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ABSTRACT
Spreadsheets are a critical and widely-used data management tool.
Converting spreadsheet data into relational tables would bring ben-
efits to a number of fields, including public policy, public health,
and economics. Research to date has focused on designing domain-
specific languages to describe transformation processes or auto-
matically converting a specific type of spreadsheets. To handle a
larger variety of spreadsheets, we have to identify various spread-
sheet properties, which correspond to a series of transformation
programs that contribute towards a general framework that con-
verts spreadsheets to relational tables.

In this paper, we focus on the problem of spreadsheet property
detection. We propose a hybrid approach of building a variety of
spreadsheet property detectors to reduce the amount of required
human labeling effort. Our approach integrates an active learn-
ing framework with crude, easy-to-write, user-provided rules to
save human labeling effort by generating additional high-quality
labeled data especially in the initial training stage. Using a bagging-
like technique, Our approach can also tolerate lower-quality user-
provided rules. Our experiments show that when compared to a
standard active learning approach, we reduced the training data
needed to reach the performance plateau by 34–44% when a human
provides relatively high-quality rules, and by a comparable amount
with low-quality rules. A study on a large-scale web-crawled spread-
sheet dataset demonstrates that it is crucial to detect a variety of
spreadsheet properties in order to transform a large portion of the
spreadsheets into a relational form.

CCS CONCEPTS
• Information systems→Extraction, transformation and load-
ing; • Theory of computation→ Active learning;
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Figure 1: A spreadsheet about population statistics, from the
Statistical Abstract of the United States.
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1 INTRODUCTION
Spreadsheets are widely used for data management and sharing. It
is estimated that Microsoft Excel has more than 400 million users,
and 50–80% of businesses use spreadsheets.1 Meanwhile, a large
number of spreadsheets are available on the web. For example, the
United States Census Bureau publishes thousands of spreadsheets
about economics, transportation, public health, and other important
social topics every year.

Many spreadsheet files are designed to be interpreted by human,
and often cannot be easily consumed by other software applications
for complex data analysis and visualization (e.g., R, Tableau). For
example, Figure 1 shows a part of a spreadsheet downloaded from
the Census Bureau. This spreadsheet is almost impossible to be
consumed by downstream data analysis programs, if we fail to
identify the structural features, such as title (rows 1–3), header
(row 5), sub-header (rows 6, 34), and aggregation rows (rows 7, 35).
To make it more machine readable, the same spreadsheet can be
converted to relational tables, as shown in Figure 2. An essential
1http://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-performance-management
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Edutation Attainment Race Value

Less than 9th grade White alone 7626199
Less than 9th grade Black or African… 1250932
Less than 9th grade American Indian… 132119
9th to 12th grade… White alone 12181361
9th to 12th grade… Black or African… 3151934
9th to 12th grade… American Indian… 207542
High school graduate… White alone 46127209
High school graduate… Black or African… 7613046
High school graduate… American Indian… 475857

Family Income Race Value

Less than $10,000 White alone 1872052
Less than $10,000 Black or African… 951644
Less than $10,000 American Indian… 55625
$10,000 to $14,999 White alone 1555245
$10,000 to $14,999 Black or African… 563007
$10,000 to $14,999 American Indian… 39350
$15,000 to $19,999 White alone 1982661
$15,000 to $19,999 Black or African… 583609
$15,000 to $19,999 American Indian… 34467

Figure 2: The ideal relational tables for the spreadsheet ex-
ample shown in Figure 1.

requirement for such relational tables is that each column should
be homogeneous, or, belong to the same semantic class.

Automating the conversion of a spreadsheet into a relational
table apparently has great appeal for a number of communities.
One way of achieving this is by designing a domain-specific lan-
guage (DSL) to describe the rules for spreadsheet-to-relational-
table transformation and implementing a program to support the
DSL [2, 12, 14, 16]. However, this approach requires a significant
amount of human effort for composing the rules for each spread-
sheet variant. Another approach is to make assumptions on the
structural features of spreadsheets (e.g., assuming a spreadsheet
only has headers and sub-headers), and use heuristics or data-driven
models to transform certain types of spreadsheets into a relational
format [1, 5–7, 9]. While this approach requires less human ef-
fort, the range of the spreadsheets it supports is restricted by its
assumptions on the spreadsheet structure.

In this paper, we envision a framework for transforming any kind
of spreadsheets into relational tables. The center idea of building
the framework is to identify and transform spreadsheet properties,
i.e., the special structural features that distinguish a spreadsheet
table from a relational table. Given a spreadsheet table, the pipeline
consists of two stages: identifying the existence of spreadsheet prop-
erties; and applying transformation for each identified property.

Take the table in Figure 1 as an example, the identifiable properties
and the corresponding transformations include:
• aggregation rows—Data values in rows 16–17 are aggregated
values defined on rows 7–14. Transformation: remove the
aggregation rows.
• aggregation columns—Data values in column B are aggre-
gated values defined on column C–E. Transformation: re-
move the aggregation column.
• crosstab—The headers of columns C–E (i.e., “White alone”,
“Black or ...”, etc.) form a horizontal dimension “Race.” Trans-
formation: convert this dimension into a new column “Race.”
• split tables—Rows 6–17 are about “Education Attainment”
and rows 34–43 are about “Family Income.” Transformation:
split as two tables.

