation

Communities in Incomplete Networks
To motivate the need for algorithms that are robust to missing edges, we experimented on exist-
ing community detection algorithms. To test these algorithm’s sensitivity to missing edges on a
range of networks, we utilize the LFR benchmark [36]. LFR creates random networks with
planted partitions (i.e., ground-truth community structure), parametrized by: number of nodes,
mixing parameter μ, and exponent of degree and community size distributions (see [36] for a
full description). The mixing parameter is a ratio that ranges from only intra-community edges
(0) to only inter-community edges (1). Previous studies [16, 17] have compared the quality of
community detection algorithms using the benchmarks and used μ as the variable parameter,
roughly capturing how difficult a network is to cluster. As we are concerned with characterizing
the effect of missing edges, we modify the LFR benchmark by randomly deleting edges from the
networks it generates. We denote the parameter δ as the percentage of removed edges.

The goal of our analysis is to characterize the effect of both μ and δ on two metrics: Normal-
ized Mutual Information (NMI) and the Relative Error (RE) of the size of the inferred parti-
tions. NMI is a standard information theoretic measure for comparing the planted partition
provided by the benchmark to the inferred partition produced by the algorithm. There are vari-
ous metrics classified as normalized mutual information; the metric we use throughout this
paper is the normalization of mutual information (I) based on maximum entropy (H) of the
two partitions.

NMIðU ;VÞ ¼ IðU ;VÞ
maxðHðUÞ;HðVÞÞ ð1Þ

We define RE as the relative error of the number of communities inferred by the algorithm
C compared to the number of communities C� in the planted partition:

RE :¼ C � C�
C� ð2Þ

Since NMI can decrease for a variety of reasons (shifted nodes, shattered or merged commu-
nities), we include RE as a means to determine the more specific effects that missing edges can
have on community detection. Each point in Figs 2 and 3 are generated by averaging the corre-
sponding statistic over 50 random networks generated by our modified LFR benchmark. We
set static values for the following benchmark parameters: Number of nodes (1000), the average
degree (10), the maximum degree (50), the exponent of the degree distribution (-2), exponent
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of the community size distribution (-1), minimum community size (10), and maximum com-
munity size (50). We varied parameters, such as “number of nodes” and “average degree”, find-
ing qualitatively similar results for the effect of δ on NMI and RE. Similar to previous research
[5], we select an “average degree,” that results in the sparse networks that motivate the need for
the methods presented in this paper.

Fig 2 shows how NMI varies with respect to δ and μ for six popular community detection
algorithms. We limit the values of μ to be in the range [0.1, 0.5] becauase it has been shown
that LFR networks with μ values of 0.5 and higher do not reflect the expected properties of real
world networks [37]. All of the algorithms behave in a qualitatively similar manner: as δ
increases, the NMI score decreases. Similar to previous studies, InfoMap scores best with

Fig 2. NMI of Baseline Community Detection Methods.NMI of six community detection algorithms with
varying percentages of removed edges δ. Error bars are not included because standard error is too small.

doi:10.1371/journal.pone.0153384.g002

Fig 3. RE of Baseline Community Detection Methods.RE of six community detection algorithms with
varying percentages of removed edges δ. Error bars are not included because standard error is too small.

doi:10.1371/journal.pone.0153384.g003
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respect to μ and not surprisingly is also the most robust to missing edges. More interesting are
the results in Fig 3 which show how the number of inferred communities differs with respect to
the number of communities in the planted partition. Four of the six algorithms show a trend of
detecting too many communities both as a function of μ and δ, while only the Louvain and
Label-Propagation algorithms detect fewer than the correct number of communities on aver-
age. Modularity is known to suffer from a resolution limit [30], meaning that the measure
tends to favor larger communities. Since Louvain uses modularity as its objective function, it is
not surprising that Louvain, on average, infers communities that are larger than in the planted
partition. Overall, it is more often the case that missing edges will cause community detection
algorithms to “shatter” ground truth communities, sometimes producing 2-3 times more com-
munities. Both in terms of NMI and RE, all 6 algorithms show a significant deterioration in
community detection quality, once again, underscoring the need for algorithms that are robust
to missing edges. We have also included heat map versions of the Figs 2 and 3 in the supporting
information section, labeled as S1 and S2 Figs respectively.

