### Authoritative Sources in a Hyperlinked Environment

Jon M. Kleinberg Presenter: Zhe Zhao

### Overview

- Background and Motivation
- Approach Authorities & Hubs
  - Construct a focused subgraph based on query
  - Computing ``hubs'' and ``authorities''
  - Iterative Algorithm and its convergence
- Expansions:
  - Similar-Page Queries
  - Multiple Set of Hubs and Authorities
- Related Work
- Conclusions

### **Types of Queries**

- Three Types of Queries
  - Specific queries
    - Does Netscape support the JDK 1.1 code-signing API?
  - Broad-topic queries
    - Find information about the Java programming language.
  - Similar-page queries
    - Find pages `similar' to java.sun.com.

### Types of Queries

- Three Types of Queries
  - Specific queries
    - Does Netscape support the JDK 1.1 code-signing API?
  - Broad-topic queries Abundance Problem!

- Find information about the Java programming language.
- Similar-page queries
  - Find pages `similar' to java.sun.com.

### **Background and Motivation**

• Hard to imagine no ranking algorithms in search engine.

Authoritative Sources in a Hyperlinked Environment Page 49 of about 39,000 results (0.35 seconds) Review - Authoritative Sources in a Hyperlinked Environment. - Pu... www.pubzone.org/dblp/journals/dr/Mendelzon00 +1 Publication Info · Discussion / Material · Links · Rating · Subscribe. Review -Authoritative Sources in a Hyperlinked Environment. ... Webmining Techniques for Program Comprehension Andy Zaidman To... www.docstoc.com/.../Webmining-Techniques-for-Program-Compreh... Apr 15, 2009 - Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999 Hubs and Authorities n n n Recursive definition of hub and ... source - DBLP dblp.cloudmining.net/search?..... +1 Jon M. Kleinberg: Authoritative Sources in a Hyperlinked Environment. ... authoritative (1) environment (1) hyperlinked (1) source (1) ... xls:Authoritative Sources ina Hyperlinked Environment JonM ... www.searchuu.com/.../Authoritative+Sources+ina+Hyperlinked+Envi... eBook: Authoritative Sources ina Hyperlinked Environment JonM. Kleinbergy. 0 Results. ©2011 www.searchuu.com. All rights reserved.

### Ranking algorithms in web search

- Modern search engines may return millions of pages for a single query. This amount is prohibitive to preview for human users.
- Ranking algorithms will process the search results and only show the most useful information to the search engine user.

### Ranking algorithms in web search

Ļ

Authoritative Sources in a Hyperlinked Environment

About 39,000 results (0.16 seconds)

Scholarly articles for Authoritative Sources in a Hyperlinked Environment Authoritative sources in a hyperlinked environment - Kleinberg - Cited by 6005 ... for topic distillation in a hyperlinked environment - Bharat - Cited by 908 Automatic resource compilation by analyzing hyperlink ... - Chakrabarti - Cited by 805

#### [PDF] Authoritative Sources in a Hyperlinked Environment - Cornell ...

www.cs.cornell.edu/home/kleinber/auth.pdf +1 File Format: PDF/Adobe Acrobat - Quick View by JM Kleinberg - Cited by 6005 - Related articles HITs is a link-structure analysis algorithm which ranks pages by "authorities" (pages which have many incoming links and provide the best **source** of information ...

Jon Kleinberg's Homepage

www.cs.cornell.edu/home/kleinber/ +1

Web Analysis and Search: Hubs and Authorities. J. Kleinberg. Authoritative ...

Show more results from cornell.edu

#### Authoritative sources in a hyperlinked environment

dl.acm.org/citation.cfm?id=324140

### Ranking algorithms in web search

- To find a small set of most ``authoritative'' pages relevant to the query.
- Authority
  - Most useful/relevant/helpful results of a query.
  - ``java'' java.com
  - ``harvard'' harvard.edu
  - ``search engine'' powerful search engines.

