

CIDR Perspectives 2009

Requirements for Science Data Bases and SciDB

Michael Stonebraker, MIT
Jacek Becla, SLAC

David Dewitt, Microsoft
Kian-Tat Lim, SLAC

David Maier, Portland State University
Oliver Ratzesberger, eBay, Inc.
Stan Zdonik, Brown University

Abstract: For the past year, we have been assembling
requirements from a collection of scientific data base users
from astronomy, particle physics, fusion, remote sensing,
oceanography, and biology. The intent has been to specify a
common set of requirements for a new science data base
system, which we call SciDB. In addition, we have
discovered that very complex business analytics share most of
the same requirements as “big science”.

We have also constructed a partnership of companies to fund
the development of SciDB, including eBay, the Large
Synoptic Survey Telescope (LSST), Microsoft, the Stanford
Linear Accelerator Center (SLAC) and Vertica. Lastly, we
have identified two “lighthouse customers” (LSST and eBay)
who will run the initial system, once it is constructed.

In this paper, we report on the requirements we have
identified and briefly sketch some of the SciDB design.

I INTRODUCTION

XLDB-1 in October 2007 brought together a collection of
“big science” and commercial Internet users with extreme data
base requirements. Also present were a collection of vendors
and David DeWitt and Michael Stonebraker. The users
complained about the inadequacy of current commercial
DBMS offerings. DeWitt and Stonebraker countered with the
fact that various researchers in the DBMS community have
been working on science databases for years and have even
built prototypes (e.g. Sequoia 2000 with Postgres [1], Paradise
[2], the Sloan Digital Sky Survey [3], and extensions to
MonetDB [4]). Moreover, they also said “if you can define a
common set of requirements across several science
disciplines, then we will try to build it.”

The result was a meeting at Asilomar in March 2008 between
a collection of science users and a collection of DBMS
researchers to define requirements, followed by a more
detailed design exercise over the summer. Additional use
cases were solicited, and parallel fund raising was carried out.

This paper presents the results of this requirements exercise in
Section 2 and sketches some of the SciDB design.
Intermingled are a collection of research topics that require
attention. It concludes with summary of the state of the
project in Section 3.

II REQUIREMENTS

These requirements come from particle physics (the LHC
project at CERN, the BaBar project at SLAC and Fermilab),
biology and remote sensing applications (Pacific Northwest
National Laboratory), remote sensing (University of
California at Santa Barbara), astronomy (Large Synoptic
Survey Telescope), oceanography (Oregon Health & Science
University and the Monterey Bay Aquarium Research
Institute), and eBay.

There is a general realization in these communities that the
past practice (build custom software for each new project
from the bare metal on up) will not work in the future. The
software stack is getting too big, too hard to build and too
hard to maintain. Hence, the community seems willing to get
behind a single project in the DBMS area. They also realize
that science DBMSs are a “zero billion dollar” industry.
Hence, getting the attention of the large commercial vendors
is simply not going to occur.

2.1 Data Model

While most scientific users can use relational tables and have
been forced to do so by current systems, we can find only a
few users for whom tables are a natural data model that
closely matches their data. Few are satisfied with SQL as the
interface language. Although the Sloan Digital Sky Survey
has been very successful in the astronomy area, they had
perhaps the world’s best support engineer (Jim Gray) helping
them. Also, a follow-on project, PanSTARRS, is actively
engaged in extending the system to meet their needs [5].

The Sequoia 2000 project realized in the mid 1990s that their
users wanted an array data model, and that simulating arrays
on top of tables was difficult and resulted in poor
performance. A similar conclusion was reached in the ASAP
prototype [6] which found that the performance penalty of
simulating arrays on top of tables was around two orders of
magnitude. It appears that arrays are a natural data model for
a significant subset of science users (specifically astronomy,
oceanography, fusion and remote sensing).

Moreover, a table with a primary key is merely a one-
dimensional array. Hence, an array data model can subsume
the needs of users who are happy with tables.

CIDR Perspectives 2009

Seemingly, biology and genomics users want graphs and
sequences. They will be happy with neither a table nor an
array data model. Chemistry users are in the same situation.

Lastly, users with solid modelling applications want a mesh
data model [7] and will be unhappy with tables or arrays. The
net result is that “one size will not fit all”, and science users
will need a mix of specialized DBMSs.

Our project is exploring an array data model, primarily
because it makes a considerable subset of the community
happy and is easier to build than a mesh model. We support a
multi-dimensional, nested array model with array cells
containing records, which in turn can contain components that
are multi-dimensional arrays.

