
R-Trees and GiST

Patryk Mastela

University of Michigan

pmastela@umich.edu

September 19, 2011

Patryk Mastela R-Trees and GiST

R-Tree Motivation

ab

c

d

e

f
g h

i j

k

l

m

Range Query: find objects in a given range (e.g. find all
museums in New York City)

No index: need to scan through all objects. Inefficient!
B+-tree: clusters based only on one dimension. Inefficient!

Patryk Mastela R-Trees and GiST

R-Tree Structure

Non-leaf nodes contain entries in the form of (I, child-pointer)

I is an n-dimensional rectangle

Leaf nodes contain entries in the form of (I, tuple-identifier)

M is the maximum of entries which is usally given and m is
the minimum of entries in one node

Patryk Mastela R-Trees and GiST

R-Tree Properties

1 Every leaf node contains between m and M index records
unless it is the root; the root can have less entries than m

2 For each index record in a leaf node, I is the smallest
rectangle that spatially contains the n-dimensional data object
represented by the indicated tuple

3 Every non-leaf node has between m and M children unless it is
the root

4 For each entry in a non-leaf node, i is the smallest rectangle
that spatially contains the rectangles in the child node

5 The root node has at least two children unless it is a leaf

6 All leaves appear on the same level. That means the tree is
balanced

Patryk Mastela R-Trees and GiST

R-Tree

ab

c

d

e

f
g h

i j

k

l

m

E3

E4

E5

E6

E7

E1

E2

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

T is root node of an R-Tree, find all index records whose rectangles
overlap a search rectangle S.

S1 [Search Subtree] If T no leaf then check each entry E,
whether E.I overlaps S. For all overlapping entries, start
Search on the subtree whose root node is pointed to by E.p.

S2 [Search leaf node] If T is a leaf, then check each entry E
whether E.I overlaps S. If so, E is a suitable entry.

Patryk Mastela R-Trees and GiST

Search Algorithm

Example

ab

c

d

e

f
g h

i j

k

l

m

E3

E4

E5

E6

E7

E1

E2

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.I overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.I overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S1 [Search Subtree] If T no leaf then check each entry E, weather
E.I overlaps S. For all overlapping entries, start Search on the
subtree whose root node is pointed to by E.p.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Search Algorithm

S2 [Search leaf node] If T is a leaf, then check each entry E
wheather E.I overlaps S. If so, E is a suitable entry.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Insert Algorithm

New entry E will be inserted into a given R-Tree.

I1 [Find position for new record] Start ChooseLeaf to select a
leaf node L in which to place E

I2 [Add record to leaf node] If node L has enough space for a
new entry then add E. Else start SplitNode to obtain L and
LL containing E and all the old entries of L.

I3 [Propagate changes upward] Start AdjustTree on node L and
if a split was performed then also passing LL.

I4 [Grow tree taller] If node split propagation caused the root to
split, create a new root whose children are the two resulting
nodes.

Patryk Mastela R-Trees and GiST

ChooseLeaf Algorithm

ChooseLeaf selects a leaf node to place a new entry E.

CL1 [Initialize] Set N to be the root node.

CL2 [Leaf check] If N is a leaf then return N .

CL3 [Choose subtree] If N is not a leaf node then let F be the
entry in N whose MBR F.I needs least enlargement to include
E.I. When there are more qualify entries in N , the entry with
the rectangle of the smallest area is chosen.

CL4 [Descend until a leaf is reached] N is set to the child node F
which is pointed to by F.p and repeat from CL2

Patryk Mastela R-Trees and GiST

AdjustTree Algorithm

Leaf node L is upwarded to the root while adjusting covering
rectangles. If necessary it comes to propagating node splits.

AT1 [Initalize] N is equal L.

AT2 [Check if done] stop if N is the root

AT3 [Adjust covering MBR in parent entry] P is the parent node of
N and EN the entry of N in P. EN.I is adjusted so that all
rectangles in N are tightly enclosed.

AT4 [Propagate node split upward] If N has a partner NN which
was split previously then create a new entry with ENN.p
pointing to NN and ENN.I enclosing all rectangles in NN. If
there is room in P then add ENN. Otherwise start SplitNode
to get P and PP which include ENN and all old entries of P.

AT5 [Move up to next level] N is equal L and if a split occurred
then NN is equal PP. Repeat from AT2

Patryk Mastela R-Trees and GiST

Insert Algorithm

Example

ab

c

d

e

f
g h

i j

k

l

m

o

E3

E4

E5

E6

E7

E1

E2

Patryk Mastela R-Trees and GiST

Insert Algorithm

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Insert Algorithm

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Insert Algorithm

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Insert Algorithm

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7 E6’

i j l m k o

Patryk Mastela R-Trees and GiST

Delete Algorithm

Delete entry E from an R-Tree.

D1 [Find node containing record] Start FindLeaf to find the leaf
node L con-taining E. If search unsuccessful then terminate.

D2 [Delete record] Remove E from L.

D3 [Propagate record] Start CondenseTree on L.

D4 [Shorten tree] If the root node has only one child after
adjusting then make the child the new root.

