
Unsupervised Named-Entity Extraction
from the Web: An Experimental Study

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

etzioni@cs.washington.edu

February 28, 2005

Abstract

The KNOWITALL system aims to automate the tedious process of extracting large col-
lections of facts (e.g., names of scientists or politicians) from the Web in an unsupervised,
domain-independent, and scalable manner. The paper presents an overview of KNOW-
ITALL ’s novel architecture and design principles, emphasizing its distinctive ability to ex-
tract information without any hand-labeled training examples. In its first major run, KNOW-
ITALL extracted over 50,000 class instances, but suggested a challenge: How can we im-
prove KNOWITALL ’s recall and extraction rate without sacrificing precision?

This paper presents three distinct ways to address this challenge and evaluates their perfor-
mance.Pattern Learninglearns domain-specific extraction rules, which enable additional
extractions.Subclass Extractionautomatically identifies sub-classes in order to boost recall
(e.g., “chemist” and “biologist” are identified as sub-classes of “scientist”).List Extraction
locates lists of class instances, learns a “wrapper” for each list, and extracts elements of each
list. Since each method bootstraps from KNOWITALL ’s domain-independent methods, the
methods also obviate hand-labeled training examples. The paper reports on experiments,
focused on building lists of named entities, that measure the relative efficacy of each method
and demonstrate their synergy. In concert, our methods gave KNOWITALL a 4-fold to 8-fold
increase in recall at precision of 0.90, and discovered over 10,000 cities missing from the
Tipster Gazetteer.

Key words: Information Extraction, Pointwise Mutual Information, Unsupervised, Question Answering.

1 Introduction and Motivation

Information Extraction is the task of automatically extracting knowledge from text.Unsupervisedinforma-
tion extraction dispenses with hand-tagged training data. Because unsupervised extraction systems do not
require human intervention, they can recursively discover new relations, attributes, and instances in a fully
automated, scalable manner. This paper describes KNOWITALL , an unsupervised, domain-independent
system that extracts information from the Web.

1

Collecting a large body of information by searching the Web can be a tedious, manual process. Con-
sider, for example, compiling a comprehensive, international list of astronauts, politicians, or cities. Unless
you find the “right” document or database, you are reduced to an error-prone, piecemeal search. One of
KNOWITALL ’s goals is to address the problem of accumulating large collections of facts.

In our initial experiments with KNOWITALL , we have focused on a sub-problem of information extrac-
tion, building lists of named entities found on the Web, such as instances of the classCity or the class
Film . KNOWITALL is able to extract instances of relations, such ascapitalOf(City,Country)
or starsIn(Actor,Film) , but the focus of this paper is on extracting comprehensive lists of named
entities.

KNOWITALL introduces a novel, generate-and-test architecture that extracts information in two stages.
Inspired by Hearst [22], KNOWITALL utilizes a set of eight domain-independent extraction patterns to
generatecandidate facts.1 For example, the generic pattern “NP1 such as NPList2” indicates that the head
of each simple noun phrase (NP) in the list NPList2 is a member of the class named in NP1. By instantiating
the pattern for the classCity , KNOWITALL extracts three candidate cities from the sentence: “We provide
tours to cities such as Paris, London, and Berlin.”

Next, KNOWITALL automaticallyteststhe plausibility of the candidate facts it extracts usingpointwise
mutual information(PMI) statistics computed by treating the Web as a massive corpus of text. Extending
Turney’s PMI-IR algorithm [42], KNOWITALL leverages existing Web search engines to compute these
statistics efficiently.2 Based on these PMI statistics, KNOWITALL associates a probability with every fact
it extracts, enabling it to automatically manage the tradeoff between precision and recall. Since we cannot
compute “true recall” on the Web, the paper uses the term “recall” to refer to the size of the set of facts
extracted.

Etzioni [19] introduced the metaphor of anInformation Food Chainwhere search engines are herbivores
“grazing” on the Web and intelligent agents areinformation carnivoresthat consume output from various
herbivores. In terms of this metaphor, KNOWITALL is an information carnivore that consumes the output
of existing search engines. In its first major run, KNOWITALL extracted over 50,000 facts regarding cities,
states, countries, actors, and films [20]. This initial run revealed that, while KNOWITALL is capable of
autonomously extracting high-quality information from the Web, it faces several challenges. In this paper
we focus on one key challenge:

How can we improveKNOWITALL ’s recall and extraction rate so that it extracts substantially
more members of large classes such as cities and films while maintaining high precision?