Specifically, arrays can have any number of dimensions,
which may be named. Each dimension has contiguous integer
values between 1 and N (the high-water-mark). Each
combination of dimension values defines a cell. Every cell
has the same data type(s) for its value(s), which is one or more
scalar values, and/or ones or more arrays. An array A with
dimensions I and J and values x and y would be addressed as:

A[7, 8] — indicates the contents of the (7, 8)th cell
A[I = 7, J = 8] — more verbose notation for the (7, 8)th cell
A[7, 8].x — indicates the x value of the contents of the
 (7, 8)th cell

Like SQL an array can be defined, and then multiple instances
can be created. The basic syntax for defining an array is:

 define ArrayType ({name =Type-1}) ({dname})

The dimensions of the array, which must be integer-valued,
are inside the second (…). The value(s) of the array are inside
the first (…). Each value has a name and a data type, which
can be either an array or a scalar.

For example, consider a 2-D remote sensing array with each
element consisting of 3 different types of sensors, each of
which generates a floating-point value.

This can be defined by specifying:

 define Remote (s1 = float, s2 = float, s3 = float) (I, J)

A physical array can be created by specifying the high water
marks in each dimension. For example, to create Remote as
an array of size 1024 by 1024 one would use the statement

 create My_remote as Remote [1024,1024]

It is acceptable to create a basic array that is unbounded in one
or more dimensions, for example

create My_remote_2 as Remote [*, *]

Unbounded arrays can grow without restriction in dimensions
with a * as the specified upper bound.

Enhanced arrays, to be presently described, will allow basic
arrays to be scaled, translated, have irregular (ragged)
boundaries, and have non-integer dimensions. To discuss

enhanced arrays, we must first describe user-defined
functions.

SciDB will also support POSTGRES-style user-defined
functions (methods, UDFs), which must be coded in C++,
which is the implementation language of SciDB. As in
POSTGRES, UDFs can internally run queries and call other
UDFs. We will also support user-defined aggregates, again
POSTGRES-style.
UDFs can be defined by specifying the function name, its
input and output signatures and the code to execute the
function. For example, a function, Scale10, to multiply the
dimensions of an array by 10 would be specified as:
Define function Scale10 (integer I, integer J)

returns (integer K, integer L)
file_handle

The indicated file_handle would contain object code for the
required function. SciDB will link the required function into
its address space and call it as needed.
UDFs can be used to enhance arrays, a topic to which we now
turn. Any function that accepts integer arguments can be
applied to the dimensions of an array to enhance the array by
transposition, scaling, translation, and other co-ordinate
transformations.

For example, applying Scale10 to a basic array would be
interpreted as applying the function to the dimension values of
each cell to produce an enhanced array. Hence:

Enhance My_remote with Scale10

has the intended effect. In this case the (I, J) co-ordinate
system of the basic array, My_remote, continues to work. In
addition the (K, L) co-ordinate system from Scale10 also
works. To distinguish the two systems, SciDB uses [..] to
address basic dimensions and { …} to address enhanced ones.
Hence, the basic ones are addressed:

A [7, 8] or A[I = 7, J = 8]

while the enhanced ones are addressed as:

A{20, 50} or A {K = 20, L = 50}.

Some arrays are irregular, i.e. they do not have integer
dimensions, and some are defined in a particular co-ordinate
system, for example Mercator geometry. Enhancing arrays
with more complex UDFs can deal with both situations.

Consider a UDF that accepts a vector of integers and outputs a
value for each dimension of some data type, T. If, for
example, a one-dimensional array is irregular, i.e. has co-
ordinates 16.3, 27.6, 48.2, …, then a UDF function can
convert from the contiguous co-ordinate system in a basic
array to the irregular one above.

Hence, an array can be enhanced with any number of UDFs.
Each one adds pseudo-coordinates to an array. Such co-
ordinates do not have to be integer-valued and do not have to
be contiguous. Our array model does not dictate how pseudo-

CIDR Perspectives 2009

coordinates are implemented. Some possibilities are as part of
the cell data, as a separate data structure, or with a functional
representation (if the pseudo-coordinate can be calculated
from the integer index).

Addressing array cells of an irregular array can use either the
integer dimensions:

A [7, 8] or A[I = 7, J = 8]

or the mapped ones:

A{16.3, 48.2} or A {name-1 = 16.3, name-2 = 48.2}

Lastly, if the dimension is in some well-known co-ordinate
system, e.g. Mercator-latitude, then the output of an array
enhancement is simply this data type.

When dimensions have “ragged” edges, we can enhance a
basic array with a shape function to define this class of arrays.
A shape function is a user-defined function with integer
arguments and a pair of integer outputs.
A shape function must be able to return low-water and high-
water marks when one dimension is left unspecified, e.g.
shape-function (A[I, *]) would return the maximum high-
water mark and the minimum low-water mark for dimension I.
In addition, the shape of an individual slice can be returned by
specifying shape-function (A[7,*]).

