R-Trees and GIST

Patryk Mastela

University of Michigan

pmastela@umich.edu

September 19, 2011

Patryk Mastela R-Trees and GiST

R-Tree Motivation

om
e o X J

£ g h

([] k@®
@ Qi j@®

<K J

@b EX J

®c

m Range Query: find objects in a given range (e.g. find all
museums in New York City)

m No index: need to scan through all objects. Inefficient!
m B+-tree: clusters based only on one dimension. Inefficient!

Patryk Mastela R-Trees and GiST

R-Tree Structure

m Non-leaf nodes contain entries in the form of (1, child-pointer)
m /is an n-dimensional rectangle

m Leaf nodes contain entries in the form of (I, tuple-identifier)

m M is the maximum of entries which is usally given and m is
the minimum of entries in one node

Patryk Mastela R-Trees and GiST

R-Tree Properties

Every leaf node contains between m and M index records
unless it is the root; the root can have less entries than m

For each index record in a leaf node, I is the smallest
rectangle that spatially contains the n-dimensional data object
represented by the indicated tuple

Every non-leaf node has between m and M children unless it is
the root

For each entry in a non-leaf node, i is the smallest rectangle
that spatially contains the rectangles in the child node

The root node has at least two children unless it is a leaf

@ All leaves appear on the same level. That means the tree is
balanced

Patryk Mastela R-Trees and GiST

e 4 }
| | o O o | @
, Es'y B hhoE2 T !
‘ . I " | k@ !
| | |E6
r= - - - .
. el iel
| | N
| |
. \E4 JE1
\‘ |
|
| _de, ‘
|
! ob ae@
I E31 :‘
| ‘.C ‘\

Patryk Mastela R-Trees and GiST

Search Algorithm

T is root node of an R-Tree, find all index records whose rectangles
overlap a search rectangle S.

S1 [Search Subtree] If T no leaf then check each entry E,
whether E.l overlaps S. For all overlapping entries, start
Search on the subtree whose root node is pointed to by E.p.

S2 [Search leaf node] If T is a leaf, then check each entry E
whether E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

r - _r [,j
] @m \‘
f—— o E7! }‘
\ ' e o ‘ L | @
| Es'¢ B hhoE2 | T ‘
: :. o i k@ :
77777 | ' 'E6 !
Toe : o je !
I L [T - -
| |
‘ |E4 (E1
! I
I ! :
d
| ==5% !
: b a@
Il E3! :‘
! l.C \‘

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.l overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.l overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.l overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.l overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.l overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.l overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.l overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E./ overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Insert Algorithm

New entry E will be inserted into a given R-Tree.

I1 [Find position for new record] Start ChooseLeaf to select a
leaf node L in which to place E

I2 [Add record to leaf node] If node L has enough space for a
new entry then add E. Else start SplitNode to obtain L and
LL containing E and all the old entries of L.

I3 [Propagate changes upward| Start AdjustTree on node L and
if a split was performed then also passing LL.

14 [Grow tree taller] If node split propagation caused the root to
split, create a new root whose children are the two resulting
nodes.

Patryk Mastela R-Trees and GiST

Chooseleaf Algorithm

ChooselLeaf selects a leaf node to place a new entry E.

CL1 [Initialize] Set N to be the root node.

CL2 [Leaf check] If Nis a leaf then return N .

CL3 [Choose subtree] If N is not a leaf node then let F be the
entry in N whose MBR F.[needs least enlargement to include
E.l. When there are more qualify entries in N, the entry with
the rectangle of the smallest area is chosen.

CL4 [Descend until a leaf is reached] N is set to the child node F
which is pointed to by F.p and repeat from CL2

Patryk Mastela R-Trees and GiST

AdjustTree Algorithm

Leaf node L is upwarded to the root while adjusting covering
rectangles. If necessary it comes to propagating node splits.

AT1 [Initalize] N is equal L.

AT2 [Check if done] stop if N is the root

AT3 [Adjust covering MBR in parent entry| P is the parent node of
N and Ep the entry of Nin P. Ep.lis adjusted so that all
rectangles in N are tightly enclosed.

AT4 [Propagate node split upward] If N has a partner NN which
was split previously then create a new entry with Eypy.p
pointing to NN and Epp.! enclosing all rectangles in NN. If
there is room in P then add Eppy. Otherwise start SplitNode
to get P and PP which include Epy and all old entries of P.

AT5 [Move up to next level] N is equal L and if a split occurred
then NN is equal PP. Repeat from AT2

Patryk Mastela R-Trees and GiST

Insert Algorithm

i @m \‘
r - - = -_= = | E71 :‘
I I o O ‘ L l,.,“
| E5! ¢ g h:‘ E2\r 7777777
| o " i 00 ke :
Im = - == ! ‘: } :E6
‘\.e |] @i i@, |
1 1 L—m s —— = — -
| |
y \E4 [E1
! |
\: 1 !
| _de |
: \6677737.7‘
1 E3! !
| '®@c “

Patryk Mastela R-Trees and GiST

Insert Algorithm

Patryk Mastela R-Trees and GiST

Insert Algorithm

Patryk Mastela R-Trees and GiST

Insert Algorithm

Patryk Mastela R-Trees and GiST

Insert Algorithm

Patryk Mastela R-Trees and GiST

Delete Algorithm

Delete entry E from an R-Tree.