If one can identify all the properties above and correctly apply
the corresponding transformations, then she can successfully trans-
form the spreadsheet in Figure 1 into relational tables as shown in
Figure 2. We argue that accurately detecting the existence of spread-
sheet properties is essential to such a transformation process. While
some transformations are straightforward (e.g., removing aggre-
gation rows or columns), many operations are non-trivial and can
be computationally expensive. As suggested by [6], transforming
spreadsheet tables with hierarchical structure may takeO(N 2) time,
where N is the number of rows. Thus, spreadsheet property detec-
tion can greatly improve the computational efficiency of the overall

pipeline by avoiding expensive and unnecessary transformations.
In addition, training a transformation model for a given property
requires extensive human labeled data. If a technique exists to accu-
rately identify the set of spreadsheets that possess a given property,
then it will be much easier to construct a human labeled dataset
to train a transformation model for that property. Therefore, in
this paper, instead of discussing an end-to-end pipeline converting
spreadsheet tables into relational tables, we focus exclusively on
the problem of detecting spreadsheet properties.

Spreadsheet property detection is a challenging task by itself,
for two reasons. First, labeling instances to train property detectors
is expensive. For example, to determine whether a spreadsheet
contains the property aggregation rows, a human labeler may have
to review all the header or data cells for potential keywords (e.g.,
“total”, “sum”, “average”), as well as checking whether the cells
contain calculated values based on a formula. Second, there are a
variety of customized spreadsheet datasets, and one might look very
different from another. To build high-quality property detectors
requires a sufficient number of labeled instances that also cover a
large variety of spreadsheet types.

To this end, we propose a novel rule-assisted active learning
framework to construct high-quality spreadsheet property detec-
tors, and its goal is to save human labeling effort as much as possible.
Our key insight is that a human labeler can not only provide labels
to individual training instances, but also write crude heuristic rules
based on their intuitions on how a property might be detected. An
example rule can be, “if a spreadsheet contains a row with formulas,
then it has the property aggregation rows.” Such rules are, obvi-
ously, not always reliable. But we design a hybrid framework that
integrates such crude user-provided rules and user-provided labels
based on their agreement so as to improve the system’s tolerance on
low-quality rules. In addition, we adopt an active learning strategy
to iteratively ask human to label the most ambiguous training in-
stances. The hybrid approach can generate additional high-quality
labeled data, especially in the initial stage of training, in order to
bootstrap the learning process.

Our approach was evaluated on a sample of web spreadsheet
dataset of 400 tables labeled with properties. The result indicated
that we could reduce the amount of labeled data needed to reach
the performance plateau by 34–44% when a human provides high-
quality rules, and comparable performance with low-quality rules.
We also applied the trained property detectors to a much larger-
scale dataset of 1.1 million spreadsheets, and provided insights on
how the distribution of identified spreadsheet properties impact
the downstream transformations into relational tables.

Contributions — To the best of our knowledge, we are the first
to propose the spreadsheet property detection problem, which is
the first step towards building the spreadsheet-to-relational table
pipeline for any kind of spreadsheets.

• The concept of spreadsheet properties. Spreadsheet properties
are the crucial structural features used to describe the trans-
formation from spreadsheets to relational tables (Section 2).
• A novel, hybrid, rule-assisted active learning framework for
spreadsheet property detection. Our approach integrates an
active learning framework with crude user-provided rules



to save human labeling effort by generating additional high-
quality labeled data especially in the initial training stage.
Using a bagging-like technique, Our approach can tolerate
lower-quality user-provided rules (Sections 3 and 4).
• A comprehensive evaluation that demonstrates our hybrid
framework outperforms active learning baselines by sig-
nificantly reducing the training data needed to reach the
performance plateau. It saves 34%-44% training data with
relatively high-quality rules, and performs comparably with
low-quality rules. (Section 5).
• The large-scale web spreadsheet study shows the majority
of the web spreadsheets contain one or more spreadsheet
properties. Thus, it is necessary to discover spreadsheet prop-
erties, in order to transform a large number of spreadsheets
into high-quality relational form (Section 6).

2 PRELIMINARIES
In this section, we formally define the problem of spreadsheet prop-
erties, and provide a few typical spreadsheet property examples.

2.1 Data Sources
In this paper, we rely on two spreadsheet data sources: the We-
bCrawl dataset is a large-scale corpus of web-crawled spreadsheets,
and the Web400 dataset is a hand-labeled subset of WebCrawl. We
now introduce the two datasets.

WebCrawl data — The WebCrawl dataset is our large-scale
web-crawled spreadsheet corpus. It consists of 410,554 Microsoft
Excel workbook files with 1,181,530 sheets from 51,252 distinct
Internet domains (a workbook file may contain multiple sheets).
We found the spreadsheets by looking for Excel-style file endings
among the roughly 10 billion URLs in the ClueWeb09 web crawl2.

Web400 data — The Web400 dataset is a 400 labeled sample
from the WebCrawl corpus. We want to avoid sampling too many
spreadsheets from one HTTP domain because there are a few do-
mains covering the majority of the web spreadsheets [5]. Thus, we
obtained this Web400 data via the following procedure: we first
grouped spreadsheets by their HTTP domain, and removed the
long-tail spreadsheets (i.e., those from HTTP domains containing
less than 20 spreadsheets), yielding 2,579 domains with 284,396
sheets in total. Then we selected 20 random domains from the 2,579
domains; from each domain, we again randomly sample 20 sheets,
yielding 400 sheets as the Web400 dataset.

2.2 Spreadsheet Properties & Examples
We consider a typical portion of a spreadsheet that is able to be
converted into relational tables; we call it a spreadsheet table. A
spreadsheet table consists two regions: a header region and a data
region, as shown in Figure 3. Previous work has addressed the
problem of finding the header and data regions using a linear chain
CRF to assign one of the four labels (header, data, title or footnote)
to each row in a spreadsheet [5]. Using this CRF mechanism, the
work recognizes each spreadsheet table with a header and data
region from a raw input spreadsheet. We use this spreadsheet table
as input to our transformation framework.