To find out whether or not a given cell (e.g., [7,7]) is present
in a 2-dimensional array A, we use the function Exists? [A, 7,
7] which returns true if [7,7] is present and false otherwise.
An array can be enhanced with a shape function with the
following syntax

Shape array_name with shape_function.
Notice that a shape function can define “raggedness” both in
the upper and lower bounds. Hence, arrays that digitize
circles and other complex shapes are possible. If shape
functions can be simplified to have only upper bound
raggedness, then the syntax can be simplified somewhat. In
addition, it is not possible to use a shape function to indicate
“holes” in arrays. If this is a desirable feature, we can easily
add this capability.
Every basic array can have at most one shape function, and
SciDB will come with a collection of built-in shape functions.
In many applications the shape function for a given dimension
does not depend on the value for other dimensions. In this
case shape is separable into a collection of shape function for
the individual dimensions. Hence shape-function is really
(shape-function (I), shape-function (J)). In this case, the user
would have to define a composite shape function that
encapsulates the individual ones.

2.2 SciDB Operations

In this section, we describe some of the operators that
accompany our data model. Since our operators fall into two
broad categories, we illustrate each category with a few
examples rather than listing all of them.

2.2.1 Structural Operators

The first operator category creates new arrays based purely on
the structure of the inputs. In other words, these operators are
data-agnostic. Since these operators do not necessarily have
to read the data values to produce a result, they present
opportunity for optimization.

The simplest example in this category is an operator that we
call Subsample. Subsample takes two inputs, an array A and a
predicate over the dimensions of A. The predicate must be a
conjunction of conditions on each dimension independently.
Thus, the predicate “X = 3 and Y < 4” is legal, while the
predicate “X = Y” is not. Subsample then selects a “subslab”
from the input array. The output will always have the same
number of dimensions as the input, but will generally have a
smaller number of dimension values.

As an example, consider a 2-dimensional array F with
dimensions named X and Y. We can write Subsample(F,
even(X)) which would produce an output containing the slices
along the X-dimension with even index values. The slices are
concatenated in the obvious way and the index values are
retained.
Reshape is a more advanced structural operator. This operator
converts an array to a new array with a different shape that
can include more or fewer dimensions, possibly with new
dimension names, but the same number of cells. For example,
a 2x3x4 array can become a 2x6x2 array, or an 8x3 array or a
1-dimensional array of length 24.
For example, if G is a 2x3x4 array with dimensions X, Y and
Z, we can get an 8x3 array as:

 Reshape(G, [X, Z, Y], [U = 1:8, V = 1:3])

The second and third arguments are lists of index specifiers.
The first one says that we should first imagine that G is
linearized by iterating over X most slowly and Y most
quickly. The second list says that we take the resulting 1-
dimensional array and form 8 groups of 1-dimensional arrays
of length-3 (contiguous pieces from the linearized result), with
dimensions named U and V.

1

2

1

2

1,1

2,2

1

2

1

2

1

2

A

B

x

x

x
Sjoin(A, B, A.x=B.x

Figure 1 - Example Sjoin

Finally, we define a Structured-Join (or Sjoin) operator that
restricts its join predicate to be over dimension values only.
In the case of an Sjoin on an m-dimensional array and an n-
dimensional array that involves only k dimensions from each
of the arrays in the join predicate, the result will be an (m + n
– k)-dimensional array with concatenated cell tuples wherever

CIDR Perspectives 2009

the JOIN-predicate is true. Figure 1 shows an Sjoin over two
1-dimensional arrays. The result is also a 1-dimensional array
with concatenated data values in the matching index positions.

Other structural operators include add dimension, remove
dimension, concatenate, and cross product.
2.2.2 Content-Dependent Operators

The next category involves operators whose result depends on
the data that is stored in the input array.

A simple example of this kind of operator is Filter. Filter
takes an array A and a predicate P over the data values that are
stored in the cells of A. The argument list to the predicate
must be of the same type as the cells in A. Filter returns an
array with the same dimensions as A. If v is a vector of
dimension values, A(v) will contain A(v) if P(A(v)) evaluates
to true, otherwise it will contain NULL.

Aggregate is another example of a data dependent operator.
Aggregate takes an n-dimensional array A, a list of k grouping
dimensions G, and an aggregate function Agg as arguments.
Note that the Aggregate function take an argument that is an
(n-k)-dimension array since there will one such array for each
combination of the grouping dimension values.

32

74

2

1

2

x

y

A
Aggregate (H, {Y}, Sum(*))1

3

1

1

2
y

Figure 2 - An Aggregate Operation

As an example, the left side of Figure 2 shows a 2-
dimensional input array A to which we apply an aggregate
operator that groups on y and returns the SUM of the values in
the non-grouped dimensions, in this case x. As shown in the
figure, the operation Aggregate (H, {Y}, Sum(*)) will produce
the array on the right side of the figure. Note that the data
attributes cannot be used for grouping since it is not always
possible to determine a meaningful assignment of index
values for the result.

1

NULL

2

2,2

2

1

2

1,1

NULL

1

1

2

1

2

1

2

A

B

x

y x

yCjoin (A, B, A.val=B.val)

Figure 3 - Example Cjoin

We also define a content-based Join (or Cjoin) that only that
restricts its join predicate to be over data values only. In the
case of a Cjoin on an m-dimensional array and an n-
dimensional array, the result will be an (m + n)-dimensional
array with concatenated cell tuples wherever the JOIN-
predicate was true.

