“What Goes Around Comes
Around”

Michael Cafarella

(With slides from Kristen LeFevre and Jim Steinberger)

iiaelMelﬁld Joe Hellerstein
E B H/

8/17/11 EECS 584, Fall 2011 1

Paper Overview

= Primary Contribution: Retrospective
Survey of Data Models

m Also presents opinions for discussion:
— “Lessons” to learn from past data models
— Does XML repeat history? In a bad way?

81711 EECS 584, Fall 2011 3

Some Problems

Schema #1 Schema #2
Supplier Part
(sno, sname, scity, sstate) (pno, pname, psize, pcolor, qty, price)
Supplier

(pno, pname, psize, pcolor, qty, price) (sno, sname, scity, sstate)

Part |

m Information repeated
— Schema 1: Part info repeated for each supplier that supplies
the part
— Schema 2: Supplier info repeated for each part it supplies
m Existence depends on parent data

— Schema 1: What if there is a part not currently supplied by
anyone?

81711 EECS 584, Fall 2011 5

TIE 31 ! TIE 31 5 !

8/17/11

Administration

m A few people have not yet sent their
paper preferences

= | will make final paper assignments
tonight

81711 EECS 584, Fall 2011 2

Hierarchical - IMS (~1968)
= Hierarchical model
= Overview:
— Record types arranged as hierarchy
— Each type has single parent

Type Hierarchy” (Schema) Sample Instances

Supplier 16, General Supply,
(sno, sname, scity, sstate) Boston, MA
oo) 27, Power Saw, 7, silver, 100, $20
(pno, pname, psize, pcolor, qty, price)
(Each record has a key)
81711 EECS 584, Fall 2011 4

TIE 1 & ! TIR I s T1

DL/1 (Programming Language for IMS)

m “Record-at-a-time” language
m Programmer constructs an algorithm for
solving her query; IMS executes it

Supplier
(sno, sname, scity, sstate)
Part
(pno, pname, psize, peolor, aty, price)

Get unique Supplier (sno = 16)
Until no-more {
Get next within parent (color = red)

Find red parts supplied by
Supplier 16

}

Until no-more {
Get next Part (color = red)
81711}

EECS 584, Fall 2011 6

DL/1 (Programming Language for IMS)

m Different underlying storage formats =
different restrictions on commands

— Heavy coupling between storage format
used (sequential/B-tree/hashed) and client
applications

— Thus, poor physical data independence
= Different sets of data = different

optimization opportunities

— Optimization is performed by programmer

81711 EECS 584, Fall 2011 7

8/17/11

Lesson 2:
Tree-structured data models are restrictive

Lesson 3:
Difficult to reorganize tree-structured data

Lesson 4:
Record-at-a-time delegates optimization to the
programmer

81711 EECS 584, Fall 2011 9

Lesson 1:
Physical / Logical data independence == good

m Lifespan of data < Lifespan of apps
— (Really?)
m Changes to physical/logical data ...
— ... should not require changes to apps
(ideally).
— ... should not require expensive changes to
apps.

81711 EECS 584, Fall 2011 8

TIE 31 ! TIR I s TIR I s .

Graph / Network - CODASYL (1969)

m Instance:

27, Power saw

16.General Supply
Boston, Ma

24, Special Supply
Detroit, Mi

81711 EECS 584, Fall 2011 1

Graph / Network - CODASYL (1969)

m Graph / Network model

m Schema:
Supplier (sno,

sname, scity, L~
sstate)

Part (pmo,
pname, psize.
peolor)

Supplied_by

Supply(qty. price)

Arranged in graphinstwork

81711 EECS 584, Fall 2011 10

TIE 1 & ! TIR I s TIR I s

Graph / Network - CODASYL (1969)

= Improvements:
— Entities may exist without their “parent
(s)”
= Limitations
— Still using record-at-a-time DML
— Still no physical data independence
— Some logical data independence, but
IMS’ s was more flexible
— More difficult to program against a
81711 Complex graant\‘Q% fa\ ;{#e 12

Lesson 5:
Graphs are more flexible (allowing many-to-
many) relationships, but more complex

Lesson 6:

Loading and recovering graphs is more
complex than hierarchies

m The entire graph must be bulk-loaded

at once; IMS trees could be individually
loaded

81711 EECS 584, Fall 2011 13

8/17/11

The Great Debate

= |deological battle throughout the 1970s
— Ted Codd & co. advocating relational

— Charlie Bachman & co. advocating CODASYL
(graph/network)

*CODASYL too complex
«Too much dependence on data
*Record-at-a-time too hard to optimize

| *Relational model better for complex relationships

2 A| <Relational languages too hard!

«Implementing relational model efficiently too difficult C]
Ev' *CODASYL can pretend to be relational...
81711 EECS 584, Fall 2011 15

Relational Model (1970)

» Started with Ted Codd’ s 1970 proposal

— Motivated by heavy maintenance required with
IMS applications

+ Recall: IMS provided limited logical data independence,
no physical data independence

= Overview:
— Data stored in tables
— High-level, set-oriented, DML
— Underlying physical storage is up to vendors

81711 EECS 584, Fall 2011 14

TIE 31 ! T 1 -lﬂ TIR I s .