2http://lemurproject.org/clueweb09.php

Header Region

Data Region

Figure 3: A spreadsheet’s header and data region.

We use spreadsheet properties to reflect the spreadsheet tables
to relational tables transformation process. Each spreadsheet prop-
erty corresponds to a transformation element that contributes to
transforming the spreadsheet table to a high-quality relational table.
When a property exists in a sheet table, applying the correspond-
ing transformation operation will yield a result that is closer to a
relational table. If we can detect all of the appropriate properties
in a candidate spreadsheet table, then applying the corresponding
transformation operations should yield a valid relational output. For
example, to convert the spreadsheet in Figure 1 into high-quality
relational tables, we require four transformation programs as we
mentioned in Section 1. We use the four properties (i.e., “aggrega-
tion rows”, “aggregation columns”, “cross tab”, and “split tables”) to
represent the required four transformation programs.

To build this visionary transformation framework from spread-
sheet tables to relational tables, in addition to the spreadsheet prop-
erty detection task, we have to extract additional parameters for the
spreadsheet properties. For example, knowing that a spreadsheet
has the property “aggregation rows” is not sufficient; we also need
an extraction program to identify the particular aggregation rows
in the spreadsheet before we can run the transformation process.
Previous work attempted to extract some spreadsheet properties,
such as hierarchical data and hierarchical header [5]. Moreover, the
transformation operations have to be defined for each property. We
can borrow the transformation operations from systems such as
Wrangler [15] or Potter’s Wheel [22].

In this paper, we focus on the spreadsheet property detection task:
detecting which properties a spreadsheet table contains. This is the
first step towards building the spreadsheet-to-relational table trans-
formation framework. We now describe five typical spreadsheet
properties as follows:

1. Aggregation Rows (agg_row) — An aggregation cell is de-
fined as an aggregation function (e.g.sum, avg, min, max, etc.) over
a group of cells. An aggregation cell is often indicated by explicit
spreadsheet formulas, but sometimes the formula is implicit (the
value may be copied from other places). Gazetteers [8, 24] could
also be used to identify aggregations. A spreadsheet has the prop-
erty “agg_row” if it has a row of aggregation cells. For example, the
spreadsheet in Figure 1 has the property “agg_row” because all the
numeric values in row 16 are calculated on the rows 7-14.

2. Aggregation Columns (agg_col) — A spreadsheet has the
property “agg_col” if it has a column of aggregation cells. For exam-
ple, the spreadsheet in Figure 1 has the property “agg_col” because
column B is an aggregation column.

http://lemurproject.org/clueweb09.php
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Figure 4: Coverage ratio for spreadsheet properties on the
Web400 dataset.

3. Hierarchical Data (hier_data) — A spreadsheet has the
property “hier_data” if there exists a cell in the data region im-
plicitly describing other cells. For example, the sheet in Figure 1 has
the property “hier_data” because “education attainment” in row 6
implicitly describes rows 7-17.

4. Hierarchical Header (hier_head) — A spreadsheet has the
property “hier_head” if there exists a cell in the header region
implicitly describing another column. For example, the spreadsheet
in Figure 1 does not have the property “hier_head” because each
cell in the header only describes its own column.

5. Crosstab — A spreadsheet has the property “crosstab” if all
of its numeric values can be converted into one column with a new
dimension for associated metadata. E.g., the spreadsheet in Figure 1
has the property “crosstab” because the numeric values in B-E can
be converted into one column with a new dimension “Race”.

We investigated the spreadsheet properties in theWeb400 dataset.
We manually assign correct spreadsheet properties to each Web400
sheet.3 Among the 400 spreadsheets, we found 309 spreadsheets
containing spreadsheet tables, while the rest included unfilled forms,
text, visualizations and so on. Figure 4 shows how many spread-
sheets in the Web400 dataset can be transformed into high-quality
spreadsheet tables using the top-k properties (properties are ranked
by their popularity). We observe that:
• We identified 21 simple spreadsheet properties that cover the
transformation process from spreadsheet tables to relational
tables for the 309 spreadsheets in Web400, such as “split
table” (rows 6-17 and rows 34-43 should be in two separate
relational tables in Figure 1), “rows of different units” (the
data values in row 8 is the absolute population number and
in row 16 is the percentage in Figure 1) and so on. 4
• The five most popular properties cover the transformation
process for 68% (209/309) spreadsheets, and they are “agg_row”,
“agg_col”, “hier_data”, “hier_head”, and “crosstab”, aswemen-
tioned earlier. In this paper, we on focus on these five prop-
erties for simplicity.

3Notice that if a workbook contains multiple sheets, we select a random non-empty sheet from it
for labeling; and if there are multiple spreadsheet tables in a sheet we only consider the first one.
4The 21 spreadsheet properties are: agg_row, hier_data, agg_col, crosstab, hier_head, vertical split
table, spanning cell, horizontal split tables, redundant column, redundant row, no header, truncated
header, truncated headers, duplicate headers, complicated hierarchical header, row units, column
units, blank rows, redundant header, truncated data, complicated hierarchical header. More info
and examples about the 21 properties can be found at http://chenzheruc.github.io/tutorial/tutorial_
sheets.htm.
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Figure 5: The hybrid iterative learning framework for
spreadsheet property detection.

