
8/17/11

1

8/17/11 1

“What Goes Around Comes
Around”

Michael Stonebraker and Joe Hellerstein

Michael Cafarella
(With slides from Kristen LeFevre and Jim Steinberger)

EECS 584, Fall 2011

Administration

n A few people have not yet sent their
paper preferences

n  I will make final paper assignments
tonight

8/17/11 EECS 584, Fall 2011 2

8/17/11 3

Paper Overview
n Primary Contribution: Retrospective

Survey of Data Models
n Also presents opinions for discussion:

– “Lessons” to learn from past data models
– Does XML repeat history? In a bad way?

EECS 584, Fall 2011 8/17/11 4

Hierarchical - IMS (~1968)
n  Hierarchical model
n  Overview:

–  Record types arranged as hierarchy
–  Each type has single parent

Supplier
(sno, sname, scity, sstate)

Part
(pno, pname, psize, pcolor, qty, price)

“Type Hierarchy” (Schema)

16, General Supply,
Boston, MA

27, Power Saw, 7, silver, 100, $20

Sample Instances

(Each record has a key)

8/17/11 EECS 584, Fall 2011 4

8/17/11 5

Some Problems

n  Information repeated
–  Schema 1: Part info repeated for each supplier that supplies

the part
–  Schema 2: Supplier info repeated for each part it supplies

n  Existence depends on parent data
–  Schema 1: What if there is a part not currently supplied by

anyone?

Supplier
(sno, sname, scity, sstate)

Part
(pno, pname, psize, pcolor, qty, price)

Supplier
(sno, sname, scity, sstate)

Part
(pno, pname, psize, pcolor, qty, price)

Schema #1 Schema #2

8/17/11 EECS 584, Fall 2011 5

DL/1 (Programming Language for IMS)

n “Record-at-a-time” language
n Programmer constructs an algorithm for

solving her query; IMS executes it

Get unique Supplier (sno = 16)!
Until no-more {!

!Get next within parent (color = red)!
}

Supplier
(sno, sname, scity, sstate)

Part
(pno, pname, psize, pcolor, qty, price)

Until no-more {!
!Get next Part (color = red)!

}

Find red parts supplied by
Supplier 16

8/17/11 EECS 584, Fall 2011 6

8/17/11

2

8/17/11 7

DL/1 (Programming Language for IMS)

n Different underlying storage formats =
different restrictions on commands
– Heavy coupling between storage format

used (sequential/B-tree/hashed) and client
applications

– Thus, poor physical data independence
n Different sets of data = different

optimization opportunities
– Optimization is performed by programmer

EECS 584, Fall 2011 8/17/11 8

Lesson 1:
Physical / Logical data independence == good
n Lifespan of data < Lifespan of apps

–  (Really?)
n Changes to physical/logical data …

– … should not require changes to apps
(ideally).

– … should not require expensive changes to
apps.

EECS 584, Fall 2011

8/17/11 9

Lesson 3:
Difficult to reorganize tree-structured data

Lesson 4:
Record-at-a-time delegates optimization to the
programmer

Lesson 2:
Tree-structured data models are restrictive

8/17/11 EECS 584, Fall 2011 9 8/17/11 10

Graph / Network - CODASYL (1969)

n Graph / Network model
n Schema:

EECS 584, Fall 2011

Graph / Network - CODASYL (1969)

n  Instance:

8/17/11 EECS 584, Fall 2011 11 8/17/11 12

Graph / Network - CODASYL (1969)

n  Improvements:
– Entities may exist without their “parent

(s)”
n Limitations

– Still using record-at-a-time DML
– Still no physical data independence
– Some logical data independence, but

IMS’s was more flexible
– More difficult to program against a

complex graph than a tree EECS 584, Fall 2011

8/17/11

3

8/17/11 13

Lesson 5:
Graphs are more flexible (allowing many-to-
many) relationships, but more complex

Lesson 6:
Loading and recovering graphs is more
complex than hierarchies
n The entire graph must be bulk-loaded

at once; IMS trees could be individually
loaded

EECS 584, Fall 2011 8/17/11 14

Relational Model (1970)
n  Started with Ted Codd’s 1970 proposal

–  Motivated by heavy maintenance required with
IMS applications

•  Recall: IMS provided limited logical data independence,
no physical data independence

n  Overview:
–  Data stored in tables
–  High-level, set-oriented, DML
–  Underlying physical storage is up to vendors

EECS 584, Fall 2011

8/17/11 15

The Great Debate
n  Ideological battle throughout the 1970s

–  Ted Codd & co. advocating relational
–  Charlie Bachman & co. advocating CODASYL

(graph/network)

• CODASYL too complex
• Too much dependence on data
• Record-at-a-time too hard to optimize
• Relational model better for complex relationships