### Challenge of content-based ranking

- Most useful webpage don't have the keyword
  - Query: ``Harvard''
    - 49 ``Harvard'' in <u>www.harvard.edu</u>
    - 357 ``Harvard'' in <u>http://en.wikipedia.org/wiki/Harvard University</u>
- Pages are not sufficiently descriptive

– ``automobile manufacturers'' in Honda or Toyota

## Analysis of Link Structure

- Hyperlinks encode human latent judgment
- Reasons:
  - Navigation:
    - Back to top...
  - Relevant:
    - Webpage discussing java link to java.com
  - Popular:
    - www.yahoo.com www.google.com
  - Advertisement

## Analysis of Link Structure

- Hyperlinks encode human latent judgment
- Reasons:
  - Navigation:
    - Back to top...
  - Relevant:
    - Webpage discussing java link to java.com
  - Popular:
    - <u>www.yahoo.com</u> <u>www.google.com</u>
  - Advertisement
- Some of the Reasons may be very helpful to find authoritative results.

- Or Hypertext-Induced Topic Search(HITS) developed by Jon Kleinberg, while visiting IBM Almaden
- IBM expanded HITS into Clever.
- Authorities
  - pages that are relevant and are linked to by many other pages
- Hubs

pages that link to many related authorities

- Intuitive Idea to find authoritative results using link analysis:
  - Not all hyperlinks related to the conferral of authority.
  - Find the pattern authoritative pages have:
    - Authoritative Pages share considerable overlap in the sets of pages that point to them.

- Intuitive Idea to find authoritative results using link analysis:
  - Not all hyperlinks related to the conferral of authority.
  - Find the pattern authoritative pages have:
    - Authoritative Pages share considerable overlap in the sets of pages that point to them.





• First Step:

Constructing a focused subgraph of the WWW based on query

- Second Step
  - Iteratively calculate authority weight and hub weight for each page in the subgraph

- Why not find authorities on the entire WWW?
  - The algorithm is non-trivial.
  - not necessary when there is a query.
- Objective: S  $_{\sigma}$ 
  - S  $_{\sigma}$  is relatively small.
  - S  $_{\sigma}$  is rich in relevant pages.
  - S  $_{\sigma}$  contains most (or many) of the strongest authorities
- Solution:
  - Generate a Root Set  $Q\sigma$  from text-based search engine
  - Expand the root set

#### Subgraph (σ, εt,d)

σ : a query string
ε : a text-based search engine.
t, d: natural numbers.
Let R denote the top t results of ε on σ

Set S := R For each page  $p \in R$ Let  $\Gamma^+(p)$  denote the set of all pages p points to. Let  $\Gamma^-(p)$  denote the set of all pages pointing to p. Add all pages in  $\Gamma^+(p)$  to S. If  $(\Gamma^-(p)) < d$  then Add all pages in  $\Gamma(p)$  to S. Else Add an arbitrary set of d pages from  $\Gamma^-(p)$  to S End Root Set

#### Subgraph (σ, εt,d)

σ : a query string
E : a text-based search engine.
t, d: natural numbers.
Let R denote the top t results of E on σ

Set S := R For each page  $p \in R$ Let  $\Gamma^+(p)$  denote the set of all pages p points to. Let  $\Gamma^-(p)$  denote the set of all pages pointing to p. Add all pages in  $\Gamma^+(p)$  to S. If  $(\Gamma^-(p)) < d$  then Add all pages in  $\Gamma(p)$  to S. Else Add an arbitrary set of d pages from  $\Gamma^-(p)$  to S

End



#### Subgraph (σ, εt,d)

σ : a query string
ε : a text-based search engine.
t, d: natural numbers.
Let R denote the top t results of ε on σ

Set S := R For each page  $p \in R$ Let  $\Gamma^+(p)$  denote the set of all pages p points to. Let  $\Gamma^-(p)$  denote the set of all pages pointing to p. Add all pages in  $\Gamma^+(p)$  to S. If  $(\Gamma^-(p)) < d$  then Add all pages in  $\Gamma(p)$  to S. Else

Add an arbitrary set of *d pages from*  $\Gamma^-(p)$  to S



## **Computing Hubs and Authorities**

- Rules:
  - A good hub points to many good authorities.
  - A good authority is pointed to by many good hubs.
  - Authorities and hubs have a mutual reinforcement relationship.



