Redundant Arrays of Inexpensive Disks (RAID)

By: Ramasubramanian K. <u>rkmurthy@umich.edu</u>

University of Michigan 21st Sept. 2011

Rising CPU and Memory Performance

- Great growth in speed of computers
- Fast CPU alone does not make a system fast
- "Each CPU instruction per second requires one byte of main memory"
- Memory technology has to keep pace with advances in other parts.
- Just increase in capacity not enough
- Speed at which instructions delivered to CPU determines ultimate performance

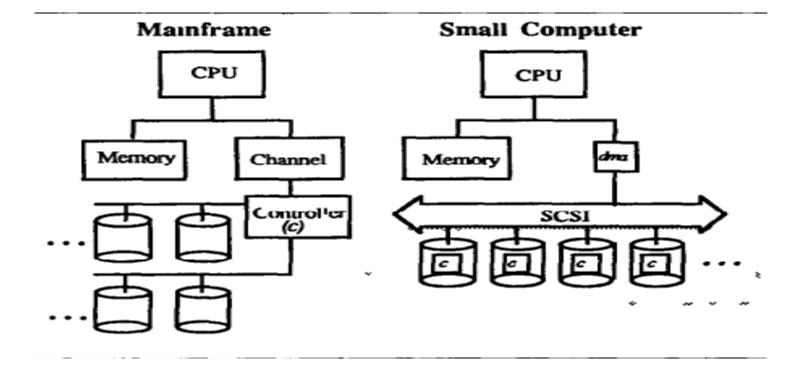
Rising CPU and Memory Performance

- Main memory speed kept pace due to:
 - → Invention of caches
 → SRAM technology
- Performance of Single Large Expensive magnetic Disks (SLED) had modest improvement
 - → Seek and rotation delays
 → Seek time improvement by 7% per year
- Using large main memories to buffer some of the I/O activity an option only with high locality of reference

The pending I/O crisis

- Impact of improving performance of some parts of a problem leaving others unchanged:
- Amdahl's law:

S=1/((1-f)+f/k)


S = the effective speedup f= fraction of work in faster mode k = speedup while in faster mode

- Implies that if applications spend 10% time in I/O then when computers are 10 times faster, effective speedup will only be 5%
- Innovation needed to avoid I/O crisis

Why Arrays of Disks??

- Personal computers created a market for inexpensive magnetic disks.
- Such disks had lower cost as well as capacity
- Number of I/Os per second per actuator within a factor of two of large disks
- For metrics like cost per MB ,inexpensive disk superior or equal to large disks
- Small size and low power
- Due to creation of standards such as Small Computer System Interface (SCSI) small disk manufacturers provide such functions

Why Arrays of disks??

•Same SCSI interface chip embedded as a controller in every disk can be used as the DMA device at the other end of the SCSI bus.

•Hence, arrays of inexpensive disks!

The bad news: Reliability

- Forces managers to frequently backup information
- Assuming constant failure rate and independent failures,

MTTF of a Single Disk MTTF of a Disk Array = ______ Number of Disks in the Array

- MTTF of 100 CP 3100 disks=300 hours Scaling to 1000 disks => MTTF=30 hours!!!
- Large arrays of inexpensive disks too unreliable without fault tolerance.

The solution: RAID

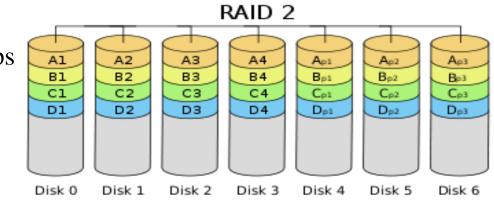
RAID=*Redundant* Array of Independent Disks

- Use extra disks to store redundant information for recovery in case of disk failure.
- Arrays broken into reliability groups ,each group having extra "check" disks with redundant information.
- Mean Time to Repair (MTTR) reduced by maintaining "hot standby spares" in case a disk fails.
- Terms used:


D=Total no. of disks with data G=Number of data disks in a group C=Number of check disks in a group D/G=number of groups

RAID features

- Reliability Overhead cost decreases from 100% to 4% with RAID level
- Useable storage capacity percentage increases from 50 % to 96%
- Performance metrics:
 - Number of reads Number of writes Read modify writes per second for large as well as small transfers
- Effective Performance per disk


RAID Level 1: Mirrored Disks

- Traditional approach for improving reliability of magnetic disks
- •Most expensive option*
- •Every write to data disk also write to check disk
- Doubles the cost of database system
- **•**Uses only 50% of disk storage capacity
- Largess inspires need for next RAID levels.