3 PROPERTY DETECTION FRAMEWORK
Given a spreadsheet table, the property detection task is to build a
binary classifier for a spreadsheet property.

We formally define the task. Let Q = {q1, ...,qk } be a set of
spreadsheet properties. The property detector builds a set of binary
classifiers: one classifier θq for each q ∈ Q , and the classifier θq
determines whether a spreadsheet table has the property q. Given
a spreadsheet table x , the property detector generates a subset of
properties q = {q} and q ⊆ Q . It represents that x contains and
only contains the set of properties q.

3.1 The Iterative Learning Framework
Figure 5 shows our proposed hybrid iterative learning framework
for spreadsheet property detection. In the initial stage, a human
labeler provides crude heuristic rules (see Section 3.3 for a detailed
discussion). During the interactive learning stage, the sheet selector
selects a spreadsheet from the dataset, and presents it to the human
labeler. The labeler is responsible for labeling the spreadsheet with
all the spreadsheet properties it contains. The classifier learner
then accumulates all human labeled spreadsheets together with
automatically generated labels using the user-provided rules, to
train a classifier for each spreadsheet property. The human labeler
iteratively labels a spreadsheet selected by the sheet selector and
the classifier learner produces newly trained classifiers for each iter-
ation. In the end, we obtain the most newly trained classifiers from
the classifier learner as the output spreadsheet property detectors,
which can then be used in an end-to-end pipeline that transforms
spreadsheet tables into relational ones.

Note that in the cases of imbalanced training data, we duplicate
instances of the minority class until its size is comparable to the
size of the majority class [13].

3.2 Human Labeling Process
In this section, we describe the human labeling process and tech-
niques to save human effort.

3.2.1 Construct Property Detectors. To construct the property
detectors requires human labelers to provide :

1. Features f (x):We generate features f (x) for each spreadsheet
table x , and they represent the important signals derived from x to
help determine whether x contains a property or not. For example,

http://chenzheruc.github.io/tutorial/tutorial_sheets.htm
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if a spreadsheet table’s data region contains the keyword “total”, it is
very likely to have the property “aggregation rows”. The significant
features might be different for different spreadsheet properties or
in different datasets. For simplicity, we use f (x) to represent the
universe of the features, and the details can be found in Appendix.

2. Property Set (Q): It is hard to construct a complete spread-
sheet property setQ in one shot because there are always unknown
properties in new data. Instead, we define a few properties that we
are aware of as the set of predefined properties. At the same time,
we allow new properties to be added during labeling.

3. Training Data D = {(x , q)}: given a spreadsheet table x , a
human labeler has to determine the set of properties q contained
by x . During the labeling process, the human labeler evaluates
the transformation process for converting a spreadsheet table x to
relational tables, and decides whether x contains the predefined
spreadsheet properties or new properties.

To be specific, a human labeler first labels a spreadsheet table
x using the predefined properties. It is straightforward to decide
whether a spreadsheet x contains a well-defined property. In addi-
tion, the human labeler is also tasked with discovering new properties
via the following procedure: after labeling x using the predefined
properties, the human labeler attempts to convert x to relational
tables using the transformation operations defined by q and de-
termines whether the conversion is successful. If not, the human
labeler has to define one or more new spreadsheet properties with
corresponding transformation operations, and then add the new
properties to q.

For example, assume that we have defined two properties, “ag-
gregation rows” and “aggregation columns.” For the spreadsheet
table shown in Figure 1, we recognize that it contains both prop-
erties. We then attempt to use the corresponding transformation
programs to convert this spreadsheet table to relational tables. In
this case we would fail, because we still need to separate rows 6–17
(about “Education Attainment”) and rows 34–43 (about “Family
Income”) into two separate relational tables. Therefore, we define
a new spreadsheet property “split table”, and add it to q. We will
keep finding new properties until the spreadsheet table can be
successfully transformed into relational tables.

As can be seen from the above discussion, it requires a consid-
erable amount of human effort to construct a binary classifier for
each spreadsheet property.

3.3 Reducing Human Effort
To reduce the amount of required human effort on generating
training data D = {(x , q)}, we adopt the following two strategies:

Uncertainty Sampling — In active learning, a typical strategy
to pick instances for training a binary classifier is uncertainty sam-
pling, which chooses instances closest to the decision boundary.
Our sheet selector adopts this strategy. However, during the be-
ginning phase of the training process, there lacks enough training
data for the classification model to approach a reasonable decision
boundary. The technique introduced below addresses this problem.

User-provided Crude Rules — Before labeling any spread-
sheet, we bring in human’s intuition on building property detectors
by asking for crude and easy-to-write rules. For example, it might

Algorithm 1 Iterative learning without user-provided rules.
Require: spreadsheet table set x = {x }
Ensure: property detectors {θq }
1: D = [] // Initialize training data
2: repeat
3: Sheet selector chooses x from {x }
4: Ask human to label x with properties q
5: D ← D ∪ (x, q) // Update training data
6: Q ← Q ∪ q // Update property set
7: Train classifier θq on D for each q ∈ Q
8: until meet stopping criteria
9: return {θq }

be straightforward for a user to assume, “if a spreadsheet contains
a row with formulas, then it has the property aggregation rows.” In
our framework, we ask for simple rules like this (see Table 1 for
more examples) and do not need a user to spend a huge amount of
effort coming up with high-quality ones.

Now that we have a set of crude rules, in the initial stage of
training, we can generate a set of training instances by first applying
such rules to the available data, and treating the results as labeled
instances. As the training progresses, the number of human-labeled
instances increases. This allows us to filter the labeled training
instances by finding those with agreement from both the user-
provided rules and the trained classifier at each iteration. This
makes it possible for our framework to tolerate low-quality user-
provided rules. Then we can approach the ideal decision boundary
quickly to reduce the amount of required labeled data.