Figure 3 shows an example of a Cjoin on the same input
arrays as in the previous Sjoin example (see Figure 1). In this
case, the result is a 2-dimensional array with multiple index
values corresponding to the source dimension values from the
original arrays. Thus, cell [1,1] in the result corresponds to
data that came from dimension value 1 in both of the inputs.
The contents is a concatenated tuple for those cases where the
Cjoin predicate is true. For cases in which this predicate is
false, the result array contains a NULL.

Other examples of data-dependent operators include Apply
and Project.

2.3 Extendibility

The key science operations are rarely the popular table
primitives, such as Join. Instead, science users wish to regrid
arrays and perform other sophisticated computations and
analytics. Hence, the fundamental arrays operations in SciDB
are user-extendable. In the style of Postgres, users can add
their own array operations. Similarly, users can add their own
data types to SciDB.

2.4 Language Bindings

There is no consensus on a single programming language for
access to a DBMS. Instead, there are many users who want
persistence of large arrays in C++, and are partial to the
interfaces in object-oriented DBMSs such as Object Design
and Objectivity. Other users are committed to Python and
want a Python-specific interface. Furthermore, both
MATLAB [8] and IDL [9] are also popular.

To support these disparate languages, SciDB will have a
parse-tree representation for commands. Then, there will be
multiple language bindings. These will map from the
language-specific representation to this parse tree format. In
the style of Ruby-on-Rails [10], LINQ [11] and Hibernate
[12], these language bindings will attempt to fit large array
manipulation cleanly into the target language using the control
structures of the language in question.

In our opinion, the data-sublanguage approach epitomized by
ODBC and JDBC has been a huge mistake by the DBMS
community, since it requires a programmer to write lots of
interface code. This is completely avoided by the language
embedding approach we advocate.

2.5 No Overwrite

Most scientists are adamant about not discarding any data. If
a data item is shown to be wrong, they want to add the
replacement value and the time of the replacement, retaining
the old value for provenance (lineage) purposes. As such,
they require a no-overwrite storage manager, in contrast to
most commercial systems today, which overwrite the old
value with a new one.

Postgres [13] contained a no-overwrite storage manager for
tables. In SciDB, no-overwrite is even easier to support.
Specifically, arrays can be optionally declared as updatable.
All arrays can be loaded with new values. Afterwards, cells in

CIDR Perspectives 2009

an updatable array can receive new values; however, scientists
do not want to perform updates in place. To support this
concept, a history dimension must be added to every
updatable array.

An initial transaction adds values into appropriate cells for
history = 1. The first subsequent SciDB transaction adds new
values in the appropriate cells for history = 2. New values can
be either updates or insertions. A delete operation removes a
cell from an array and in the obvious implementation based on
deltas, one would insert a deletion-flag as the delta, indicating
the value has been deleted. Thereafter, every transaction adds
new array values for the next value of the history dimension.

It is possible to enhance the history dimension with a mapping
between the integers noted above and wall clock time, so that
the array can be addressed using conventional time, and
SciDB will provide an enhancement function for this purpose.

As such, a user who starts at a particular cell, say [x=2, y=2,
history=1] and travels along the history dimension by
incrementing the history dimension value ([x=2, y=2,
history=2], etc.) will see the history of activity to the cell
[2,2]. Enhancement functions for updatable arrays must be
cognizant of this extra dimension.

A variant of Remote, capable of capturing a time series of
measurements, might be:

 define updatable Remote_2
 (s1 = float, s2 = float, s3 = float) (I, J, history)

 create my_remote_2 as Remote_2 [1024, 1024, *]
Of course, the fact that Remote is declared to be updatable
would allow the system to add the History dimension
automatically.

2.6 Open Source

It appears impossible to get any traction in the science
community unless the DBMS is open source. The main
reasons why the scientific community dislikes closed-source
software include (a) a need for multi-decade support required
by large science projects, (b) an inability to recompile the
entire software stack at will and (c) difficulties with
maintaining closed-source software within large
collaborations encompassing tens or even hundreds of
institutes.

Seemingly, the LHC project was so badly burned by its
experience in the 1990’s with commercial DBMSs, that it has
“poisoned the well”. We view the widespread application of
closed-source DBMSs in this community as highly unlikely.

As such SciDB is an open source project. Because the science
community wants a commercial strength DBMS, we have
started a non-profit foundation (SciDB, Inc.) to manage the
development of the code.

2.7 Grid Orientation

LSST expects to have 55 petabytes of raw data. It goes
without saying that a DBMS that expects to store LSST data

must run on a grid (cloud) of shared-nothing [14] computers.
Conventional DBMSs such as Teradata, Netezza, DB2, and
Vertica have used this architecture for years, employing the
horizontal partitioning of tables that was first explored in
Gamma [14]. Gamma supported both hash-based and range-
based partitioning on an attribute or collection of attributes.
Hence, the main question is how to do partitioning in SciDB.