Link Prediction for Enhancing Community Detection
The ideal scenario for community detection is one where a network consists of only intra-com-
munity edges and where the detection of communities reduces to the problem of identifying
weakly connected components. The reality is that we rarely find such clean graphs as edges can
be “missing” for anything ranging from sampling to semantics. This last factor is important as
a missing edge between nodes in the same community is not necessarily incorrect—the seman-
tics of a network does not necessitate an explicit relationship between users in the same com-
munity. In the case of an ego-network on Facebook, for example, not all friends in the same
community actually know each other as they may be grouped because they attend the same col-
lege as the ego-user. Similarly, a biological network may have a set of proteins working in con-
cert as part of a functional “community” but many do not form a clique as the edges represent
(up or down)-regulation. In both scenarios the edges that are missing are implicit edges repre-
senting the intra-community links (e.g., an edge representing the relationship in-the-same-
community-as). These intra-community links can be thought of as analogous to strong ties as
proposed by Granovetter [38]. It is these intra-community edges, whether they are implicit or
explicit, that can have severe impact on the detection of communities.

The hypothesis of this paper is that by recovering edges in incomplete networks, community
detection quality can be improved. If link prediction is to be an effective strategy at recovering
lost community structure, it must be accurate at predicting intra-community edges that rein-
force communities. If the link prediction algorithm has too high a false-positive rate, thereby
predicting too many inter-community links, it is likely to degrade community detection perfor-
mance. Using the modified LFR benchmark, we analyzed the intra-community precision of
various link prediction algorithms over a range of μ and δ values. We do not intend to exhaus-
tively test all of the link prediction algorithms proposed in the literature, but we select three
computationally efficient techniques that are among the best [6, 7]: Adamic-Adar (AA), Com-
mon-neighbors (CN), and Jaccard.

Each of these algorithms can produce a score for missing edges that complete triangles in
the input network, allowing us to create a partial ordering over the set of missing edges. Fig 4
shows the results from our experiment. For each plot, the y-axis represents the intra-edge preci-
sion-at-kmetric, which is the percentage of intra-edges in the top-k edges of the ranking. The
x-axis represents the edge-percent value, which is the number of top-k edges as a percentage of
the total number of edges in the original network (before random deletion). For example, if the
original network had 2000 edges, then an edge-percent value of 20% would correspond to
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selecting the top-400 edges and a intra-edge precision value of 80% would correspond to 320 of
those edges being intra-community edges. By varying k we are able to observe the classification
quality inferred by the ranking produced by each link-predictor.

In Fig 4 we first notice that as with community detection, link prediction performance
decreased as a function of both δ and μ value. For low μ, all link prediction algorithms are capa-
ble of achieving high intra-edge precision even for δ values of 60%, but the quality of link pre-
diction drops significantly for high levels of μ. For μ above 0.5, any link-predictor that uses the
number of common-neighbors as a signal will do poorly, since the majority of a node’s neigh-
bors belong to different communities. The Jaccard algorithm maintains the highest level of pre-
cision as a function of the number of edges. While the AA algorithm sometimes outperforms
Jaccard, AA is only better for low values of k.

The results in Fig 4 show that link prediction can be effective at imputing intra-community
edges, especially for sparse networks that have lower μ values. The results also show that for
networks with high μ and δ values, the top-scoring edges as predicted by all three link predic-
tion algorithms contain a large percentage of inter-community links. While this demonstrates
the feasibility of using link prediction to recover missing intra-community edges, we do not
know how to set the parameters (e.g., the k value to use for partitioning the ranked edges) for
real-world networks. We will return to this, but first we formalize the problem.

Fig 4. Intra-edge Precision of Link Prediction. Precision plots of three link prediction algorithms: Adamic-
Adar (left), Common Neighbors (middle), and Jaccard (Right) for various values of mixing parameter μ: 0.1
(top), 0.3 (middle), and 0.5 (bottom). The X-axis corresponds to number of top-k edges as scored by the
link prediction algorithm as a percentage of the number of edges in the network. Intra-edge precision is on
the y-axis.

doi:10.1371/journal.pone.0153384.g004
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Let G = (V, E) be the input network, and the set Emissing = (V × V)\E denote the set of miss-
ing edges in G. We formally define a link-predictor L as a function that takes any pair of nodes
(x, y) in Emissing and maps them to a real number.

L : Emissing 7!R ð3Þ

A community detection algorithm can be formally described as a function C that takes as
input any network G and produces a disjoint partition of the nodes {C1, C2,. . .,Ck}.