4 ALGORITHMS
In this section, we describe the training algorithms in detail.

Let x = {x} be the random variables representing a set of spread-
sheet tables, and θq the learned classifier for the property q ∈ Q
where Q is the property set containing all the discovered spread-
sheet properties. Let θq_init be the user-provided crude rules for
the property q.

4.1 Iterative Learning Algorithms
First we discuss the algorithms of our hybrid iterative learning
framework by considering two different situations, with or without
user-provided crude rules.

Without User-provided Rules —Without the user-provided
rules in the beginning stage, the iterative learning framework is
essentially a typical active learning process.

As shown in Algorithm 1, the sheet selector selects a new in-
stance from the spreadsheet table set (we describe the algorithm in
Section 4.2); a human labeler labels the instance and sends it to the
classifier learner; and finally the classifier learner trains the prop-
erty detectors according to all the accumulated labeled instances.
We iterate the above process until the stopping criteria. We stop
by testing whether the performance reaches the plateau (i.e., the
standard deviation of K continuous points is less than δ , where δ
is a predefined threshold).

With User-provided Rules — As shown in Algorithm 2, given
a spreadsheet property q, the user-provided rules θq_init produces



Algorithm 2 Iterative learning with user-provided rules.
Require: spreadsheet tables x = {x } and user-provided rules {θq_init }.
Ensure: property detectors {θq }.
1: D = []
2: for q ∈ Q do
3: {lq_init } = θq_init ({x })
4: end for
5: repeat
6: sheet selector chooses x from {x }
7: ask human to label x with properties q
8: D ← D ∪ (x, q)
9: Q ← Q ∪ q
10: for q ∈ Q do
11: train classifier θq_tmp on D
12: {lq_tmp } = θq_tmp ({x })
13: D′ = D + ({x, lq_tmp } ∩ {x, lq_init })
14: train classifier θq on D′

15: end for
16: until meet stopping criteria
17: return {θq }

a set of labels {lq_init } on the spreadsheet table set {x}, and each
label lq_init represents whether the corresponding spreadsheet
table x has the property q or not. However, we do not know the
quality of the rule-generated labels {lq_init }.

For each propertyq, we collect the training data for each learning
iteration in two parts: first, we accumulate all the human-labeled
training data as D, and we train the current property detector based
on D as θq_tmp ; second, we automatically generate additional train-
ing data using the currently trained classifier θq_tmp and the user-
provided rules θq_init . Our insight is that if the label produced by
θq_tmp agrees with the label assigned by θq_init , we believe this
label is trustworthy and denote it as a consensus label; otherwise, we
cannot trust either label. If, however, the consensus label conflicts
with human labels D, then we still believe the human labeled data.
The idea of finding the consensus labels is similar to the bootstrap
aggregating technique (i.e., bagging) [4]: it attempts to find the label
agreements of multiple classifiers. Based on the bagging-like tech-
nique, our approach is able to tolerate “low-quality” user-provided
rules and provide additional high-quality labels especially in the
initial stage to warm up the classifiers quickly.

Similar to Algorithm 1, the sheet selector selects a new instance; a
human labeler labels the correct properties; and finally the classifier
learner trains the property detectors by combining the accumulated
human labels with the consensus labels from two sides, the current
trained classifier and the user-provided rules. We iterate the above
process until reaching the performance plateau.

4.2 Sheet Selector Algorithms
Now we discuss the algorithms of the sheet selector by considering
two situations, the single-task and multi-task learning scenarios.
Note that in both cases, the sheet selector chooses random instances
in the initial stage, and we set the initial random selection size to
be 10 by following the configuration used in [18].

Single-task Learning — The single-task learning scenario is
when we train one property detector at a time. The sheet selector
simply applies the uncertainty sampling active learning approach
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Figure 6: An example of “training size to plateau”.

and selects an instance with the probability closest to 0.5 as used
in [25]. To be concrete, the sheet selector selects the spreadsheet
table x to be

argmax
x

[
min

(
(P(lq = 1 | x), P(lq = 0 | x)

)]
(1)

where P(lq | x) represents the probability distribution of the spread-
sheet table x contains the property q according to the current
trained classifier θq .

Multi-task Learning — The multi-task learning scenario can
be complicated if we explore the correlations among multiple classi-
fiers. Previous multi-task active learning work attempted to explore
the correlations [21, 23]. For simplicity, we assume each property
detector is independent and we simply uses the averaged uncer-
tainty score for selection. To be concrete, the sheet selector selects
the spreadsheet table x to be

argmax
x

1
|Q |

∑
q∈Q

min
(
(P(lq = 1 | x), P(lq = 0 | x)

)
(2)

where P(lq | x) represents the probability distribution of the spread-
sheet table x contains the property q according to the current
trained classifier θq .

5 EXPERIMENTS
In this section, we conduct experiments to test our two goals:
• Spreadsheet Property Detection —We investigate the al-
gorithms to build high-quality property detectors with a
small labeled dataset.
• Large-scale Spreadsheet Study — We survey the distribu-
tion of 5 most popular spreadsheet properties in large-scale
web data, and our findings serve as guidelines for designing
the spreadsheet-to-relational table transformation system.

Our experiments rely on the two spreadsheet datasets men-
tioned in Section 2.1. The WebCrawl data is our large-scale web-
crawled spreadsheets containing 410,554 spreadsheets in total, and
the Web400 data is our 400-element hand-labeled sample of the
WebCrawl data.