For example, LSST and PanSTARRS have a substantial
component of their workload that is to survey the entire sky
on a regular basis. For these applications, dividing the co-
ordinate system for the sky into fixed partitions will probably
work well.

Most satellite imagery has the same characteristic; namely the
entire earth is scanned periodically. Again, a fixed
partitioning scheme will probably work well.

In contrast, any science experimentation that is “steerable”
will be non-uniform. For example, it is generally recognized
that the mid-equatorial pacific is not very interesting, and
many studies do not consider it. On the other hand, during El
Nino or La Nina events, it is very interesting.

It would obviously be much easier to use a fixed partitioning
scheme in SciDB. However, there will be a class of
applications that cannot be load-balanced using such a tactic.
Hence, in SciDB we allow the partitioning to change over
time. In this way, a first partitioning scheme is used for time
less than T and a second partitioning scheme for time > T.

Like C-Store [15] and H-store [16], we plan an automatic data
base designer which will use a sample workload to do the
partitioning. This designer can be run periodically on the
actual workload, and suggest modifications.

Although dynamic partitioning makes joins harder because
data movement to support the execution of the join is more
elaborate, the advantages of load balancing and data
equalization across nodes seems to outweigh the
disadvantages.

One research problem we plan to consider is the co-
partitioning of multiple arrays with a common co-ordinate
system. Such arrays would all be partitioned the same way, so
that comparison operations including joins do not require data
movement.

2.8 Storage Within a Node

Within a node, the storage manager must decompose a
partition into disk blocks. Most data will come into SciDB
through a streaming bulk loader. We assume that the input
stream is ordered by some dominant dimension – often time.
SciDB will divide the load stream into site-specific
substreams. Each one will appear in the main memory of the
associated node. When main memory is nearly full, the
storage manager will form the data into a collection of
rectangular buckets, defined by a stride in each dimension,
compress the bucket and write it to disk. Hence, within a

CIDR Perspectives 2009

node an array partition is divided into variable size rectangular
buckets. An R-tree [18] keeps track of the size of the various
buckets. In a style similar to that employed by Vertica, a
background thread can combine buckets into larger ones as an
optimization.

Optimization of the storage management layer entails
deciding:

• When to change the partitioning criteria between
sites

• How to form an input stream into buckets
• How and when to merge disk buckets into larger

ones
• What compression algorithms to employ

The SciDB research team will address these research issues in
parallel with an implementation.

2.9 “In Situ” Data

A common complain from scientists is “I am looking forward
to getting something done, but I am still trying to load my
data”. Put differently, the overhead of loading data is very
high, and may dominate the value received from DBMS
manipulation.

As such, SciDB must be able to operate on “in situ” data,
without requiring a load process. Our approach to this issue is
to define a self-describing data format and then write adaptors
to various popular external formats, for example HDF-5 [19]
or NetCDF [20]. If an adaptor exists for the user’s data or if
he is willing to put it in the SciDB format mentioned above,
then he can use SciDB without a load stage.

Of course, “in situ” data will not have many DBMS services,
such as recovery since it is under user control and not DBMS
control.

2.10 Integration of the Cooking Process

Most scientific data comes from instruments observing a
physical process of some sort. For example, in remote sensing
applications, imagery is collected from satellite or airborne
observation. Such sensor readings enter a cooking process
whereby raw information is cooked into finished information.
Cooking entails converting sensor information into standard
data types, correcting for calibration information, correcting
for cloud cover, etc.

There are two schools of thought concerning cooking. One
school suggests loading raw data into a DBMS and then
performing all cooking inside the DBMS. In this way
accurate provenance information can be recorded. The other
school of thought suggests cooking the data externally,
employing custom hardware if appropriate. In some
applications, the cooking process is under the control of a
separate group, with little interaction with the storage group.
With this sort of organization, cooking external to the DBMS
is often chosen. However, when there is a single group in
control of both processes, then cooking in the DBMS has
many advantages.

The goal of SciDB will be to enable cooking inside the engine
if the user desires. All that is required is a strong enough data
manipulation capability so that it is possible.

2.11 Named Versions

A requirement of most science users is the concept of named
versions. Consider the following example. The cooking
algorithm of most remote sensing data sets includes picking
an observation for a particular “cell” of the earth’s surface
from those available from several passes of the satellite. In
other words, a single composite image is constructed from
several satellite passes. Often, the observation selected is the
one with least cloud cover. However, a scientist with a
particular study area and goal might want a different
algorithm. For example, he might want the observation when
the satellite is closest to being directly overhead. In other
words, he wants a different cooking step for part of the data.
Scientists desiring a different calibration algorithm for an
instrument have essentially the same use case.

Such users want a data set that is the same as a “parent” data
set for much of the study region, but different in a portion.
The easiest way to support this functionality is with named
versions. At a specific time, T, a user will be able to construct
a version V from a base array A with a SciDB command. A
new array is defined for V and the time T is recorded. At time
T, the version V is identical to A. Since V is stored as a delta
off its parent A, it consumes essentially no space, and the new
array is empty.