D1 [Find node containing record| Start FindLeaf to find the leaf
node L con-taining E. If search unsuccessful then terminate.

D2 [Delete record] Remove E from L.

D3 [Propagate record] Start CondenseTree on L.

D4 [Shorten tree| If the root node has only one child after
adjusting then make the child the new root.

Patryk Mastela R-Trees and GiST

FindLeaf Algorithm

Root node is T, the leaf node containing the index entry E is to

find.

FL1 [Search subtree] If T is not a leaf, then check each entry Fin
T to determine when F./ overlaps E.l. For all these entries
FindLeaf starts on the subtree whose root is pointed to by
F.p until E is found or each entry has been checked.

FL2 [Search leaf node for record] If T is a leaf, then check each
entry to see when it matches E. If E is found, then return T.

Patryk Mastela R-Trees and GiST

CondenseTree Algorithm |

Given is a leaf node L from which an entry has been deleted. If L
has too few entries then eliminate it from the tree. After that, the
remaining entries in L are reinserted in the tree. This procedure is
repeated until the root. Also adjust all covering rectangles on the
path to the root, making them smaller, if possible.

CT1 [Initalize] N is equal L. Initialize a list Q which consists of
eliminate nodes as empty.

CT2 [Find parent entry] If N is the root, then go to CT6. Else P is
the parent node of N, and Ep the entry of Nin P.

CT3 [Eliminate underflow node] If N has fewer than m entries, then
eliminate Ep from P and add N to list Q.

CT4 [Adjust covering rectangle] If N has not been deleted, then
adjust Ep./ to tightly contain all entries in .

CT5 [Move up one level in tree|] N is equal P and repeat from CT2.

Patryk Mastela R-Trees and GiST

CondenseTree Algorithm |l

CT6 [Re-insert orphaned entries| Every entry in Q is inserted. Leaf
nodes are inserted like in Insertion. However, entries from
higher-level nodes must be placed higher in the tree, so that
leaves of their dependent subtrees will be on the same level as
leaves of the main tree.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Delete where m = 2 and M = 3.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Deleting / left E7 with an underflow.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Save m and remove E7; E2 now has an underflow.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Save E6 and remove E2.

Example

Patryk Mastela R-Trees and GiST

Delete Algorithm

The root has only one child and thus the child becomes the new
root.

[a]b]<] [d]e] [f[e]n]

Patryk Mastela R-Trees and GiST

Delete Algorithm

Insert £6 which causes the root to split.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Insert I, E6 is split.

Patryk Mastela R-Trees and GiST

GiST Motivation

m New applications

Geographic information systems
Multimedia systems

CAD tools

Document libraries

Sequence databases

Fingerprint identification systems
Biochemical databases

m Rapid data type introduction; in need of equally adaptable
search trees.

Patryk Mastela R-Trees and GiST

Prior Approaches

m Specialized Search Trees

m e.g. Spatial Search Trees (R-Trees)

m High cost of implementation and maintenance
m Search Trees for Extensible Data Types

m e.g. B+-trees can be used to index any data with linear
ordering

m Extending data does not extend set of queries supported by
tree

Patryk Mastela R-Trees and GiST

GiST: A New Hope

m A third direction for extending search tree technology

m Extensible in both the data types it can index and the queries
it can support

m Allows new data types to be indexed in a manner that
supports the queries natural to the types
m Unifies previously disparate structures used for currently
common data types
m e.g. B4-trees and R-trees can be implemented as extensions of
the GiST. Single code base yet indexes multiple dissimilar
applications.

Patryk Mastela R-Trees and GiST

m Balanced tree; high fanout

m Search Key: any arbitrary predicate that holds for each
datum below the key

m Search Tree: hierarchy of categorizations, in which each
categorization holds for all data stored under it in the
hierarchy

Patryk Mastela R-Trees and GiST

Generalized Search Tree

m Balanced tree of variable fanout between kM and M
m kis the minimum fill factor of the tree, % <k< %
m The exception is the root which may have a fanout between 2
and M
m Non-leaf nodes (p, ptr)
m p, predicate that is used as a search key
m ptr, pointer to another tree node
m Leaf nodes (p, ptr)

m p, predicate that is used as a search key
m ptr, identifier of some tuple in the database

Patryk Mastela R-Trees and GiST

GiST Properties

Unless the node is root every node contains between kM and
M index entries

For leaf nodes, p is true when instantiated with the values
from the indicated tuple

For non-leaf nodes, p is true when instantiated with the values
of any tuple reachable from ptr

The root has at least two children unless it is a leaf

All leaves appear on the same level

Patryk Mastela R-Trees and GiST

Key Methods

m Search
m Consistent(E, q): Asks E.pA g

m Characterization

m Union(P): returns new predicate that holds for all tuples in P
m Categorization

m Penalty(E;, E;): penalty for inserting E; into E;

m PickSplit(P): split P into two group of entries
m Compression

[| Compress(E): returns compressed representation of p
m Decompress(E): returns an entry such (r, ptr) such that
p—r

Patryk Mastela R-Trees and GiST

Search Algorithm

Recursively descend all paths in tree whose keys are consistent with
q.
S1 [Search subtrees] If R is not a leaf, check each entry E on R to
determine whether Consistent(E, g). For all entries that are

Consistent, invoke Search on the subtree whose root node is
referenced by E.ptr.