• Relational languages too hard!
• Implementing relational model efficiently too difficult
• CODASYL can pretend to be relational…

EECS 584, Fall 2011 8/17/11 16

Result 1: Both parties adopted many
of each other’s policies while
pretending to remain at opposite
sides of the ideological spectrum

Result 2: IBM advocated the
relational model, and won in the
marketplace due to its dominant
position in microcomputers

EECS 584, Fall 2011

8/17/11 17

Lesson 7:
Set-at-a-time languages offer better physical
data independence

Lesson 8:
Simpler data models lend themselves to better
logical data independence

n Up to the DBMS to optimize based on
physical structure

EECS 584, Fall 2011 8/17/11 18

Lesson 9:
Technological debates are often settled by
dollars rather than ideas

Lesson 10:
Query optimizers almost always better than a
programmer optimizing manually

EECS 584, Fall 2011

8/17/11

4

8/17/11 19

Entity-Relationship (mid-1970s)

n Proposed by Peter Chen
–  (not our Peter Chen)

n Novelty: relationships with attributes
and multiplicities

EECS 584, Fall 2011 8/17/11 20

Entity-Relationship (mid-1970s)

n As physical model:
– Never caught on (due to little benefit)

n As conceptual model:
– Widely used for database schema design

•  Normalization is hard without tables to
normalize

•  The E-R model offers a methodology for
creating those initial tables

•  Some normalization on an E-R model can be
done automatically

EECS 584, Fall 2011

8/17/11 21

Lesson 11:
“Relationships” are easier to understand than
“functional dependencies”.

EECS 584, Fall 2011 8/17/11 22

R++ (Early 1980s)
n  Algorithm for writing SIGMOD papers

 (circa 1984):
–  Consider an application X
–  Try to implement X on a relational DBMS
–  Show why queries are difficult, or poor

performance
–  Add a new “feature” to relational model to solve

the problem

EECS 584, Fall 2011

8/17/11 23

R++ (Early 1980s)
n  Following relational success, lots of

proposals for new features
–  Examples:

•  Mechanical & VLSI CAD
•  Text Management
•  Time
•  Graphics
•  Set-valued attributes
•  Inheritance

n  Offered lots of new functionality, but:
–  Most could be simulated within the existing

relational models
–  Did little to improve performance

EECS 584, Fall 2011 8/17/11 24

Semantic Data Model (Early 1980s)

n Viewing relations as “classes”
– Multiple inheritance, “class”-wide

attributes

EECS 584, Fall 2011

8/17/11

5

8/17/11 25

Semantic Data Model (Early 1980s)

n Same limitations as R++ proposals:
–  This model could already be simulated with the

relational model
–  Vendors were more concerned with performance

EECS 584, Fall 2011 8/17/11 26

Lesson 12:
Without large performance / functionality
advantages, new constructs will go nowhere.

EECS 584, Fall 2011

8/17/11 27

OO DBs (Mid-1980s)

n Attempts to solve “impedance
mismatch”
– Difficulties in writing database-backed

applications
– Mapping relations to PL objects like
“gluing an apple onto a pancake”

n Goal: Integrate data persistence into
OO programming languages

EECS 584, Fall 2011 8/17/11 28

Impedance Mismatch

Struct Part{!
!int number;!
!char* name;!
!char* size;!
!char* color;!
}; !

Pno, int Pname,
varchar(10)

Psize, int Pcolor,
varchar(18)

Need to translate
between PL objects,
database objects

8/17/11 EECS 584, Fall 2011 28

8/17/11 29

OO DBs (Mid-1980s)

n General Idea: Extend a programming
language (e.g., C++) with database
functionality to support data
persistence
–  Initial work targeted toward engineering

niche market (I.e., CAD)

Persistent Part p;!
Persistent int i;!
i = i+1; !

EECS 584, Fall 2011 8/17/11 30

OO DBs (Mid-1980s)
n Problems:

– There are lots of programming languages
•  Adding persistence to all = huge chore

– Resistance from PL community
– Getting rid of embedded SQL not enough

of a benefit
– No standards; different OODBs

incompatible
–  (persistent C++) Record-at-a-time access +

no transaction support = unsuitable for
business data processing

EECS 584, Fall 2011

8/17/11

6

8/17/11 31

Lesson 13:
New systems will not sell to users unless they
are in “major pain”

Lesson 14:
Persistent languages require the support of the
programming language community

EECS 584, Fall 2011 8/17/11 32

Object-Relational DBs (Mid-1980s)

n Motivated by spatial queries
– Circa 1982, INGRES team had “haunting”

interest in GIS (geographical information
systems)

– Recall: B-trees inefficient for these sorts of
queries

– Recall: R-trees require 2+-dimensional
nodes, rather than single-dimensional
numeric ranges