Thereafter, any modifications to V go into this array, and the
delta will record the divergence of V from A. When the
SciDB execution engine desires a value of a cell in V, it will
first look in the delta array for V for the most recent value
along the history dimension. If there is no value in V, it will
then look for the most recent value along the history
dimension in A.

In turn, if A is a version, it will repeat this process until it
reaches a base array. In general, hanging off any base array is
a tree of named versions, each with its delta recorded.

Notice that, as described previously, any updatable array is
time-travelled using an extra history dimension. In this way,
the history of values of any cell is accessible. Named versions
extend this capability by supporting the time travel of a tree of
named alternatives to a given cell.

2.12 Provenance

A universal requirement from scientists was repeatability of
data derivation. Hence, they wish to be able to recreate any
array A, by remembering how it was derived. For a sequence
of processing steps inside SciDB, one merely needs to record
a log of the commands that were run to create A. For arrays
that are loaded externally, scientists want a metadata
repository in which they can enter programs that were run
along with their run-time parameters, so that that a record of
provenance is available.

CIDR Perspectives 2009

The search requirements for this repository and log are
basically:

1. For a given data element D, find the collection of
processing steps that created it from input data.

2. For a given data element D, find all the
“downstream” data elements whose value is
impacted by the value of D.

When a scientist notices a data element that he suspects is
wrong, he wants to track down the cause of the possible error.
This is the first requirement, i.e. trace backwards through the
derivation process to find where the error originated.

Assuming the scientist ascertains that the data element is
wrong and finds the culprit in the derivation process, then he
wants to rerun (a portion of) the derivation to generate a
replacement value or values. Of course, this re-derivation will
not overwrite old data, but will produce new value(s) at the
current time. Then, the scientist needs to ascertain how far
“downstream” the errant data has propagated, so he can
perform downstream re-derivation. The second requirement
is used to find out how far a mistake has spread, once D is
found to be faulty.

Recording the log and establishing a metadata repository is
straightforward. The hard part is to create a provenance query
language and efficient implementation. Although one could
use Trio [21] as an exemplar, the space cost of recording item-
level derivations is way too high.

An alternate approach for backward derivation is to look at the
time of the update that produced the item in question. That
identifies the command that produced the item from the
provenance log. One can then rerun the update in a special
executor mode that will record all items that contributed to the
incorrect item. Repeating this process will trace backwards
to produce the desired result.

Tracing forward is less efficient. If one wants to find all items
that are derived from the contents of a specific cell, C, with
dimension index values V1, …Vk, then one can run
subsequent commands in the provenance log in a modified
form. Specifically, one wants to add the qualification

And dimension-1 = V1

And dimension-2 = v2

…

And dimension-k = Vk.

to the first command. This will produce a collection of
directly affected values. For each such value, one must run
the next command in the provenance log to find the next set of
values. This process must be iterated forward until there is no
further activity. A named version can be created to hold the
results of these updates.

This solution requires no extra space at all, but has a
substantial running time. Of course, one can cache these
named versions in case the derivation is run again at a later

time. This amounts to storing a portion of the Trio item level
data structure and re-deriving the portions that are not stored.
An interesting research issue is to find a better solution that
can easily morph between the minimal storage solution above
and the Trio solution.

2.13 Uncertainty

Essentially all scientific data is imprecise, and without
exception science researchers have requested a DBMS that
supports uncertain data elements. Of course, current
commercial RDBMSs are oriented toward business users,
where there is a much smaller need for this feature. Hence,
commercial products do not support uncertainty.

In talking with many science users, there was near universal
consensus on requirements in this area. They requested a
simple model of uncertainty, namely normal distributions for
data elements. In effect, they requested “error bars” (standard
deviations) for data elements and an executor that would
perform interval arithmetic when combining uncertain
elements. Some researchers have requirements for a more
sophisticated model, but there was no agreement on which one
to use. Hence, we were repeatedly requested to build in
support for normal distributions, leaving more complex error
modelling to the user’s application.

Hence, SciDB will support “uncertain x” for any data type x
that is available in the engine. Of course, this requires two
values for any data element, rather than one. However, every
effort will be made to effectively code data elements in an
array, so that arrays with the same error bounds for all values
will require negligible extra space.

Over time, we will revisit this decision, and perhaps build in
support for a more sophisticated definition of uncertainty.

There is another aspect to uncertain data, exemplified by the
data base design for the PanSTARRS telescope project [5].
During the cooking process the “best” location of an observed
object is calculated. However, this location has some error,
and the actual object location may be elsewhere.

To deal with this kind of error, the PanSTARRS DBAs have
identified the maximum possible location error. Since they
have a fixed partitioning schema between nodes, they can
redundantly place an observation in multiple partitions if the
observation is close to a partition boundary.

In this way, they ensure that “uncertain” spatial joins can be
performed without moving data elements. In SciDB, this
would surface as uncertainty concerning what array cell an
item was in. We expect to extend the SciDB error model to
deal with this situation.