Patryk Mastela R-Trees and GiST

FindLeaf Algorithm

Root node is T, the leaf node containing the index entry E is to
find.

FL1 [Search subtree] If T is not a leaf, then check each entry F in
T to determine when F.I overlaps E.I. For all these entries
FindLeaf starts on the subtree whose root is pointed to by
F.p until E is found or each entry has been checked.

FL2 [Search leaf node for record] If T is a leaf, then check each
entry to see when it matches E. If E is found, then return T.

Patryk Mastela R-Trees and GiST

CondenseTree Algorithm I

Given is a leaf node L from which an entry has been deleted. If L
has too few entries then eliminate it from the tree. After that, the
remaining entries in L are reinserted in the tree. This procedure is
repeated until the root. Also adjust all covering rectangles on the
path to the root, making them smaller, if possible.

CT1 [Initalize] N is equal L. Initialize a list Q which consists of
eliminate nodes as empty.

CT2 [Find parent entry] If N is the root, then go to CT6. Else P is
the parent node of N , and EN the entry of N in P.

CT3 [Eliminate underflow node] If N has fewer than m entries, then
eliminate EN from P and add N to list Q.

CT4 [Adjust covering rectangle] If N has not been deleted, then
adjust EN.I to tightly contain all entries in N.

CT5 [Move up one level in tree] N is equal P and repeat from CT2.

Patryk Mastela R-Trees and GiST

CondenseTree Algorithm II

CT6 [Re-insert orphaned entries] Every entry in Q is inserted. Leaf
nodes are inserted like in Insertion. However, entries from
higher-level nodes must be placed higher in the tree, so that
leaves of their dependent subtrees will be on the same level as
leaves of the main tree.

Patryk Mastela R-Trees and GiST

Delete Algorithm

Delete l where m = 2 and M = 3.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k l m

Patryk Mastela R-Trees and GiST

Delete Algorithm

Deleting l left E7 with an underflow.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6 E7

i j k m

Patryk Mastela R-Trees and GiST

Delete Algorithm

Save m and remove E7; E2 now has an underflow.

Example

E1 E2

E3 E4 E5

a b c d e f g h

E6

i j k

Patryk Mastela R-Trees and GiST

Delete Algorithm

Save E6 and remove E2.

Example

E1

E3 E4 E5

a b c d e f g h

Patryk Mastela R-Trees and GiST

Delete Algorithm

The root has only one child and thus the child becomes the new
root.

Example

E3 E4 E5

a b c d e f g h

Patryk Mastela R-Trees and GiST

Delete Algorithm

Insert E6 which causes the root to split.

Example

E8’ E9’

E3 E4

a b c d e

E5 E6

f g h i j k

Patryk Mastela R-Trees and GiST

Delete Algorithm

Insert l; E6 is split.

Example

E8’ E9’

E3 E4

a b c d e

E5 E6 E6’

f g h i j k m

Patryk Mastela R-Trees and GiST

GiST Motivation

New applications

Geographic information systems
Multimedia systems
CAD tools
Document libraries
Sequence databases
Fingerprint identification systems
Biochemical databases

Rapid data type introduction; in need of equally adaptable
search trees.

Patryk Mastela R-Trees and GiST

Prior Approaches

Specialized Search Trees

e.g. Spatial Search Trees (R-Trees)
High cost of implementation and maintenance

Search Trees for Extensible Data Types

e.g. B+-trees can be used to index any data with linear
ordering
Extending data does not extend set of queries supported by
tree

Patryk Mastela R-Trees and GiST

GiST: A New Hope

A third direction for extending search tree technology

Extensible in both the data types it can index and the queries
it can support

Allows new data types to be indexed in a manner that
supports the queries natural to the types

Unifies previously disparate structures used for currently
common data types

e.g. B+-trees and R-trees can be implemented as extensions of
the GiST. Single code base yet indexes multiple dissimilar
applications.

Patryk Mastela R-Trees and GiST

Search Trees

Balanced tree; high fanout

Search Key: any arbitrary predicate that holds for each
datum below the key

Search Tree: hierarchy of categorizations, in which each
categorization holds for all data stored under it in the
hierarchy

Patryk Mastela R-Trees and GiST

Generalized Search Tree

Balanced tree of variable fanout between kM and M

k is the minimum fill factor of the tree, 2
M ≤ k ≤ 1

2
The exception is the root which may have a fanout between 2
and M

Non-leaf nodes (p, ptr)

p, predicate that is used as a search key
ptr, pointer to another tree node

Leaf nodes (p, ptr)

p, predicate that is used as a search key
ptr, identifier of some tuple in the database

Patryk Mastela R-Trees and GiST

GiST Properties

1 Unless the node is root every node contains between kM and
M index entries

2 For leaf nodes, p is true when instantiated with the values
from the indicated tuple

3 For non-leaf nodes, p is true when instantiated with the values
of any tuple reachable from ptr

4 The root has at least two children unless it is a leaf

5 All leaves appear on the same level

Patryk Mastela R-Trees and GiST

Key Methods

Search

Consistent(E, q): Asks E .p ∧ q

Characterization

Union(P): returns new predicate that holds for all tuples in P

Categorization

Penalty(E1, E2): penalty for inserting E2 into E1

PickSplit(P): split P into two group of entries

Compression

Compress(E): returns compressed representation of p
Decompress(E): returns an entry such (r, ptr) such that
p → r

Patryk Mastela R-Trees and GiST

Search Algorithm

Recursively descend all paths in tree whose keys are consistent with
q.