The most naïve algorithm for enhancing community detection consists of a few simple
steps. First, score missing edges in G using L. Next, select the top-kmissing edges according to
the link-predictor and add these edges to G. Lastly, apply the algorithm C to the imputed net-
work. However, simply adding links with high scores for networks with large μ and δ values
may be problematic, since many of these links can be inter-community, thereby having a nega-
tive effect on community detection.

An intuition for why this naïve algorithm does not work is illustrated in the top histogram
of Fig 5. The plot shows the score distribution of both intra- and inter-community edges pre-
dicted by the AA link predictor on a randomly generated benchmark network. The distribu-
tions of the intra-community edges substantially overlaps with the inter-community
distribution, thereby making any choice of a threshold for adding links not helpful for com-
munity detection. In addition, as this plot shows, the top-k edges only comprise of a small per-
centage of the total set of intra-community edges. By simply selecting from the top-k scoring
edges, many of intra-community edges that are lower ranked will never be selected. As dem-
onstrated in Fig 4, the choice of k can have a significant impact on the quality of the edges,
therefore selecting the right k becomes a challenge when the complexity and sparsity of the
network is unknown.

Fig 5. EdgeWeight Distributions. Histogram of edge weights on a benchmark graph with μ = 0.4 and 20%
of the edges removed: scores from AA link predictor (top) and weights of co-community network (bottom).

doi:10.1371/journal.pone.0153384.g005
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Methods
We contacted the original authors of the Facebook dataset (https://snap.stanford.edu/data/
egonets-Facebook.html) used in our experiments. This dataset was collected in accordance
with Facebook terms of service and with oversight from an IRB.

Our core observation is that link prediction in both high-δ and high-μ settings is brittle: it
can carry information, but for a single prediction is likely to be wrong. Therefore, we propose
an improved method for applying link prediction to enhance community detection.

Procedure 1 EDGEBOOST Algorithm
Input: A network G = (V, E), link-predictor L, community detection algorithm
C, number of iterations n
Output: A partition P� of the vertices in G
1: Emissing ¼ LðGÞ ⊳ score edges in G

2:D = IMPUTATION(Emissing) ⊳ create edge distribution
3: P = [] ⊳ initialize list of partitions
4: for i 1, n do
5: k* U(1,|E|)
6: fe1; e2; . . . ; ekg � D ⊳ sample k edges
7: Gi = (V,E [ {e1,. . .,ek}) ⊳ impute Gi
8: pi ¼ CðGiÞ ⊳ cluster Gi

9: P = P [ pi
10: end for
11: P� = AGGREGATIONFUNCTION(G,P)
12: return P�

In order to mitigate the potential side effects of imperfect link prediction, we propose a sam-
pling based algorithm that repeatedly applies link prediction to the input network. The EDGE-
BOOST pseudo code is shown in Algorithm 1 and proceeds in four steps. First, it uses a link
prediction function to score missing edges and constructs a probability distribution over the
set of missing edges (lines 2-3). The algorithm repeatedly samples a set of edges from this prob-
ability distribution, adding these sampled edges to the original network, and runs community
detection on the enhanced network (lines 5-7). Each iteration produces a new set of communi-
ties which are added to the set of partitions (lines 8-9). After the sample-detect-partition
sequence is executed many times, we aggregate the overall set of observed partitions (line 11)
to produce a final clustering.

Network Imputation
The network imputation component of EDGEBOOST uses the input network and a link predic-
tion algorithm to produce a probability distribution over the set of missing edges. The number
of edges sampled during each iteration of the imputation procedure (lines 5-6) is a uniform
random number between 1 and the size of the input network. We experimented with many val-
ues of k and found this to work as well as when k was fixed.

We propose an imputation algorithm that constructs a distribution in which the probability
of drawing an edge corresponds to its score produced by the link predictor. Missing edges that
are scored higher by the link-predictor will have more probability mass than lower scoring
edges. The probability function constructed from this process is:

PðX ¼ xÞ ¼ LðxÞX
y2Emissing

LðyÞ ð4Þ
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Our imputation algorithm is more likely to pick higher scoring edges, which can result in a
fairly accurate selection of intra-community edges as shown in the Link-Enhanced Community
Detection section. At the same time, even low scoring edges have probability mass, which is
important since for some networks, intra-community edges can also be low scoring.

Partition Aggregation
Having generated many possible “images” of our original graph via network imputation, we
can apply community detection algorithms to each. Each execution of the algorithm produces
a partition—possibly unique—based on the input graph. After generating many such parti-
tions, we use partition aggregation to produce a final output. Previous ensemble clustering
techniques [18, 19], construct a n × n consensus matrix that represents the co-occurrence of
nodes within the same community. The goal of such a data structure is to summarize the infor-
mation produced by the various partitions. We propose a similar data structure, a co-commu-
nity network Gcc, which consists of nodes from the input network and edges with weights that
correspond to the normalized frequency of the number of times the two nodes appear in the
same community.