2.14 Non-Science Usage

A surprising observation is that the above requirements apply
more broadly than just for science applications.

For example, eBay records a click stream log of relevant
events from its websites. One of their use cases is “how
relevant is the keyword search engine?” In other words, an

CIDR Perspectives 2009

eBay user can type a collection of keywords into the eBay
search box, for example “pre-war Gibson banjo”. eBay
returns a collection of items that it believes match the search
request. The user might click on item 7, and then follow a
sub-tree of links under this item. Returning to the top level,
the user might then click on item 9 and follow a similar sub-
tree under this item. After this, the user might exit the system
or type another search request. From this log, eBay wishes to
extract, the fact that items 7 and then 9 were touched, and that
their search strategy for pre-war Gibson banjos is flawed,
since the top 6 items were not of interest. Not only is it
important which items have been clicked through, it is even
more important to be able to analyse the user-ignored content.
E.g., how often did a particular item get surfaced but was
never clicked on?

As eBay’s web pages and algorithms get more and more
dynamic in nature, traditional weblog analysis cannot provide
the required insight as no page or search result is static. As
such, deep information about the content present, at the time
the user visited, needs to be collected and processed during
the analysis.

This application is nearly impossible in current RDBMSs;
however, it can be effectively modelled as a one-dimensional
array (i.e. a time series) with embedded arrays to represent the
search results at each step. A collection of simple user
defined functions complement the built-in search capabilities
of SciDB to effectively support this use case.

Such time series analysis becomes multi-dimensional in
nature. The combination of an array based data model coupled
with constructs of uncertainty will provide a new platform for
Web 3.0 type analytics on petabytes of information.

2.15 A Science Benchmark

Over the years there have been many benchmarks proposed
for various application domains, including the Wisconsin
benchmark for conventional SQL functionality [22], the
Bucky benchmark for object-relational applications [23], the
Linear Road benchmark for stream processing [24] and the
various TPC benchmarks. To focus the DBMS community on
science requirements, we are almost finished with a science
benchmark. We expect to publish the specifications for this
collection of tasks during Q1/2009.

III SUMMARY

We are committed to building SciDB and have commitments
of resources from eBay, LSST, Microsoft, SLAC and Vertica.
We will also try to get NSF to help out, and are in various
stages of talks with others.

We have recruited an initial programming team, and have
started a non-profit foundation to manage the project. At this
time (December 2008), we are nearing a “critical mass” of
financial support that will allow us to start building in earnest.

We expect to have a usable system for scientists within two
years.

ACKNOWLEDGMENT
We would like to acknowledge the contributions of the rest of
the SciDB technical advisory committee, which includes
Magda Balazinska, Mike Carey, Ugur Cetintemel, Martin
Kersten, Sam Madden, Jignesh Patel, Alex Szalay, and
Jennifer Widom.

REFERENCES
[1] Jeff Dozier, Michael Stonebraker, James Frew:

Sequoia 2000: A Next-Generation Information
System for the Study of Global Change. IEEE
Symposium on Mass Storage Systems 1994:47-56.

[2] David J. DeWitt, Navin Kabra, Jun Luo, Jignesh M.
Patel, Jie-Bing Yu: Client-Server Paradise. VLDB
1994:558-569.

[3] Alexander S. Szalay, Peter Z. Kunszt, Ani Thakar,
Jim Gray, Donald R. Slutz, Robert J. Brunner:
Designing and Mining Multi-Terabyte Astronomy
Archives: The Sloan Digital Sky Survey. SIGMOD
2000:451-462.

[4] Milena Ivanova, Niels Nes, Romulo Goncalves,
Martin L. Kersten: MonetDB/SQL Meets SkyServer:
the Challenges of a Scientific Database. SSDBM
2007:13.

[5] Alex Szalay (private communication).
[6] Michael Stonebraker, Chuck Bear, Ugur Çetintemel,

Mitch Cherniack, Tingjian Ge, Nabil Hachem,
Stavros Harizopoulos, John Lifter, Jennie Rogers,
Stanley B. Zdonik: One Size Fits All? Part 2:
Benchmarking Studies. CIDR 2007:173-184.

[7] Bill Howe,“GRIDFIELDS: Model-Driven Data
Transformation in the Physical Sciences”, PhD
Thesis, Portland State University, (2007)
http://www.cs.pdx.edu/~howe/howe_dissertation.pdf

[8] Kermit Sigmon and Timothy A. Davis, “MATLAB
Primer”, 6th Edition, CRC Press, 2002, ISBN 1-
58488-294-8.

[9] OMG: *IDL: Details, http://www.omg.org/
gettingstarted/omg_idl.htm

[10] Michael Bächle, Paul Kirchberg: Ruby on Rails.
IEEE Software (SOFTWARE) 24(6):105-108
(2007).

[11] LINQ tutorial: VS2008, LinqDataSource and
GridView, http://www.codegod.de/webappcodegod/
LINQ-tutorial-VS2008-LinqDataSource-and-
GridView-AID452.aspx.