Lesson 7:
Set-at-a-time languages offer better physical
data independence

= Up to the DBMS to optimize based on
physical structure

Lesson 8:

Simpler data models lend themselves to better
logical data independence

81711 EECS 584, Fall 2011 17

Result 1: Both parties adopted many
of each other’ s policies while
pretending to remain at opposite
sides of the ideological spectrum

Result 2: IBM advocated the
relational model, and won in the
marketplace due to its dominant
position in microcomputers

81711 EECS 584, Fall 2011 16

TIR I s TIL I e TIL I e

Lesson 9:
Technological debates are often settled by
dollars rather than ideas

Lesson 10:
Query optimizers almost always better than a
programmer optimizing manually

81711 EECS 584, Fall 2011 18

Entity-Relationship (mid-1970s)

= Proposed by Peter Chen
— (not our Peter Chen)

= Novelty: relationships with attributes
and multiplicities

Part Supplier
Pno, pname, psize, Sno, sname, scity,
peolor. sstate

EECS 584, Fall 2011

81711

8/17/11

Lesson 11:
“Relationships” are easier to understand than
“functional dependencies”.

Keep
It
Simple,
| Stupid

81711

EECS 584, Fall 2011

21

Entity-Relationship (mid-1970s)

= As physical model:
— Never caught on (due to little benefit)
m As conceptual model:

— Widely used for database schema design
» Normalization is hard without tables to
normalize
* The E-R model offers a methodology for
creating those initial tables
» Some normalization on an E-R model can be
done automatically

81711 EECS 584, Fall 2011 20

TIR I s TIL Il TIL DI

R++ (Early 1980s)

= Following relational success, lots of
proposals for new features
— Examples:
* Mechanical & VLS| CAD
+ Text Management
* Time
» Graphics
+ Set-valued attributes
* Inheritance

= Offered lots of new functionality, but:

— Most could be simulated within the existing
relational models

— Did little to improve performance

81711 EECS 584, Fall 2011

23

R++ (Early 1980s)

= Algorithm for writing SIGMOD papers
(circa 1984):
— Consider an application X
— Try to implement X on a relational DBMS
— Show why queries are difficult, or poor
performance

— Add a new “feature” to relational model to solve
the problem

81711 EECS 584, Fall 2011 22

TIE 1 & ! TIE 1 & ! TIE 1 & !

Semantic Data Model (Early 1980s)

= Viewing relations as “classes”
— Multiple inheritance, “class”-wide

attributes ’7
o

81711 EECS 584, Fall 2011 24

Semantic Data Model (Early 1980s)

m Same limitations as R++ proposals:

— This model could already be simulated with the
relational model

— Vendors were more concerned with performance

81711 EECS 584, Fall 2011 25

00 DBs (Mid-1980s) é -
\\E-——/

= Attempts to solve “impedance
mismatch”
— Difficulties in writing database-backed
applications
— Mapping relations to PL objects like
“gluing an apple onto a pancake”
m Goal: Integrate data persistence into
OO programming languages

81711 EECS 584, Fall 2011 27

8/17/11

Lesson 12:
Without large performance / functionality
advantages, new constructs will go nowhere.

81711 EECS 584, Fall 2011 26

TIE 31 ! TIR I s TIR I s .

0O DBs (Mid-1980s)

= General Idea: Extend a programming
language (e.g., C++) with database
functionality to support data
persistence

— Initial work targeted toward engineering
niche market (l.e., CAD)

Persistent Part p;
Persistent int ij;
i = i+1;

81711 EECS 584, Fall 2011 29

Impedance Mismatch é " :

Struct Part{
int number;
char* name;
char* size;
char* color;

Need to translate
between PL objects,

}i database objects
Pno, int |Pname, Psize, int Pcolor,
varchar(10) varchar(18)

81711 EECS 584, Fall 2011 28

TIE 1 & ! TIR I s TIR I s

00 DBs (Mid-1980s)
= Problems:
— There are lots of programming languages
» Adding persistence to all = huge chore
— Resistance from PL community
— Getting rid of embedded SQL not enough
of a benefit
— No standards; different OODBs
incompatible
— (persistent C++) Record-at-a-time access +
no transaction support = unsuitable for
business data processing

81711 EECS 584, Fall 2011 30

Lesson 13:

New systems will not sell to users unless they
are in “major pain”

Lesson 14:

Persistent languages require the support of the
programming language community

81711 EECS 584, Fall 2011 31

8/17/11

Object-Relational DBs (Mid-1980s)

= Motivated by spatial queries

m Circa 1982, INGRES team had “hauntlng
interest in GIS (geographical information
systems)

— Recall: B-trees inefficient for these sorts of
queries
— Recall: R-trees require 2+-dimensional
- nodes, rather than single-dimensional

Object-Relational DBs (Mid-1980s)

m OR Proposal: User-extension and user-
customization to a relational DB
— User-defined data types (e.g., box)

— User-defined operators (e.g., box-
intersects-box)

— User-defined functions (e.g., box-
intersects-box implementation)

— User-defined access methods (e.g., R-tree
indexing)

81711 EECS 584, Fall 2011 33

numeric ranges
j 81711 EECS 584, Fall 2011 32

Object-Relational DBs (Mid-1980s)
= Major prototype: Postgres
— Contribution: showed how to build a
DBMS engine so new types/functions/etc.
could be plugged in
» Contemporary systems hard-coded their

supported sets of data types, access paths,
etc.