The Gcc graph is a transformation of the input network into one that represents the pairwise
community relationships between nodes, rather than the functional relationships defined by
the semantics of the input network G. Gcc links nodes that appear in the same community, and
weights them based on frequency or co-occurence (i.e., the edge between two nodes has a nor-
malized weight equal to number of times the two nodes appear together in the same commu-
nity over all partitions). Thus, Gcc exhibits community structure representing communities
that appeared frequently in the input partitions. As shown in the lower plot of Fig 5, there is a
clear distinction between the intra-community and inter-community edge-weight distributions
in Gcc. A simple mechanism for identifying a final “partitioning” is to remove all edges for
which we have low confidence (i.e., inter-community edges) and study the resulting con-
nected-components (CC). We parameterize the pruning with a threshold τ and prune edges
below that value. The semantics of the resulting graph is that all pairs of linked nodes have
been seen in the same community at least τ percentage of times and consequently all nodes
captured in a CC maintain this guarantee.

Fig 6 shows an example of a co-community network pruned at various thresholds. The net-
work in this diagram is the famous Zachary’s karate club [39], the colors of the nodes denote
the ground-truth community assignments of each node. The original network is shown in the
upper left quadrant, and the remaining quadrants show the co-community network pruned at
different thresholds. As we can see in the upper right quadrant, if we threshold at a small value
of τ we are almost certain to obtain a network with one large connected component. This is
due to the fact that given enough iterations of the link prediction/community detection loop
we are likely to find at least a few cases where nodes that would ordinarily fall into two commu-
nities are placed into the same one. At τ = 0.5 we see the CC’s reflect the community structure
in the original network (the “correct partition”). As we increase the threshold the two true
communities are further shattered into sub-communities, leaving some nodes completely iso-
lated. One can interpret the connected components at these higher levels of τ as capturing the
core members of the true communities: members who co-occur with each other a very high per-
centage of time and do not co-occur often with nodes outside of their community.

While τmay be set manually—appropriate for some applications when some level of confi-
dence is desirable—there are other applications where we would prefer that this threshold be
chosen automatically. As the last module of our framework we propose a way for selecting a τ
and constructing a final partitioning given that chosen value. Since the edge weights in Gcc
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correspond to the fraction of times two nodes appear in the same community, they are rational
numbers. We can therefore enumerate all the possible values of τ, f1

n
; 2
n
; :::; n

n
g on the interval

[0, 1]. At each value of τ we prune all edges with weights less than τ and compute the partition
of Gcc that corresponds to the connected-components. We then score this partition according
to Eq 6 and select the threshold and corresponding partition that maximizes this score. Our
algorithm for automatically choosing τ does add computational overhead as compared to sim-
ply selecting a τmanually. We evaluate the selection of a fixed τ threshold for the LFR networks
in the experiments section.

In previous work, Monti et al. [22] propose a formula for computing the “consensus” score
of an individual cluster. For a given community Ck, that is of size Nk, their score sums the co-
community weights and divides it by the maximum possible weight. Gcc(i, j) corresponds to the
fraction of times nodes i, j were grouped together in the same community.

mk ¼
1

Nk

2

 !X
i;j2Ck
i<j

Gccði; jÞ ð5Þ

We score a partition pτ parameterized by a threshold τ by taking the weighted sum of the
scoresmk for each community in the partition. We use a weighted sum because the score

Fig 6. Karate Club Co-community Network. Visualization of the co-community network for “Zachary’s
karate club” network. Each panel shows the network pruned at various thresholds τ.

doi:10.1371/journal.pone.0153384.g006
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contribution of each community should be commensurate with its size.

SðptÞ ¼
Nk

N

X
k2pt

mk ð6Þ

If the final partition has any singleton nodes that do not belong to any community we con-
nect each stray node to the community to which it has the highest mean edge weight to in the
un-pruned co-community network.

Experiments
We have conducted a series of experiments to test EDGEBOOST on the LFR benchmark networks,
standard real-world networks (e.g karate club), and a set of ego networks from Facebook. First,
we present a comparison of EDGEBOOST with different community detection methods. Subse-
quent experiments include an analysis of various parameter settings of EDGEBOOST. The Face-
book dataset used in our experiments was collected in accordance with Facebook terms of
service and with oversight from an IRB.