### **Computing Hubs and Authorities**

- Let authority score of the page i be x(i), and the hub score of page i be y(i).
- mutual reinforcing relationship:
- I step:

$$x(i) = \sum_{(j,i)\in E} y(j)$$

• O step:

$$y(i) = \sum_{(i,j)\in E} x(j)$$

• 1<sup>st</sup> Iteration



- 1<sup>st</sup> Iteration
- I Step



- 1<sup>st</sup> Iteration
- I Step
- O Step



- 2<sup>nd</sup> Iteration
- I Step



- 2<sup>nd</sup> Iteration
- I Step
- O Step



- 2<sup>nd</sup> Iteration
- I Step
- O Step

••••

•••



Iterate(G,k)

G: a collection of n linked pages

k: a natural number

Let z denote the vector  $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$ .

Set  $x_0 := z$ .

Set  $y_0 := z$ .

For i = 1, 2, ..., k

Apply the  $\mathcal{I}$  operation to  $(x_{i-1}, y_{i-1})$ , obtaining new *x*-weights  $x'_i$ . Apply the  $\mathcal{O}$  operation to  $(x'_i, y_{i-1})$ , obtaining new *y*-weights  $y'_i$ . Normalize  $x'_i$ , obtaining  $x_i$ . Normalize  $y'_i$ , obtaining  $y_i$ .

Initialization

End

 $\operatorname{Iterate}(G,k)$ 

G: a collection of n linked pagesk: a natural numberLet z denote the vector  $(1, 1, 1, \dots, 1) \in \mathbb{R}^n$ .Set  $x_0 := z$ .Set  $y_0 := z$ .For  $i = 1, 2, \dots, k$ I Step

Apply the  $\mathcal{I}$  operation to  $(x_{i-1}, y_{i-1})$ , obtaining new x-weights  $x'_i$ .

Apply the  $\mathcal{O}$  operation to  $(x'_i, y_{i-1})$ , obtaining new *y*-weights  $y'_i$ . Normalize  $x'_i$ , obtaining  $x_i$ .

Normalize  $y'_i$ , obtaining  $y_i$ .

End

 $\operatorname{Iterate}(G,k)$ 

G: a collection of n linked pages k: a natural number Let z denote the vector  $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$ . Set  $x_0 := z$ . Set  $y_0 := z$ . For i = 1, 2, ..., kApply the  $\mathcal{I}$  operation to  $(x_{i-1}, y_{i-1})$ , obtaining new x-weights  $x'_i$ . Apply the  $\mathcal{O}$  operation to  $(x'_i, y_{i-1})$ , obtaining new y-weights  $y'_i$ . Normalize  $x'_i$ , obtaining  $x_i$ . O Step Normalize  $y'_i$ , obtaining  $y_i$ . End

 $\operatorname{Iterate}(G,k)$ 

G: a collection of n linked pages k: a natural number Let z denote the vector  $(1, 1, 1, \ldots, 1) \in \mathbf{R}^n$ . Set  $x_0 := z$ . Set  $y_0 := z$ . For i = 1, 2, ..., kApply the  $\mathcal{I}$  operation to  $(x_{i-1}, y_{i-1})$ , obtaining new x-weights  $x'_i$ . Apply the  $\mathcal{O}$  operation to  $(x'_i, y_{i-1})$ , obtaining new *y*-weights  $y'_i$ . Normalize  $x'_i$ , obtaining  $x_i$ . Normalization Normalize  $y'_i$ , obtaining  $y_i$ . End

### Proof of Convergence

- A Matrix Perspective:
  - Denote A as adjacent matrix of the subgraph
  - -Istep:  $x(i) = \sum_{(j,i)\in E} y(j) \longrightarrow x = A^T y$

- O step:

$$y(i) = \sum_{(i,j)\in E} x(j) \longrightarrow y = Ax$$

• Converge to eigenvector.