We describe and compare three distinct methods added to KNOWITALL in order to improve its recall:

• Pattern Learning (PL): learns domain-specific patterns that serve both as extraction rules and as
validation patterns to assess the accuracy of instances extracted by the rules.

• Subclass Extraction (SE):automatically identifies subclasses in order to facilitate extraction. For ex-
ample, in order to identify scientists, it is helpful to determine subclasses of scientists (e.g., physicists,
geologists,etc.) and look for instances of these subclasses.

• List Extraction (LE): locates lists of class instances, learns a “wrapper” for each list, and uses the
wrapper to extract list elements.

1Hearst proposed a set of generic patterns that identify a hyponym relation between two noun phrases. Examples are the pattern
“NP {,} such as NP” and the pattern “NP{,} and other NP”.

2Turney measured the similarity of two term based on how often the terms appear in proximity to each other in Web search-
engine indices.

2

Each of the methods dispenses with hand-labeled training examples by bootstrapping from the informa-
tion extracted by KNOWITALL ’s domain-independent patterns. We evaluate each method experimentally,
demonstrate their synergy, and compare with the baseline KNOWITALL system described in [20]. Our main
contributions are:

1. We demonstrate that it is feasible to carry out unsupervised, domain-independent information extrac-
tion from the Web with high precision. Much of the previous work on information extraction focused
on small document collections and required hand-labeled examples.

2. We present the first comprehensive overview of KNOWITALL , our novel information extraction sys-
tem. We describe KNOWITALL ’s key design decisions and the experimental justification for them.

3. We show that Web-based mutual information statistics can be effective in validating the output of an
information extraction system.

4. We describe and evaluate three methods for improving the recall and extraction rate of a Web informa-
tion extraction system. While our implementation is embedded in KNOWITALL , the lessons learned
are quite general. For example, we show that LE typically finds five to ten times more extractions than
other methods, and that its extraction rate is forty times faster.

5. We demonstrate that our methods, when used in concert, can increase KNOWITALL ’s recall by 4-fold
to 8-fold over the baseline KNOWITALL system.

The remainder of this paper is organized as follows. The paper begins with a comprehensive overview of
KNOWITALL , its central design decisions, and their experimental justification. Sections 3 to 5 describe our
three methods for enhancing KNOWITALL ’s recall, and Section 6 reports on our experimental comparison
between the methods. We discuss related work in Section 7, directions for future work in Section 8, and
conclude in Section 9.

2 Overview of KNOWITALL

The only domain-specific input to KNOWITALL is a set of predicates that specify KNOWITALL ’s focus
(e.g., Figure 6). While our experiments to date have focused on unary predicates, which encode class mem-
bership, KNOWITALL can also handle n-ary relations as explained below. KNOWITALL ’s Bootstrapping
step uses a set ofdomain-independentextraction patterns (e.g., Figure 1) to create its set of extraction rules
and “discriminator” phrases (described below) for each predicate in its focus. The Bootstrapping is fully
automatic, in contrast to other bootstrapping methods that require a set of manually created training seeds.
A system flowchart is shown in Figure 2 and pseudocode in Figure 3 for the baseline KNOWITALL system.

The two main KNOWITALL modules are theExtractorand theAssessor. The Extractor creates a query
from keywords in each rule, sends the query to a Web search engine, and applies the rule to extract infor-
mation from the resulting Web pages. The Assessor computes a probability that each extraction is correct
before adding the extraction to KNOWITALL ’s knowledge base. The Assessor bases its probability computa-
tion on search engine hit counts used to compute the mutual information between the extracted instance of a
class and a set of automatically generated discriminator phrases associated with that class.3 This assessment
process is an extension of Turney’s PMI-IR algorithm [42].

3We refer to discriminator phrases as “discriminators” throughout.

3

Predicate: Class1
Pattern: NP1 “such as” NPList2
Constraints: head(NP1)= plural(label(Class1)) &

properNoun(head(each(NPList2)))
Bindings: Class1(head(each(NPList2)))

Figure 1: This generic extraction pattern can be instantiated automatically with the pluralized class label to
create a domain-specific extraction rule. For example, ifClass1 is set to “City” then the rule looks for the
words “cities such as” and extracts the heads of the proper nouns following that phrase as potential cities.