Comparing EDGEBOOST with Different Community Detection Methods
Similarly to the analysis we performed in the Communities in Incomplete Networks section, we
evaluate our methods against the LFR benchmark over various settings of the mixing ratio μ
and the percentage of missing edges, δ. In Fig 7 we show the performance gain (striped yellow
bars) of EDGEBOOST for six different community detection algorithms: InfoMap, Louvian,
WalkTrap, Label-Propagation, Surprise, and Significance. The number of imputation iterations
is fixed at 50 for both algorithms and the bars are generated by averaging over 50 randomly
generated networks. While not shown in Fig 7, we tested all 3 link prediction algorithms and

Fig 7. EdgeBoost Performance on LFR Networks. Performance of six popular community detection algorithms on the LFR
benchmark networks. Dashed yellow bar shows the improvement of EdgeBoost over using the baseline community detection
method.

doi:10.1371/journal.pone.0153384.g007
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did not find a substantial difference. Keeping with our link prediction analysis in the Link Pre-
diction for Enhancing Community Detection section, Jaccard slightly outperformed the other
methods, so we chose Jaccard as the link prediction algorithm for EDGEBOOST. We ran a Mann-
Whitney U test for each parameter configuration and found that 90% of the results in Fig 7
have a p-value less than 0.05.

We can see from Fig 7 that our method improves performance for almost all input commu-
nity detection algorithms. One notable exception is that EDGEBOOST does not show an increase
in performance for the InfoMap algorithm. Our hypothesis is that the objective function that
InfoMap uses—which is based off of random walks—does not benefit as much from the impu-
tation of triangle completing edges. Since we show that EDGEBOOST can improve the perfor-
mance of InfoMap on real network data (described in the next section), there may also be a
systematic biased produced by the benchmark networks that make improving InfoMap harder.
Another exception is that EDGEBOOST shows a decrease in performance for the Label-Propaga-
tion algorithms at a μ value of 0.5 for 2 of the δ configurations. As in other studies [19], the
Label-Propagation algorithm’s performance becomes erratic at μ values of 0.5 or greater, most
likely due to the fact that Label-Propagation assumes that a node’s label should be chosen
based on the labels of its neighbors. While EDGEBOOST is designed to work on stochastic algo-
rithms, and variations of the input network, if an algorithm has too much variation, as is the
case with Label-Propagation, it can lead to unpredictable performance.

Fig 8 shows the performance gain of EDGEBOOST on the Louvain algorithm in more detail.
As our previous analysis showed, the baseline Louvain algorithm tends to detect bigger com-
munities on average than in the planted partition. The bottom row shows that for moderate
values of δ, EDGEBOOST is able to recover the smaller communities in the planted partition. At
very high values of δ (> = 0.4) a network may be so sparse that the perfect recovery of correct
communities is most likely not possible. Even for these high δ values, EDGEBOOST still shows an
improvement in NMI over the baseline method. The Louvain algorithm shows similar perfor-
mance gains as a function of the δ parameter but as seen in Fig 7, other algorithms show more
variation with respect to δ. We have also included plots that characterize the performance of all
the other algorithms in S4, S5, S6, S7 and S8 Figs respectively.

Fig 8. EdgeBoost PairedWith Lovain. Performance of EDGEBOOST (solid) and the baseline Louvain
algorithm (dashed) on LFR benchmarks. The purple shaded region shows the improvement of EDGEBOOST for
NMI. The bottom row shows the relative error of the partition size.

doi:10.1371/journal.pone.0153384.g008
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The LFR benchmark captures certain network properties, but it is an imperfect model of
real-world networks. To test EDGEBOOST on real network data, we also performed experiments
on two additional data sets. The first data set consists of a suite of standard networks for bench-
marking community detection. The data set includes: Zachary’s Karate Club network (Karate)
[39], network of political books (Books) [40], blog network (Blogs) [41] and the American col-
lege football network (Football) [42]. All of these networks have a ground truth partition such
that we can use NMI to evaluate the performance of community detection. Fig 9 shows the
results of EDGEBOOST on each of the four networks with the same six input community detec-
tion algorithms used in the experiment above. In all but three of the 24 algorithm/network con-
figurations, EDGEBOOST improves performance by an average of 14%. On the Football network,
EDGEBOOST does worse with the InfoMap, Label-Propagation, and WalkTrap algorithms, but
decreases performance by only an average of 1.6%. Overall, these datasets give some assurance
that EDGEBOOST can improve performance on real networks.