### A Statistical View of HITS

- 1<sup>st</sup> Eigenvalue of  $AA^T$  = singular value of A
- 1<sup>st</sup> Eigenvector of  $AA^{T}$  = transform vector to the 1<sup>st</sup> principal component.
- Principal Component:
  - Matrix A  $\rightarrow$  a set of vectors.
  - The dimension where vectors significantly distributed
     <sup>0.2</sup>
     <sup>1.2</sup>
     <sup>1.2</sup>



### A Statistical View of HITS

- The weight of authority equals the contribution of transforming the dataset to first principal component.
  - Importance of this vector for the distribution of whole dataset.
- From the statistical view:
  - HITS can be implemented by PCA
  - HITS is different from clustering using dimensionality reduction.
  - The number of samples of PCA is limited.

### Example of Results:

### Query "censorship" : Authorities

- .378 http://www.e.org/
- .344 http://www.e.org/blueribbon.html
- .238 http://www.cdt.org/
- .235 http://www.vtw.org/
- .218 http://www.aclu.org/

EFFweb The Electronic Frontier Foundation The Blue Ribbon Campaign for Online Free Speech The Center for Democracy and Technology Voters Telecommunications Watch ACLU: American Civil Liberties Union

#### Query "search engines" : Authorities

.346 <u>http://www.yahoo.com/</u>
.291 <u>http://www.excite.com/</u>
.239 <u>http://www.mckinley.com/</u>
.231 <u>http://www.lycos.com/</u>
.231 http://www.altavista.digital.com/

Yahoo! Excite Welcome to Magellan! Lycos Home Page AltaVista: Main Page

### **Expansions: Similar Page Queries**

• Similar-page queries

Find pages `similar' to <u>www.honda.com</u>

- Applying HITS on Similar-Page Queries
  - Find t pages pointing to p as root set

Query "www.honda.com" : Authorities

.202 http://www.toyota.com/ .199 http://www.honda.com/ .192 http://www.ford.com/ .173 http://www.ford.com/ .162 http://www.bmwusa.com/ .162 http://www.volvocars.com/ .158 http://www.saturncars.com/ .155 http://www.nissanmotors.com/ .145 http://www.audi.com/ Welcome to @Toyota Honda Ford Motor Company BMW of North America, Inc. VOLVO Welcome to the Saturn Web Site NISSAN - ENJOY THE RIDE Audi Homepage

### **Expansions: Similar Page Queries**

- Why it works?
  - Does this mean that toyota.com offers a friendly hyperlink to honda.com?

### **Expansions: Similar Page Queries**

- Why it works?
  - Does this mean that toyota.com offers a friendly hyperlink to honda.com?
  - Hubs from the root set make it possible.



# Expansions: Multiple set of Hubs and Authorities

- Varies of Reasons for this:
  - The query string may have several very different meanings.
  - The current algorithm cannot find all the meanings.
    - Hubs of different meanings may not have overlap.
    - Only one type of hubs and authorities won out after iterations of mutually reinforcing.
- ``Natural'' solution:
  - Use other eigenvectors.

-- use other principal components

### **Connections to Related Work**

- Standing, Impact, and Influence
  - Social Network
  - Scientific Citations
- Hypertext and WWW rankings
- Clustering of Link Structures.

### PageRank v.s. HITS

- PageRank
  - Computed for all web pages stored prior to the query
  - Computes authorities only
  - Fast to compute

- HITS
  - Performed on the subset generated by each query.
  - Computes authorities and hubs
  - Easy to compute, real-time execution is hard.

Which one is more suitable for large scale data set??

### Conclusion

- Motivation
  - Ranking is necessary.
  - Hyperlink information is useful
- Authorities & Hubs.
  - Find authoritative pages.
  - Construct subgraph
  - Mutually reinforcing relationship
  - Iterative algorithm
- Compare to PageRank