RAID Level 2: Hamming code for ECC

- Introduction of 4K and 16K DRAM's bought about need for level 2
- Redundant chips added to correct single errors and detect double errors in each group
- Increased no. of memory chips
- Improved reliability

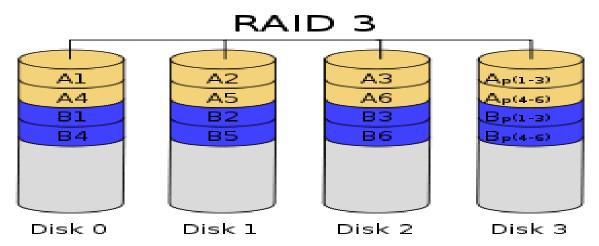
 If data bits in a group are read or written together ,no impact on performance.

Level 2 :Advantages

- Same performance as level 1 for large writes, but uses fewer check disks
- Since all disks of group accessed for data transfer, higher data rate with increasing group size, desirable for supercomputers
- Single parity disk can detect a single error

Level 2:Disadvantages

- To correct an error, enough disks needed to identify the disk with error
- Reads of less than group size \rightarrow read whole group
- Writes to portion of disk in 3 steps:
 - \rightarrow Read to get rest of the data
 - \rightarrow Modify to merge new and old information
 - \rightarrow Write to write full group inc. check information
- Reads to smaller amount mean reading a full sector from each of the bit interleaved disks in a group
- Writes of a single unit mean read-modify-write cycle to all disks
- Performance dismal for small transfers for whole system or per disk
- Not suitable for TPS

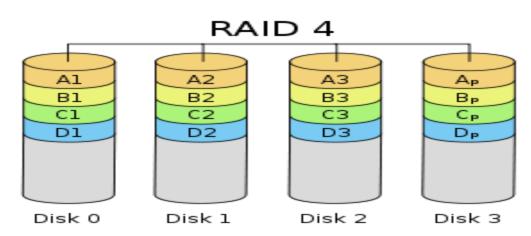

RAID	Level	Ι	vs.	RA	ID I	Lev	el II		
MTTF	Exceeds Useful Product Lifetime (4,500,000 hrs or > 500 years)			MTTF			Exceeds Us	seful Lifetime G=25	
Total Number of Disks Overhead Cost	2D 100%	501 × 500 yours)				• •	500 hrs 50 years)	(103,	500 hrs years)
Useable Storage Capacity	50%			Total Number of D Overhead Cost	lisks	1 40D 40%		1.20D 20%	1
Events/Sec vs Single Disk Large (or Grouped) Reads	Full RAID 2D/S	Efficiency Per Disk 1 00/S		Useable Storage Co Events/Sec (vs Single Disk)	apacıty Full RAID	71% Efficie L2	ncy Per Disk L2/L1	83% Efficie L2	ncy Per Dısk L2/L1
Large (or Grouped) Writes Large (or Grouped) R-M-W Small (or Individual) Reads Small (or Individual) Writes Small (or Individual) R-M-W	D/S 4D/3S 2D D 4D/3	50/S 67/S 1 00 50 67		Large Reads Large Writes Large R-M-W Small Reads Small Writes Small R-M-W	D/S D/S D/S D/SG D/2SG D/SG	71/S 71/S 71/S 07/S 04/S 07/S	71% 143% 107% 6% 6% 9%	86/S 86/S 86/S 03/S 02/S 03/S	86% 172% 129% 3% 3% 4%

Need for RAID Level 3

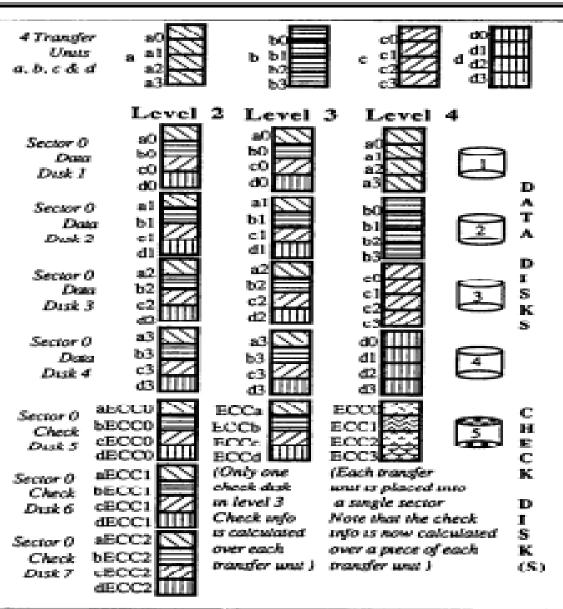
- Most check disks in level 2 RAID used to determine which disk failed
- Only 1 redundant parity disk needed to detect an error
- Extra disks redundant since failure can be detected from special signals provided in the disk interface
- Extra checking information at the end of sector can also be used to detect and correct soft errors