We also tested EDGEBOOST on a data set of Facebook ego-networks [43] that capture all
neighbors (and their connections) centered on a particular user. The data set described in the
original paper by McAuley et al., consists of networks from three major social networks: Face-
book, Google+ and Twitter. The Facebook data set is likely the highest quality of the three; it
contains ground-truth which was obtained from a user survey that had the ego users for each
network provide community labels. The ground truth for the ego-networks from Twitter and
Google+ is lower quality since it was obtained by crawling the publicly available lists created by
the ego user. As such, for many of the networks, the ground truth consisted of only a small frac-
tion of nodes in the network and for many networks the ground truth consisted of lists with
very few members. Since the target of this paper is non-overlapping and complete clustering,
we chose to not use the Twitter and Google+ networks due to the sparsity of their ground-
truth. The Facebook networks have complete ground-truth labeling, so we used those for

Fig 9. Performance of EdgeBoost on Standard Network Datasets. Comparison of EDGEBOOST on set of
standard real network benchmarks community detection.

doi:10.1371/journal.pone.0153384.g009

Link-Prediction Enhanced Consensus Clustering for Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0153384 May 20, 2016 14 / 23



evaluation. Despite the Facebook networks being the highest quality of the three datasets, it
still contained ground-truth communities of 1-2 users. We pre-processed each network by
removing all ground-truth communities with fewer than three nodes. S3 Fig contains a plot of
the distribution of community sizes for the Facebook networks.

The ground-truth for the Facebook ego-networks can contain overlapping communities,
therefore we cannot directly use the standard version of NMI for evaluation. To test EDGE-

BOOST on overlapping ground-truth data we use the NMI extension proposed by Lancichinetti
et al. [44] that supports comparison of overlapping communities. Fig 10 shows the results of
using EDGEBOOST with the same six community detection algorithms used in the LFR experi-
ments. The solid bars represent the performance of the baseline community detection algo-
rithm without EDGEBOOST. The diagonal and horizontal striped bars shows the results from
EDGEBOOST paired with the Adamic-Adar and Jaccard respectively. We set the number of iter-
ations for EDGEBOOST at 50. Each bar was generated by averaging the NMI score over 100 runs
of the baseline and EDGEBOOST paired with the Jaccard and Adamic-Adar link predictors.
EDGEBOOST shows an improvement on most networks for each of the six community detection
algorithms; this result is consistent with our experiments on the LFR benchmark. On the LFR
benchmark networks EDGEBOOST paired with Jaccard link prediction was consistently better

Fig 10. Performance of EdgeBoost on Facebook Networks.Comparison of EDGEBOOST on ego-networks from Facebook.

doi:10.1371/journal.pone.0153384.g010
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than the other link prediction methods but this is not consistently the case on the Facebook
networks. Jaccard outperforms the Adamic-Adar most of the time, but there are some cases
when the opposite is true. While EDGEBOOST shows improvement for most combinations of
algorithms and network, there are some instances when the performance of EDGEBOOST is
lower than baseline. Overall, in 52 of the 60 total configurations EDGEBOOST improves perfor-
mance by an average of 21%. In the rare configurations (8 out of 60) when EDGEBOOST per-
forms worse than baseline, EDGEBOOST performs only 5% worse on average.

Varying the Parameters of EdgeBoost
In addition to comparing EDGEBOOST using different community detection algorithms we also
analyzed how the performance varies with respect to different parameter settings. For these
experiments, the curves were generated by averaging over 50 networks generated via the LFR
benchmark. Figs 11 and 12 show the convergence of the Louvain and InfoMap algorithms, as a
function of the “number of community detection iteratations” (NumIterations). Most of the
performance gain from EDGEBOOST can be had with NumIterations set to 10, and setting the
number of iterations beyond 50 does not give much benefit. The convergence of EDGEBOOST is
qualitatively similar for low and high values of μ and the entire range of δ values.