We used a mix of code from several languages and projects: We
used the Python xlrd library to access the data and formatting details
of spreadsheet files. We extracted the formulas from spreadsheets
using the libxl library. We built the classification model using the
Python scikit-learn library for its logistic regression, decision tree,
and SVM method.



Property Crude User-provided Rules
agg_row If the data region contains the keyword “total” or

has a row with embedded formulas, then true;
otherwise false.

agg_col If the header region contains the keyword “total” or
has a column with embedded formulas, then true;
otherwise false.

hier_data If the data region has different formatting styles
(e.g., alignment, bold, indentation, and italic),
then true; otherwise false.

hier_head If the header region contains merged cells, then true;
otherwise false.

crosstab If the variance of the string length in the header region
is < 0.5, then true; otherwise false.

Table 1: Crude user-provided rules for the five properties in
Section 2.2.

Sheet Selector User-provided Rules
Rand random selection N/A
Active uncertainty sampling N/A

Hybrid-noisy uncertainty sampling bad rules
Hybrid-clean uncertainty sampling good rules

Table 2: Four methods to build property detectors.

5.1 Spreadsheet Property Detection
In this section, we investigate how much labeled data is required
to build high-quality property detectors in different situations. We
consider the single-task and multi-task learning scenarios as men-
tioned in Section 4.2. We also investigate how the quality of the
user-provided rules affects the performance of our hybrid approach.

5.1.1 Experiment Setup. We tested the top five spreadsheet prop-
erties mentioned in Section 2.2. Our experiments were based on the
Web400 data. In each of its 20 domains, we split the 20 sheets into
1/2 for potential training and 1/2 for testing, yielding 200 sheets
for potential training and 200 for testing.

In the experiments, we simulated the iterative learning frame-
work in Section 3.1 and measured the performance of the current
trained classifiers for each iteration: we fed the 200 potential train-
ing spreadsheets as the spreadsheet dataset for the iterative learning
framework. During each iteration, we calculated the F1 score of
the currently trained classifiers on the 200 testing data. We simply
used logistic regression as the classification method.

We use training size to plateau as the evaluationmetric, and it rep-
resents the least training data size needed to reach the performance
plateau. For example, Figure 6 shows the F1 score of a classifier
given different sizes of training data. As shown in the Figure, the
training size to plateau for the “green” and “blue” methods are 10.8
and 28.6, respectively. This indicates that “green” saves 62.2% of the
training data required by “blue” to reach the performance plateau.

Measuring the training size to plateau is similar to the task of
knee point detection [30]. For simplicity, we detect the training
size to plateau using the following two criteria: First, we use the
standard deviation σ to test whether the standard deviation of five
consecutive points is less than a threshold δ . To avoid reaching a
local optima, we also test whether the current performance (i.e.,

@δ = 0.01
Methods aдд_row aдд_col hier_data hier_head crosstab

Rand 98 170 59 191 113
Active 56 140 42 131 52
Hybrid- 56 126 45 92 59
noisy (0%) (-10%) (+7%) (-30%) (+13%)

Hybrid- 44 109 27 31 42
clean (-21%) (-22%) (-36%) (-76%) (-19%)

@δ = 0.05
Methods aдд_row aдд_col hier_data hier_head crosstab

Rand 37 101 33 86 64
Active 28 61 33 98 41
Hybrid- 31 66 35 39 45
noisy (+11%) (+8%) (+6%) (-60%) (+10%)

Hybrid- 16 52 18 22 31
clean (-43%) (-15%) (-46%) (-78%) (-24%)

Table 3: The training size to plateau for four property detec-
tionmethods with δ = 0.01 and δ = 0.05. The % represents the
improvement over Active.

F1) is above a predefined threshold θF 1. In the experiment, we are
able to calculate the F1 score when we use up all the 200 potential
training data as F1opt , and we simply set θF 1 = F1opt − δ .

We tested our iterative learning framework using the four ap-
proaches as shown in Table 2. Rand randomly selects the next
spreadsheet and does not use any user-provided rules; Active em-
ploys the uncertainty sampling active learning approach without
considering user-provided rules; Hybrid-noisy and Hybrid-clean
are our hybrid approach that integrates the uncertainty sampling
active learning approach with crude user-provided rules. Hybrid-
noisy assumes low-quality user-provided rules while Hybrid-clean
assumes high-quality rules. For Hybrid-clean, we used the designed
rules for each spreadsheet property as shown in Table 1; and for
Hybrid-noisy, we used the rules for other spreadsheet properties.
For example, to build the property detector for “agg_row”, we test
each of the other four rules (e.g., “agg_col” and “hier_data”).

For each method above, we ran 100 times to obtain the averaged
F1 score for different sizes of training data, and we report the train-
ing size to plateau. Except for Hybrid-noisy, we ran 100 times with
each of the four “bad” user-provided rules, totaling 400 times. We
report the average training size to plateau for four configurations.

5.1.2 Single-task Learning. In this section, we learn the property
detectors for the five spreadsheet properties individually.

Table 3 shows the training size to plateau for the four testing
methods. As shown in the table, Hybrid-clean significantly outper-
forms all the other three methods. It means that when a human
provides with good rules in the beginning stage, we are able to save
35% (when δ = 0.01) or 41% (when δ = 0.05) labeled data when
averaged over all properties, compared Active. In addition, we can
see Hybrid-noisy is comparable to the standard active learning ap-
proach Active, and it indicates that our hybrid approach is able to
tolerate bad user-provided rules.