RAID Level 3: Single Check Disk per Group

- Reduces check disks to one per group(C=1)
- Overhead cost decreases by 4 to 10%
- Effective performance per disk better than level 2 due to fewer check disks
- Reduction in disks \rightarrow Improved reliability
- Has bought reliability overhead cost to its lowest level


Level 2

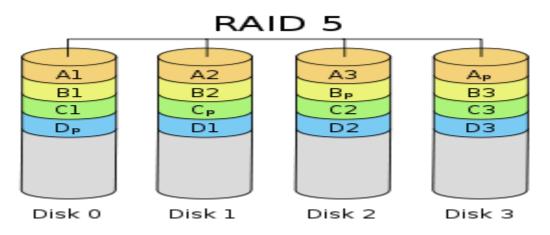
vs. Level 3


MTTF	TTF Exceeds Useful Lifetime		MTTF		Exceeds Useful Lifetime								
Total Number of Disks Overhead Cost Useable Storage Capacity		G=10 (494,500 hrs or >50 years) 1 40D 40%		G=25 (103,500 hrs or 12 years) 1.20D 20% 83%		Total Number of Disks Overhead Cost Useable Storage Capacity		G=10 (820,000 hrs or >90 years) 1 10D 10% 91%		G=25 (346,000 hrs or 40 years) 1 04D 4% 96%			
Useable Storage C Events/Sec (vs Single Disk) Large Reads Large Writes Large R-M-W Small Reads Small Writes	apacuy Full RAID D/S D/S D/S D/SG D/2SG	71% Efficue L2 71/S 71/S 71/S 07/S 04/S	ncy Per Disk L2/L1 71% 143% 107% 6% 6%		ncy Per Disk L2/L1 86% 172% 129% 3% 3%	Events/Sec (vs Single Disk, Large Reads Large Writes Large R-M-W Small Reads Small Writes	Full RAID) D/S D/S D/S D/SG D/2SG		3/L2 127% 127% 127% 127%	182%	L3 L 96/S 96/S 96/S 96/S 04/S	ency Pe 3/L2 112% 112% 112% 112% 112%	r Disk L3/L1 96% 192% 142% 3% 3%
Small R-M-W	D/SG	07/S	9%	03/S	5% 4%	Small R-M-W	D/SG	09/S 1				112%	5%

RAID Level 4:Independent Reads/Writes

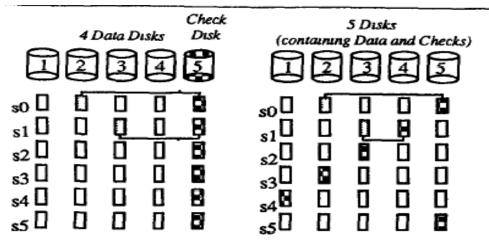
- Improves performance of small transfers through parallelism
- Each individual transfer unit of data kept in a single disk
- Data between disks is interleaved at the sector level rather than bit level
- Parity calculation simpler than level 3: new parity=(old data xor new data) xor old parity
- Small read involves only one read on one disk