Fig 11. VaryingNumIterations for EdgeBoost with Louvain. The parameters are set as follows: μ = 0.2
(left) and μ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

doi:10.1371/journal.pone.0153384.g011

Fig 12. VaryingNumIterations for EdgeBoost with InfoMap. The parameters are set as follows: μ = 0.2
(left) and μ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

doi:10.1371/journal.pone.0153384.g012

Link-Prediction Enhanced Consensus Clustering for Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0153384 May 20, 2016 16 / 23



In the Partition Aggregation section we propose a method for automatically selecting the co-
community threshold τ, which we have used for all of the previous experiments. Since the
selection of τ is the most computationally expensive part of the entire EDGEBOOST pipeline, we
present an analysis of how EDGEBOOST performs with a manual selection of τ. Figs 13 and 14
show how EDGEBOOST performs by varying the selection of τ for EDGEBOOST paired with Lou-
vain and InfoMap respectively. For both algorithms, EDGEBOOST can achieve good performance
for values of τ in the range 0.6-0.9, indicating that manual τ selection can be an effective way to
save computational resources and still boost performance over baseline. For higher values of μ,
the performance of EDGEBOOST is more dependent on τ, especially for the Louvain algorithm.
Since the Louvain algorithms performs less reliably for higher μ values, the co-community net-
work has noisier edge weights, therefore making the selection of τmore critical to achieving
good performance.

In conclusion, if the user is computationally constrained, simply selecting a manual thresh-
old (or a few thresholds) can give good results without requiring the costly step of computing
connected components at each threshold. A potential pitfall of manually selecting a threshold,

Fig 13. Varying τ for EdgeBoost with Louvain. Varying the co-community threshold (τ) for EDGEBOOST with
μ = 0.2 (left) and μ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

doi:10.1371/journal.pone.0153384.g013

Fig 14. Varying τ for EdgeBoost with InfoMap. Varying the co-community threshold (τ) for EDGEBOOST with
μ = 0.2 (left) and μ = 0.5 (right) over δ values ranging from 0.0 to 0.6.

doi:10.1371/journal.pone.0153384.g014
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is that EdgeBoost can give degenerate solutions. Degenerate partitions—those that put all
nodes in one cluster or creating hundreds of small clusters—result from the threshold value
being too small or large respectively. For applications with a user in the loop, these degenerate
solutions are easily detected and fixed by increasing or decreasing the threshold. The automatic
threshold finder is intended for applications where full automation is required.

Runtime Analysis
The most computationally expensive module of EDGEBOOST is the aggregation algorithm which
requires the computation of connected components at various thresholds. The complexity of
computing connected components is worst case O(|E|), where |E| is the number of edges in the
network. The aggregation module computes the connected components on the co-community
network, which can be much denser than the input network. In theory it is possible for the co-
community network to have O(n2) number of edges, therefore making the aggregation module
computationally expensive. In order to show that EDGEBOOST scales well when increasing to
large networks we ran it on LFR networks of various sizes, ranging from 1000 to 128000 nodes.
Fig 15 shows the run time of EDGEBOOST with Louvain and Jaccard link prediction with the
number of iterations set to 10. While EDGEBOOST does have a significant time overhead over
Louvain, it still scales in the same manner as Louvain. There are also many components of
EDGEBOOST’s pipeline that can be naively parallelized. The creation and clustering of the
imputed networks are all independent of each other and can be done in parallel. In addition

Fig 15. Analysis of Execution Time.Comparison of the runtime between EDGEBOOST and baseline Louvain
algorithm on networks ranging from size 1000 to 128000 nodes. EDGEBOOST has theNumIterations set to 50.

doi:10.1371/journal.pone.0153384.g015
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the process of identifying the τ threshold can also be sped up by finding the connected compo-
nents for various threshold values in parallel.

Discussion and Future Work
As shown in our experiments, EDGEBOOST is able to make bigger improvements for certain
community detection methods than for others. Our hypothesis for why EDGEBOOST works bet-
ter for certain algorithms has to do with the type of objective functions used by a given method.
Objective functions such as modularity are less robust to missing edges in a network because
the presence of direct links between nodes in a community are computed directly in the objec-
tive. In contrast, the MAP objective function used by the InfoMap algorithm relies on evaluat-
ing the community structure based on random walks, and is therefore less affected by direct
links between nodes in a community. Our hypothesis is that objectives such as the MAP equa-
tion are harder to improve with EDGEBOOST because their objectives are already more robust to
missing edges. Despite the differences between objective functions, EDGEBOOST is still able to
show an improvement for most community detection methods for both LFR benchmark and
real-world networks.

Our modified LFR benchmark used random edge deletion to model missing edges in net-
works. While we chose this model because we think that it is the most generally applicable,
there are other possibilities for modeling missing edges. One area of future research is to see
how community detection algorithms are affected using different edge deletion strategies. Fur-
ther experiments are necessary to determine if our techniques withstand biased edge removal,
but we believe that repeated link prediction will nonetheless boost performance. Further, if
missing intra-community edges could be modeled more accurately, development of better link
prediction algorithms for enhancing community detection may be possible.