EECS 584, Fall 2011

8/17/11 33

Object-Relational DBs (Mid-1980s)

n OR Proposal: User-extension and user-
customization to a relational DB
– User-defined data types (e.g., box)
– User-defined operators (e.g., box-

intersects-box)
– User-defined functions (e.g., box-

intersects-box implementation)
– User-defined access methods (e.g., R-tree

indexing)

EECS 584, Fall 2011 8/17/11 34

Object-Relational DBs (Mid-1980s)
n Major prototype: Postgres

– Contribution: showed how to build a
DBMS engine so new types/functions/etc.
could be plugged in

•  Contemporary systems hard-coded their
supported sets of data types, access paths,
etc.

n Also: Sybase
– Contribution: stored procedures

•  Using UDFs for application-logic, not just
operator-implementation

•  Performance benefit for these operations
EECS 584, Fall 2011

8/17/11 35

Object-Relational DBs (Mid-1980s)

n Postgres: commercialized by Illustra
n Then: Informix acquired Illustra

–  Illustra brought UDTs/UDFs to the table
–  Informix brought market share and

transaction-management
n  Informix successful with GIS and

large-content-repository markets
– Little success elsewhere

EECS 584, Fall 2011 8/17/11 36

Lesson 14:
OR’s contributions are great!

Lesson 15:
Widespread adoption requires standards or a
market giant

n  Every ORDB has a proprietary way of doing
UDFs

n  Application code in the DB
n  Extension / customization mechanisms
n  (keep in mind that Stonebraker was behind

Postgres…)

EECS 584, Fall 2011

8/17/11

7

8/17/11 37

Semi-Structured Era (~2000)

n Two (+1) main points exemplified by
this work:
– Schema evolution / “schema later”
– Complex graph-oriented data model
– Also: Response to growth of web

services / XML as a messaging standard

8/17/11 EECS 584, Fall 2011 37 8/17/11 38

Schema Later

n Conventional Setting:
– DBA defines a schema (e.g., Parts)
–  Inserted data must conform to the schema

n “Schema Later”:
–  (Interpretation 1) No fixed schema; data is

self-describing
•  Primary motivation: “Semi-Structured” data

(next slides)
–  (Interpretation 2) Schema is easily

changed

8/17/11 EECS 584, Fall 2011 38

8/17/11 39

Semi-Structured Data
n Motivating application class:

– Rigidly-structured data
•  Schema-first

– Rigidly-structured data with text fields
•  e.g. web/business form
•  Schema-first

– Semi-structured data
•  e.g. Classifieds/personals
•  Schema-last

– Free Text
•  Schema not-at-all

EECS 584, Fall 2011 8/17/11 40

Semi-Structured Data
n Semi-structured Example
Person:

Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247
Major skill: accountant

End Person

Person:

Name: Smith, Vanessa
Wages: 2000
Favorite coffee: Arabian
Pastimes: sewing, swimming
Works_for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

Semantic Heterogeneity:
 * Different sets of attributes
 * Same attributes have different formats
 * Different attributes have same meaning

Stonebraker & Hellerstein
think truly semi-structured

data is rare EECS 584, Fall 2011

8/17/11 41

Schema Evolution
n Alternate interpretation of “schema

later”
– Relational DBMSs (schema first) have

heavy-weight mechanisms for changing
a schema

•  E.g., ALTER TABLE
– Open Question: Can we make it easier

to modify and evolve schemas?

EECS 584, Fall 2011 8/17/11 42

XML as a Data Model (early 2000s)
n  Define schemas using DTDs or

XMLSchema
n  Data model is complex!

–  Records can be hierarchical (IMS)
–  Records can reference any other record

(CODASYL)
–  Records may have set-based attributes (R++)
–  Several modes of inheritance (Semantic)
–  “Union” attributes may be one of several data

types (e.g. an int or a string)
•  Complex to index / query

–  All in all, a major KISS violation (?)

EECS 584, Fall 2011

8/17/11

8

8/17/11 43

(Prediction) 16:
Semi-structured data is probably a niche
market

(Prediction) 18:
XML will not solve semantic heterogeneity

(Prediction) 17:
XQuery is essentially Object-Relational SQL

EECS 584, Fall 2011 8/17/11 44

XML Comments

n XML seems here to stay as a
document / message format

n Extreme Solution: Replace relational
model with XML data model, native
implementation

n Various Hybrid Solutions, too
– E.g., XML data type in relational DBMS

EECS 584, Fall 2011

8/17/11 45

Summary
n 1960s/1970s: Hierarchical (IMS)
n 1970s: Network/Graph (CODASYL)
n 1970s/1980s: Relational
n 1970s: Entity-Relational
n 1970s/1980s: Semantic (SDM/GEM)
n 1980s/1990s: OO & OR
n Late 1990s – present: Semi-structured

& XML

EECS 584, Fall 2011