Rule Qualities — We also test the how the quality of user-
provided rules affect the speed to reach plateau.
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Figure 7: The quality of user-provided rules influences the
training size to plateau.
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Figure 8: The F1 performance curve to learn the five prop-
erty detectors together.

Wegenerate rules of different accuracy synthetically based on the
200 potential training data. Consider generating the user-provided
rules with accuracy 0.3. Given a property, we randomly select 200×
0.3 spreadsheets and assign them with their true labels, and we
assign the rest 200× (1− 0.3) spreadsheets with the false labels. We
then feed this synthetically labeled data into our hybrid framework
as the user-provided crude rules with the accuracy 0.3.

We generate the synthetic rules with the accuracy ranging from 0
to 1 by 0.1 to feed into our hybrid iterative learning framework. We
ran 100 times for each accuracy level and obtained the average F1
score to calculate the training size to plateau for each spreadsheet
property detector.

Figure 7 shows two examples of the training size to plateau for
rules with different accuracy. As shown in the Figure, the training
size to plateau decrease almost linearly when the user-provided
rule accuracy improves for “agg_row” at δ = 0.01 and “hier_head”
at δ = 0.05. This observation also applies to the rest properties.

5.1.3 Multi-task Learning. In this section, we learn the property
detectors for the five spreadsheet properties together.

Figure 8 shows the F1 scores for different sizes of training data
when learning the five property detectors together. As shown in
the Figure, Hybrid-clean reaches the plateau much sooner than the
other three methods: it saves 44% (when δ = 0.01) and 34% (when
δ = 0.05) training data, when compared to the standard active
learning approach Active. It indicates that “good” user-provided
rules do save a significant amount of extra labeling work. In addi-
tion, Hybrid-noisy is comparable to Active, and it indicates that our
hybrid framework can tolerate “bad” user-provided rules.

In summary, compared to the standard active learning approach,
our hybrid approach is able to save 34%-44% of the training data
when averaged over all properties to reach the performance plateau

F1
Method aдд_row aдд_col hier_data hier_head crosstab

LR 0.876 0.844 0.782 0.845 0.798
DTs 0.825 0.788 0.746 0.772 0.689
SVM 0.855 0.823 0.749 0.815 0.766

Accuracy
Method aдд_row aдд_col hier_data hier_head crosstab

LR 0.894 0.917 0.856 0.923 0.895
DTs 0.849 0.891 0.834 0.892 0.843
SVM 0.876 0.908 0.835 0.912 0.880

Table 4: The F1 and accuracy of five spreadsheet property
detectors using three different classification methods.

when a human provides relatively high-quality rules, and performs
comparably with low-quality rules.

6 LARGE-SCALE SPREADSHEETS STUDY
In this section, we investigate the distribution of the five spreadsheet
properties mentioned in Section 2.2 in the large-scale WebCrawl
dataset. We evaluate the performance of the five property detectors
using Web400 data, and then show two observations on the large-
scale WebCrawl data.

6.1 Experiment Setup
We obtained 1,181,530 spreadsheets from 410,554 .xls workbook
files in the WebCrawl data.5 We first recognize the spreadsheet
tables in an input spreadsheet using the approach mentioned in [5],
and then use the property detectors to collect the the spreadsheet
property statistics.6

We trained property detectors for the five spreadsheet properties
using all the Web400 data and then ran the the five classifiers on
the WebCrawl dataset. We evaluate the performance of the spread-
sheet property detectors for the five spreadsheet properties on the
Web400 data via the 2-fold cross-validation. We use two common
metrics: accuracy measures the percentage of spreadsheets which
we correctly recognize whether it contains a given spreadsheet
property; and F1 measures the harmonic mean of precision and
recall for each spreadsheet property.

Table 4 shows the performance of the spreadsheet property detec-
tors using three classification methods: LR (i.e., logistic regression),
DTs (i.e., decision trees) and SVM (i.e., support vector machine with
the linear kernel). As shown in the table, logistic regression per-
forms the best among the three classification methods, and thus we
used logistic regression as the classification model for the spread-
sheet property detection. Note that accuracy is always higher than
F1, because the spreadsheet properties are unbalanced: few positive
examples and more negative examples.

6.2 Observations on WebCrawl Data
As a result, we obtained the spreadsheet properties assigned to each
of the 1, 181, 530WebCrawl spreadsheets.We have two observations
on the web spreadsheets.

5 One .xls workbook file might contain multiple spreadsheets.
6Note that if there are multiple spreadsheet tables in a spreadsheet, we only retain the first one.
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Figure 9: The distribution of the five spreadsheet properties
in the web.
Observation 1— There is a significant portion of spreadsheets in the
web which contain each of the five spreadsheet properties. Figure 9
(a) shows the distribution of the five spreadsheet properties on
the web. As shown in the figure, the ratio of the web spreadsheets
containing the five spreadsheet properties ranges from 27.4% to
44.7%. It indicates that there is a significant portion of spreadsheets
in the web containing each of the five spreadsheet properties. The
property “agg_row” is the most popular among the five, followed
by “hier_data”, and their proportions are all greater than 40%.
Observation 2— The majority of the spreadsheets in the web contain
at least one spreadsheet property. Figure 9 (b) shows the distribution
for the number of properties in one spreadsheet. It shows that
there are 32.6% spreadsheets without any of the five spreadsheet
properties; there are 67.4% web spreadsheets containing at least
one spreadsheet property. It indicates that there is a much larger
portion of the web spreadsheets containing a variety of spreadsheet
properties than those without any property.