In order to increase the quality of community detection, EDGEBOOST trades off time and
space efficiency. The construction of the co-community network can be memory intensive
because it is likely to be much denser than the input network. In addition, EDGEBOOST requires
many runs of a sometimes costly community detection algorithm. While EDGEBOOST can scale
to reasonably large networks (see the Runtime Analysis section), we acknowledge these trade-
offs and emphasize that EDGEBOOST is not designed for million node networks. Instead it was
designed for use on small and medium networks (i.e., ego-networks, citation networks), in
which data sparsity problems are common, and communities reflect meaningful structures in
the data.

While we have shown the efficacy of EDGEBOOST in computing better partitions, it is possible
that the approach can also improve other types of community analysis. Given different thresh-
olds for which we can prune the co-community network (see the Partition Aggregation section)
and the corresponding set of connected components, we can obtain a set of communities with
a specified confidence. Some applications may not require a complete partitioning of nodes
and may even be better suited with an incomplete partition which has higher quality communi-
ties. In future work we would also like to see how EDGEBOOST can be used in the detection of
overlapping and/or hierarchical communities. This extension would require a different aggre-
gation function as our current method is only capable of creating strict partitions, via comput-
ing connected-components.

The link-predictors tested in this paper are all based on shared neighbors, and therefore are
only capable of inferring missing connections between nodes that are at maximum 2 hops
from each other. One issue with predicting links that are further apart is the computational
complexity, since most of the metrics that are not neighborhood based are based off the num-
ber of shortest paths between pairs of nodes. While not presented in this paper, we
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experimented with the local path index proposed by [45], which predicts links between nodes
that are as far as 3 hops from each other, but did not see any noticeable improvement. Other
link predictors that we did not explore are those that utilize node attributes (e.g., school and
city) and/or link structure to score missing edges. Since most of the methods in disjoint com-
munity detection do not account for node attributes, in the future EDGEBOOST could be a robust
way to integrate node attributes into existing algorithms.

Conclusions
Networks inferred or collected from real data are often susceptible to missing edges. We have
shown that as the percentage of missing edges in a network grows, the quality of community
detection decreases substantially. To counter this, we proposed EDGEBOOST as a framework to
improve community detection on incomplete networks. EDGEBOOST is capable of improving all
the community detection algorithms we tested with its novel application of repetitive link pre-
diction, on real ego-networks from Facebook. EDGEBOOST is an easy-to-implement meta-algo-
rithm that can be used to improve any user-specified community detection algorithm and we
anticipate that it will be useful in many applications.

Supporting Information
S1 Fig. NMI heat map of six community detection algorithms. the parameters μ and δ are
represented on the x and y axis respectively. Each square is labeled with the corresponding
NMI value.
(TIF)

S2 Fig. RE heat map of six community detection algorithms. the parameters μ and δ are repre-
sented on the x and y axis respectively. Each square is labeled with the corresponding RE value.
(TIF)

S3 Fig. Distribution of community sizes for Facebook ego networks. Nodes were given com-
munity labels by ego users as part of a user study.
(TIF)

S4 Fig. EdgeBoost Paired With InfoMap. Performance of EdgeBoost (solid) and the baseline
InfoMap algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The of plots shows the relative error of the partition size.
(TIF)

S5 Fig. EdgeBoost Paired With WalkTrap. Performance of EDGEBOOST (solid) and the baseline
WalkTrap algorithm (dashed) on LFR benchmarks. The purple shaded region shows the improve-
ment of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.
(TIF)

S6 Fig. EdgeBoost Paired With Surprise. Performance of EDGEBOOST (solid) and the baseline
Surprise algorithm (dashed) on LFR benchmarks. The purple shaded region shows the improve-
ment of EDGEBOOST for NMI. The bottom row shows the relative error of the partition size.
(TIF)

S7 Fig. EdgeBoost Paired With Significance. Performance of EDGEBOOST (solid) and the base-
line Significance algorithm (dashed) on LFR benchmarks. The purple shaded region shows the
improvement of EDGEBOOST for NMI. The bottom row shows the relative error of the partition
size.
(TIF)
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S8 Fig. EdgeBoost Paired With Label-Propagation. Performance of EDGEBOOST (solid) and
the baseline Label-Propagation algorithm (dashed) on LFR benchmarks. The purple shaded
region shows the improvement of EDGEBOOST for NMI. The bottom row shows the relative
error of the partition size.
(TIF)
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