[12] Amr Elssamadisy: Review of "Hibernate: A J2EE
Developer's Guide by Will Iverson", Pearson
Education Inc., 2005, ISBN: 0-471-20282-7. ACM
SIGSOFT Software Engineering Notes (SIGSOFT)
31(3):42-43 (2006).

[13] Michael Stonebraker: The Design of the POSTGRES
Storage System. VLDB 1987:289-300.

[14] Donovan A. Schneider, David J. DeWitt: A
Performance Evaluation of Four Parallel Join
Algorithms in a Shared-Nothing Multiprocessor
Environment, SIGMOD 1989.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kabra:Navin.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Luo:Jun.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Patel:Jignesh_M=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Patel:Jignesh_M=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Thakar:Ani.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/i/Ivanova:Milena.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Nes:Niels.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Goncalves:Romulo.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kersten:Martin_L=.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/ssdbm/ssdbm2007.html%23IvanovaNGK07
http://www.informatik.uni-trier.de/%7Eley/db/conf/ssdbm/ssdbm2007.html%23IvanovaNGK07
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/=/=Ccedil=etintemel:Ugur.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Cherniack:Mitch.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Ge:Tingjian.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hachem:Nabil.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Harizopoulos:Stavros.html
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/B=auml=chle:Michael.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kirchberg:Paul.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/software/software24.html%23BachleK07
http://www.informatik.uni-trier.de/%7Eley/db/journals/software/software24.html%23BachleK07
http://www.codegod.de/webappcodegod/LINQ-tutorial-VS2008-LinqDataSource-and-GridView-AID452.aspx
http://www.codegod.de/webappcodegod/LINQ-tutorial-VS2008-LinqDataSource-and-GridView-AID452.aspx
http://www.codegod.de/webappcodegod/LINQ-tutorial-VS2008-LinqDataSource-and-GridView-AID452.aspx
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/e/Elssamadisy:Amr.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/sigsoft/sigsoft31.html%23Elssamadisy06
http://www.informatik.uni-trier.de/%7Eley/db/journals/sigsoft/sigsoft31.html%23Elssamadisy06
http://www.informatik.uni-trier.de/%7Eley/db/journals/sigsoft/sigsoft31.html%23Elssamadisy06
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Stonebraker:Michael.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/vldb/vldb87.html%23Stonebraker87
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Schneider:Donovan_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/DeWitt:David_J=.html

CIDR Perspectives 2009

[15] David J. DeWitt, Robert H. Gerber, Goetz Graefe,
Michael L. Heytens, Krishna B. Kumar, M.
Muralikrishna: GAMMA – A High Performance
Dataflow Database Machine. VLDB 1986:228-237.

[16] Michael Stonebraker, et al: C-Store a Column-
oriented DBMS, VLDB 2005.

[17] Michael Stonebraker et al., The End of an
Architectural Era (It’s Time for a Complete Rewrite),
VLDB 2007.

[18] Timos K. Sellis, Nick Roussopoulos, Christos
Faloutsos: The R -Tree: A Dynamic Index for Multi-
Dimensional Objects. VLDB 1987:507-518.

[19] HDF5: API specification reference manual. National
Center for Supercomputing Applications (NCSA),
http://hdf.ncsa.uiuc.edu/, 2004.

[20] NETCDF User’s Guide, http://www.unidata.
ucar.edu/software/netcdf/guide.txn_toc.html.

[21] Parag Agrawal, Omar Benjelloun, Anish Das Sarma,
Chris Hayworth, Shubha U. Nabar, Tomoe Sugihara,
Jennifer Widom: Trio: A System for Data,
Uncertainty, and Lineage, VLDB 2006:1151-1154.

[22] David Dewitt et al: Benchmarking Database
Systems: A Systematic Approach, VLDB 1993.

[23] Michael Carey et al., “The Bucky Object-Relational
Benchmark, SIGMOD 1997.

[24] Arvind Arasu et al., Linear Road: A Stream Data
Management Benchmark, VLDB 2004.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/DeWitt:David_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gerber:Robert_H=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Graefe:Goetz.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Heytens:Michael_L=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kumar:Krishna_B=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Muralikrishna:M=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Muralikrishna:M=.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/vldb/vldb86.html%23DeWittGGHKM86
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sellis:Timos_K=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Roussopoulos:Nick.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Faloutsos:Christos.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Faloutsos:Christos.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/vldb/vldb87.html%23SellisRF87
http://hdf.ncsa.uiuc.edu/
http://www.unidata.ucar.edu/software/netcdf/guide.txn_toc.html
http://www.unidata.ucar.edu/software/netcdf/guide.txn_toc.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/a/Agrawal:Parag.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Benjelloun:Omar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sarma:Anish_Das.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hayworth:Chris.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Nabar:Shubha_U=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sugihara:Tomoe.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Widom:Jennifer.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/vldb/vldb2006.html%23AgrawalBSHNSW06