Comparing location of data and check information in sectors of levels 2,3 and 4



	Lev	rel 3	VS	. Le	vel 4				
MTTF Exceeds Useful Life		eful Lifetime	MTTF	Exceeds Useful Lifetime					
		G=10	G=25		G=10	G=25			
		(820,000 hrs or >90 years)	(346,000 hrs or 40 years)		(820,000 hrs or >90 years)	(346,000 hrs or 40 years)			
Total Number of D	lisks	1 10D	104D	Total Number of Disks	1 10D	104D			
Overhead Cost		10%	4%	Overhead Cost	10%	4%			
Useable Storage Co	apacity	91%	96%	Useable Storage Capacity	91%	96%			
Events/Sec F	ull RAID	Efficiency Per Disk	Efficiency Per Disk	Events/Sec Full RAID	Efficiency Per Disk	Efficiency Per Disk			
(vs Single Disk)		L3 L3/L2 L3/L1	13 L3/L2 L3/L1	(vs Single Disk)	LA LAIL3 LAILI	LA LAIL3 LAIL1			
Large Reads	D/S	91/S 127% 91%	96/S 112% 96%	Large Reads D/S	91/S 100% 91%	96/S 100% 96%			
Large Writes	D/S	91/S 127% 182%	96/S 112% 192%	Large Writes D/S	91/S 100% 182%	96/S 100% 192%			
Large R-M-W	D/S	91/S 127% 136%	96/S 112% 142%	Large R-M-W D/S	91/S 100% 136%	96/S 100% 146%			
Small Reads	D/SG	09/S 127% 8%	04/S 112% 3%	Small Reads D	91 1200% 91%	96 3000% 96%			
Small Writes	D/2SG	05/S 127% 8%	02/S 112% 3%	Small Writes D/2G	05 120% 9%	02 120% 4%			
Small R-M-W	D/SG	09/S 127% 11%	04/S 112% 5%	Small R-M-W D/G	09 120% 14%	04 120% 6%			

'


RAID Level 5: No Single Check Disk

- Level 4 small write uses 2 disks to perform 4 accesses-2 reads,2 writes
- Writes still limited to one per group since every write must read and write the check disk
- Level 5 distributes data and check information across all disks-inc. check disks
- Can support multiple individual writes per group

RAID Level 5: features

- Small read-modify-writes perform close to the speed per disk of a level 1 RAID
- Has large transfer performance per disk and high useful storage capacity percentage like levels 3 and 4
- Improves performance of small reads since one more disk per group contains data.

Level 4	VS.	Level 5

MTTF Exceeds Usef		il Lifetime	MTTF	Exceeds Usefu	l Lifeume
	G=10	G=25		G=10	G=25
	(820,000 hrs or >90 years)	(346,000 hrs or 40 years)		(820,000 hrs or >90 years)	(346,000 hrs or 40 years)
Total Number of Disks	1 10D	1 04D	Total Number of Disks	TIOD	104D
Overhead Cost	10%	4%	Overhead Cost	10%	4%
Useable Storage Capacity	91%	96%	Useable Storage Capacity	91%	96%
Events/Sec Full RA	D Efficiency Per Disk	Efficiency Per Disk	Events/Sec Full RAID	Efficiency Per Disk	Efficiency Per Disk
(vs Single Disk)	LA LAIL3 LAILI	LA LAIL3 LAIL	(vs Single Disk)	LS LSILA LSILI	LS LSILA LSILI
Large Reads D/S	91/S 100% 91%	96/S 100% 969	•	91/S 100% 91%	96/S 100% 96%
Large Writes D/S	91/S 100% 182%	96/S 100% 1929	•	.91/S 100% 182%	96/S 100% 192%
Large R-M-W D/S	91/S 100% 136%	96/S 100% 1469	•	91/S 100% 136%	96/S 100% 192%
Small Reads D	91 1200% 91%	96 3000% 969	•	100 110% 100%	1 00 104% 100%
Small Writes D/2	05 120% 9%	02 120% 49			25 1300% 50%
Small R-M-W DJG	09 120% 14%	04 120% 69			23 1300% 30% 50 1300% 75%

Observations

- Decision between hardware and software solutions for disk striping and parity support is strictly one of cost and benefit
- Performance of RAID improves as size of smallest transfer unit increases
- Performance improves significantly with full track buffer in every disk

Things to remember

- Level 5 can be used for supercomputing and transaction processing applications
- RAID offers significant advantage over SLED for the same cost*
- RAID level 5 offers factor of 10 improvement in performance, reliability and power consumption while reducing size
- RAID offers advantage of modular growth
- Due to low power consumption, battery backup for whole disk array can be considered

Conclusion

- RAID :Cost effective option to meet challenge of exponential growth in processor and memory speeds
- Smaller size simplifies interconnection of many components, packaging and labeling
- RAIDs expected to replace SLEDs completely in the future I/O systems

References

- "A Case for Redundant Arrays of Inexpensive Disks" by David A Patterson, Garth Gibson, and Randy H Katz
- "RAID: A personal recollection of how storage became a system" by Randy H. Katz