= Also: Sybase

— Contribution: stored procedures
 Using UDFs for application-logic, not just
operator-implementation

» Performance benefit for these operations
81711 EECS 584, Fall 2011 34

TIE 31 ! TIR I s TIR I s .

Object-Relational DBs (Mid-1980s)

= Postgres: commercialized by lllustra
= Then: Informix acquired lllustra
— lllustra brought UDTs/UDFs to the table

— Informix brought market share and
transaction-management

m Informix successful with GIS and
large-content-repository markets
— Little success elsewhere

81711 EECS 584, Fall 2011 35

Lesson 14:

OR’ s contributions are great!
= Application code in the DB
m Extension / customization mechanisms

= (keep in mind that Stonebraker was behind
Postgres...)

Lesson 15:
Widespread adoption requires standards or a
market giant

= Every ORDB has a proprietary way of doing
UDFs

81711 EECS 584, Fall 2011 36

TIE 1 & ! TIE 1 & !

Semi-Structured Era (~2000)

= Two (+1) main points exemplified by
this work:
— Schema evolution / “schema later”
— Complex graph-oriented data model

— Also: Response to growth of web
services / XML as a messaging standard

81711 EECS 584, Fall 2011

37

8/17/11

Schema Later

= Conventional Setting:

— DBA defines a schema (e.g., Parts)

— Inserted data must conform to the schema
= “Schema Later”:

— (Interpretation 1) No fixed schema; data is
self-describing

« Primary motivation: “Semi-Structured” data
(next slides)

— (Interpretation 2) Schema is easily
changed

81711 EECS 584, Fall 2011 38

Semi-Structured Data
= Motivating application class:
— Rigidly-structured data
* Schema-first
— Rigidly-structured data with text fields
* e.g. web/business form
* Schema-first
— Semi-structured data
* e.g. Classifieds/personals
* Schema-last
— Free Text
« Schema not-at-all

81711 EECS 584, Fall 2011

39

Semi-Structured Data
m Semi-structured Example

Person:
Name: Joe Jones
Wages: 14.75
Employer: My_accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road? To get to the other side
Office number: 247

Major skill:
End Person Semantic Heterogeneity:
Person: * Different sets of attributes
Name: Smith, Vanessa * Same attributes have different formats
Wages: 2000 * Different attributes have same meaning

Favorite coffee: Arabian
Pastimes: sewing, swimming
Works._for: Between jobs
Favorite restaurant: Panera

Number of children: 3 .
End Person: Stonebraker & Hellerstein
think truly semi-structured

81711 EECS 584, Fall 2011datg is rare 40

TIE 31 ! TIR I s TIR I s .

Schema Evolution

m Alternate interpretation of “schema
later”
— Relational DBMSs (schema first) have

heavy-weight mechanisms for changing
a schema

+ E.g., ALTER TABLE
— Open Question: Can we make it easier
to modify and evolve schemas?

81711 EECS 584, Fall 2011

41

XML as a Data Model (early 2000s)

= Define schemas using DTDs or
XMLSchema

m Data model is complex!
— Records can be hierarchical (IMS)

— Records can reference any other record
(CODASYL)

— Records may have set-based attributes (R++)
— Several modes of inheritance (Semantic)

— “Union” attributes may be one of several data
types (e.g. an int or a string)
« Complex to index / query

— All'in all, a major KISS violation (?)

81711 EECS 584, Fall 2011 42

TIE 1 & ! TIR I s TIR I s

(Prediction) 16:
Semi-structured data is probably a niche
market

(Prediction) 17:
XQuery is essentially Object-Relational SQL

(Prediction) 18:

XML will not solve semantic heterogeneity

81711 EECS 584, Fall 2011 43

8/17/11

TIE 31 5 ! TIE 31 & 1

Summary

m 1960s/1970s: Hierarchical (IMS)

m 1970s: Network/Graph (CODASYL)
m 1970s/1980s: Relational

m 1970s: Entity-Relational

m 1970s/1980s: Semantic (SDM/GEM)
m 1980s/1990s: OO & OR

m Late 1990s — present: Semi-structured
& XML

81711 EECS 584, Fall 2011 45

TIE 1 & !

XML Comments

m XML seems here to stay as a
document / message format

m Extreme Solution: Replace relational
model with XML data model, native
implementation

= Various Hybrid Solutions, too
— E.g., XML data type in relational DBMS

81711 EECS 584, Fall 2011

44