S1 [Search subtrees] If R is not a leaf, check each entry E on R to
determine whether Consistent(E, q). For all entries that are
Consistent, invoke Search on the subtree whose root node is
referenced by E.ptr.

S2 [Search leaf node] If R is a leaf, check each entry E on R to
determine whether Consistent(E, q). If E is Consistent, it is a
qualifying entry. At this point E.ptr could be fetched to check
q accurately, or this check could be left to the calling process.

Patryk Mastela R-Trees and GiST

Insert Algorithm

Find where E should go, and add it there, splitting if necessary to
make room.

I1 [invoke ChooseSubtree to find where E should go] Let L =
ChooseSubtree(R, E, l)

I2 If there is room for E on L, install E on L (in order according
to Compare, if IsOrdered.) Otherwise invoke Split(R, L, E).

I3 [propagate changes upward] AdjustKeys(R, L).

Patryk Mastela R-Trees and GiST

Delete Algorithm

Remove E from its leaf node. If this causes underflow, adjust tree
accordingly. Update predicates in ancestors to keep them as
specific as possible.

D1 [Find node containing entry] Invoke Search(R, E, p) and find
leaf node L containing E. Stop if E not found.

D2 [Delete entry.] Remove E from L.

D3 [Propagate changes.] Invoke CondenseTree(R, L).

D4 [Shorten tree.] If the root node has only one child after the
tree has been adjusted, make the child the new root

Patryk Mastela R-Trees and GiST

GiSTs over B+-Trees I

Consistent(E, q) returns true if

q = Contains([xq, yq), v): (xp < yq) ∧ (yp > xq)
q = Equal(xq, v): xp ≤ xq < yp

Union(P) returns [MIN(x1, . . . , xn),MAX (y1, . . . , yn))

Penalty(E, F)

If E is the leftmost pointer on its node, returns
MAX (y2 − y1, 0)
If E is the rightmost pointer on its node, returns
MAX (x1 − x2, 0)
Otherwise, returns MAX (y2 − y1, 0) + MAX (x1 − x2, 0)

PickSplit(P) Let the first b |P|
2 c entries in order go in the left

group, and the rest in the right

Patryk Mastela R-Trees and GiST

GiSTs over B+-Trees II

Compress(E) If E is the leftmost key on a non-leaf node
return 0 bytes otherwise, returns E.p.x

Decompress(E)

If E is the leftmost key on a non-leaf node let x = −∞
otherwise let x = E.p.x

If E is the rightmost key on a non-leaf node let y = ∞. If E is
other entry in a non-leaf node, let = the value stored in the
next key. Otherwise, let y = x + 1

Patryk Mastela R-Trees and GiST

GiSTs over R-Trees I

Key: (xul , yul , xlr , ylr)

Query predicates
Contains ((xul1, yul1, xlr1, ylr1), (xul2, yul2, xlr2, ylr2))

Returns true if
(xul1 ≤ xul2) ∧ (yul1 ≥ yul2) ∧ (xlr1 ≥ xlr2) ∧ (ylr1 ≤ ylr2)

Overlaps ((xul1, yul1, xlr1, ylr1), (xul2, yul2, xlr2, ylr2))

Returns true if
(xul1 ≤ xlr2) ∧ (yul1 ≥ ylr2) ∧ (xul2 ≤ xlr1) ∧ (ylr1 ≤ yul2)

Equal ((xul1, yul1, xlr1, ylr1), (xul2, yul2, xlr2, ylr2))

Returns true if
(xul1 = xul2) ∧ (yul1 = yul2) ∧ (xlr1 = xlr2) ∧ (ylr1 = ylr2)

Patryk Mastela R-Trees and GiST

GiSTs over R-Trees II

Consistent(E, q)

p contains (xul1, yul1, xlr1, ylr1), and q is either Contains,
Overlaps, or Equals (xul2, yul2, xlr2, ylr2)
Returns true if Overlaps
((xul1, yul1, xlr1, ylr1), (xul2, yul2, xlr2, ylr2))

Union(P) returns coordinates of the maximum bounding
rectangles of all rectangles in P.

Penalty(E, F) Compute q = Union(E,F) and return
area(q)− area(E .p)

PickSplit(P) Variety of algorithms are provided to best split
the entries in a over-full node.

Compress(E) Form the bounding rectangle of E.p

Decompress(E) The identity function

Patryk Mastela R-Trees and GiST

Issues

Performance

Data overlap
Lossy compression

Implementation

Concurrency Control, Recovery and Consistency
Variable-Length Keys
Bulk Loading

Patryk Mastela R-Trees and GiST