In summary, the majority of the spreadsheets in the web contain
one or more than one spreadsheet properties. In order to transform
a large number of spreadsheets into a high-quality relational form,
we have to identify a variety of spreadsheet properties.

7 RELATEDWORK
There are two main areas of related work:
Spreadsheet Management – Existing approaches for transform-
ing spreadsheets into relational tables fall into two categories. First,
rule-based approaches [2, 12, 14, 16] require users to learn a domain-
specific language to describe the transformation process. These
approaches are flexible but composing the rules is difficult and time-
consuming. Different from above approaches, our trained property
detector can automatically suggest transformation programs.

Second, automated approaches are the most similar to ours. Abra-
ham and Erwig [1] attempt to recover spreadsheet tuples, and
Cunha et al. [9] primarily focus on the problem of data normal-
ization. Le and Gulwani[17] proposed an interactive system that
is able to synthesize programs from few examples in order to ex-
tract structured data from text. This work does not aim to detect
spreadsheet structures. Chen and Cafarella [5–7] focus on extract-
ing hierarchical structure in spreadsheets by incorporating users’
feedback. While the existing work mainly focuses on transforming
a specific type of spreadsheets, we attempt to build a framework
that can handle a much larger variety of spreadsheets. The property
detection problem we are addressing in this paper is the first step
towards building such a general transformation framework.

There is also a range of visualization systems [27] that help
users navigate and understand spreadsheets with visualization tech-
niques, but the mechanisms are not able to extract relational data
from spreadsheets.
Active Learning – There are two common active learning strate-
gies [26]. First, the uncertainty sampling strategy chooses to la-
bel instances that are closest to the decision boundary, and it re-
fines the decision boundaries by heavily exploiting the current
knowledge space. The uncertainty sampling approach in [25] se-
lects the instance with the predicted probability closest to 0.5. Sec-
ond, the query by committee (QBC) strategy takes into account the
disagreement of multiple “committee” classifiers to select query
instances [28]. This is more complicated than uncertainty sampling
as it requires careful designs of committee members (i.e., a set of
classification models) and a metric to measure disagreement among
committee members. While our hybrid iterative framework is based
on the basic uncertainty sampling strategy, our learning framework
is distinct in that it incorporates the crude user-provided rules to
further reduce the amount of required human effort.

Alternative strategies exist for utilizing human resources for
model development. Using crowdsourcing to collect training data
become popular recently. For example, Manino, Tran-Thanh, and
Jennings [20] studies the problem of worker allocation with differ-
ent active learning policies. Also considering crowdsourced work-
ers would make mistakes, Lin, Mausam, and Weld [19] attempt to
understand the relabeling task and increasing the size and diver-
sity of the training set by labeling new examples. Attenberg and
Provost [3] use a “guided learning” approach to deploy low-cost
human resources for classifier induction in domains with extreme
class imbalance. They acquire training-data by guiding users to
search explicitly for training examples for each class. Druck et
al. [11] propose an active learning approach in which the machine
solicits labels on features rather than instances. Xiaoxuan et al. [29]
considers online learning with imbalanced streaming data under a
query budget, and the approach utilizes the end-user effort to enable
customization and personalization. Similar to these approaches, we
ask the user to do more than labeling training instances (in our
case, providing crude rules for property detection). But different
from their situation, we also address the scenario where the user
provides low-quality rules by using a bagging-like technique.

We notice that active learning strategies often suffer from the
“cold-start” problem [31]: in the beginning stage, the classifier lacks
training data to approach the ideal decision boundary and suggest
effective instances to label. Zhu et al. [31] address this problem by
finding clusters of distinct content among the unlabeled instances.
Donmez et al. [10] propose to use a robust combination of density
weighted uncertainty sampling and standard uncertainty sampling
to overcome the cold-start problem. In this paper, we propose an
alternative approach to address this problem by asking users to
provide heuristic rules. Such rules are used to generate additional
labels to warm up the classifiers quickly.

8 CONCLUSION AND FUTUREWORK
We have described a hybrid iterative learning framework to con-
struct spreadsheet property detectors quickly, and it is the first step
towards building the spreadsheet-to-relational table transformation



pipeline that is able to handle a large variety of spreadsheets. Our
hybrid approach integrates the active learning framework with
crude easy-to-write user-provided rules, and it is able to save more
training data to reach the performance plateau when compared to
the standard active learning method.

In the futurework, wewant to build the spreadsheet-to-relational
table transformation system using the spreadsheet property detec-
tors. We will also investigate the user interface design to allow
more effective interactions with users in order to conduct accurate
and low-effort transformation.

9 APPENDIX
Our spreadsheet property detectors are based on features:
• whether a cell in the header/data region contains one of the
keywords: “total”, “sum”, “avg”, “average”, “median”, “mean”,
“totals”, “summary”, “subtotal”;
• the standard deviation of the lengths of the strings in the
header;
• the average/maximum p-value for the t-test for data values
in two numeric columns;
• the maximum/minimum ratio of formula cells to numeric
cells in a data row/column;
• whether a column in the data region has different formatting
styles, and we test each of the 8 styles.7
• whether the data/header region has a merged cell;
• whether there exists two cells in the header region, one has
a higher column but lower row index than the other;
• whether the spreadsheet table is empty;
• whether there is no header/data region;
• the ratio of numeric cells to total cells in the spreadsheet
table;
• the ratio of non-zero cells to total/numeric cells in the spread-
sheet table;
• the maximum ratio of non-zero cells to numeric cells in data
rows/columns;
• the ratio of numeric to all data rows/columns;
• the absolute number of numeric data rows/columns.
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