S2 [Search leaf node] If Ris a leaf, check each entry E on R to
determine whether Consistent(E, q). If E is Consistent, it is a
qualifying entry. At this point E.ptr could be fetched to check
q accurately, or this check could be left to the calling process.

Patryk Mastela R-Trees and GiST

Insert Algorithm

Find where E should go, and add it there, splitting if necessary to
make room.

I1 [invoke ChooseSubtree to find where E should go] Let L =
ChooseSubtree(R, E, /)

[2 If there is room for E on L, install E on L (in order according
to Compare, if IsOrdered.) Otherwise invoke Split(R, L, E).

I3 [propagate changes upward] AdjustKeys(R, L).

Patryk Mastela R-Trees and GiST

Delete Algorithm

Remove E from its leaf node. If this causes underflow, adjust tree
accordingly. Update predicates in ancestors to keep them as
specific as possible.

D1 [Find node containing entry] Invoke Search(R, E, p) and find
leaf node L containing E. Stop if E not found.

D2 [Delete entry.] Remove E from L.

D3 [Propagate changes.| Invoke CondenseTree(R, L).

D4 [Shorten tree.] If the root node has only one child after the
tree has been adjusted, make the child the new root

Patryk Mastela R-Trees and GiST

GiSTs over B+-Trees |

m Consistent(E, g) returns true if

m g = Contains([xq,yq), v): (%o < yq) A (¥p > Xq)

m g = Equal(xq, v): X < Xq < ¥p
m Union(P) returns [MIN(x1, ..., xn), MAX(y1,--.,¥n))
m Penalty(E, F)

m If E is the leftmost pointer on its node, returns
MAX(y2 — y1,0)

m If Eis the rightmost pointer on its node, returns
MAX(Xl — X2, 0)

m Otherwise, returns MAX(y> — y1,0) + MAX(x1 — x,0)

m PickSplit(P) Let the first L@J entries in order go in the left
group, and the rest in the right

Patryk Mastela R-Trees and GiST

GiSTs over B+-Trees |l

m Compress(E) If E is the leftmost key on a non-leaf node
return O bytes otherwise, returns E.p.x

m Decompress(E)
m If Eis the leftmost key on a non-leaf node let x = —o0
otherwise let x = E.p.x
m If E is the rightmost key on a non-leaf node let y = co. If Eis
other entry in a non-leaf node, let = the value stored in the

next key. Otherwise, let y = x+1

Patryk Mastela R-Trees and GiST

GiSTs over R-Trees |

Key: (Xu/a Yuls Xir, }//r)
m Query predicates
] Contains ((Xulla Yuil, Xir1, ylr1)7 (Xul2a Yui2, Xir2, ylr2))
m Returns true if
(xurn < xur2) A (Yur > yur) A (xi1 > xir2) A (Virr < yir2)
m Overlaps ((Xur1, Yurts Xir1, Yir1)s (Xur2s Yut2, Xir2, Yir2))

m Returns true if
(xun < xir2) A (Yurn > yir2) A (xur2 < xir1) A (Virt < Yur2)

w Equal ((Xurt, Yurts Xirt, Yirt), (Xui2s Yuizs Xir2, Yir2))
® Returns true if
(xuir = xur2) A (Yur = yurz) A (i1 = xir2) A (Vir1 = yir2)

Patryk Mastela R-Trees and GiST

GiSTs over R-Trees I

m Consistent(E, q)

m p contains (X1, Yuii, Xir1, Yir1), and q is either Contains,
Overlaps, or Equals (X2, Yui2, Xir2, Yir2)
m Returns true if Overlaps

((Xullu Yulls Xir1, }//r1)7 (Xul27 Yul2s Xir2, }//rz))

m Union(P) returns coordinates of the maximum bounding
rectangles of all rectangles in P.

m Penalty(E, F) Compute g = Union(E,F) and return
area(q) — area(E.p)

m PickSplit(P) Variety of algorithms are provided to best split
the entries in a over-full node.

m Compress(E) Form the bounding rectangle of E.p

m Decompress(E) The identity function

Patryk Mastela R-Trees and GiST

SIS

m Performance

m Data overlap
m Lossy compression

m Implementation

m Concurrency Control, Recovery and Consistency
m Variable-Length Keys
m Bulk Loading

Patryk Mastela R-Trees and GiST