Bootstrapping

AssessorExtractor

Search
Engine

Knowledge
Base

Information focus
Rule templates

Extraction rules Discriminators

Extractions
Assessed

Extractions

Hit counts

Result URLs Hit counts

Result URLs

Figure 2: Flowchart of the main components in KnowItAll. Bootstrapping creates extractions rules and “dis-
criminators” automatically with no hand-tagged training. Extractor fetches Web pages and applies extraction
rules, then Assessor computes the probability of correctness before inserting in the Knowledgebase.

4

KNOWITALL (information focusI, rule templatesT)
Bootstrap(I, T) sets rulesR, queriesQ, and discriminatorsD
Do until queries inQ are exhausted (or other termination criterion)

Extractor (R, Q) writes extractions listE
Assessor(E, D) adds extractions to the knowledgebase

Extractor (rulesR, queriesQ)
Selectqueries fromQ, set the number of downloads for each query
Sendselected queries to search engines
For eachwebpagew whose URL was returned by a search engine

Extract facte from w using the rule associated with the query
Write e to extractions listE

Assessor(extraction listE, discriminatorsD)
For eachextractione in E

Assigna probabilityp to e using a Bayesian classifier based onD
Add e,p to the knowledgebase

Figure 3: High-level pseudocode for KNOWITALL . (See Figure 10 for pseudocode of Bootstrap(I,T).)

A Bootstrapping step creates extraction rules and discriminators for each predicate in the focus. KNOW-
ITALL creates a list of search engine queries associated with the extraction rules, then executes the main
loop. At the start of each loop, KNOWITALL selects queries, favoring predicates and rules that have been
most productive in previous iterations of the main loop. The Extractor sends the selected queries to a search
engine and extracts information from the resulting Web pages. The Assessor computes the probability that
each extraction is correct and adds it to the knowledge base. This loop is repeated until all queries are
exhausted or deemed too unproductive. KNOWITALL ’s running time increases linearly with the size and
number of web pages it examines.

We now elaborate on KNOWITALL ’s Extraction Rules and Discriminators, and the Bootstrapping, Ex-
traction, and Assessor modules.

2.1 Extraction Rules and Discriminators

KNOWITALL automatically creates a set of extraction rules for each predicate, as described in Section 2.2.
Each rule consists of a predicate, an extraction pattern, constraints, bindings, and keywords. Thepredicate
gives the relation name and class name of each predicate argument. In the rule shown in Figure 4, the unary
predicate is “City”. Theextraction patternis applied to a sentence and has a sequence of alternating context
strings andslots, where each slot represents a string from the sentence. The rule may set constraints on a
slot, and may bind it to one of the predicate arguments as a phrase to be extracted. In the example rule, the
extraction pattern consists of three elements: a slot named NP1, a context string “such as”, and a slot named
NPList2. There is an implicit constraint on slots with name NP<digit>. They must match simple noun
phrases and those with name NPList<digit> match a list of simple noun phrases. Slot names of P<digit>
can match arbitrary phrases.

The Extractor uses regular expressions based on part-of-speech tags from the Brill tagger [5] to identify
simple noun phrases and NPLists. The head of a noun phrase is generally the last word of the phrase. If the

5

last word is capitalized, the Extractor searches left for the start of the proper noun, based on orthographic
clues. Take for example, the sentence “The tour includes major cities such as New York, central Los Angeles,
and Dallas”. The head of the NP “major cities” is just “cities”, whereas the head of “New York” is “New
York” and the head of “central Los Angeles” is “Los Angeles”. This simple syntactic analysis was chosen for
processing efficiency, and because our domain-independent architecture avoids more knowledge intensive
analysis.

Predicate: City
Pattern: NP1 “such as” NPList2
Constraints: head(NP1)= “cities”

properNoun(head(each(NPList2)))
Bindings: City(head(each(NPList2)))
Keywords: “cities such as”

Figure 4: An extraction rule generated by substituting the class name City and the plural of the class label
“city” into a generic rule template. The rule looks for Web pages containing the phrase “cities such as” and
extracts the proper nouns following that phrase as instances of the unary predicateCity .

Theconstraintsof a rule can specify the entire phrase that matches the slot, the head of the phrase, or
the head of each simple NP in an NPList slot. One type of constraint is an exact string constraint, such as the
constraint head(NP1) = “cities” in the rule shown in Figure 4. Other constraints can specify that a phrase
or its head must follow the orthographic pattern of a proper noun, or of a common noun. The rulebindings
specify which slots or slot heads are extracted for each argument of the predicate. If the bindings have an
NPList slot, a separate extraction is created for each simple NP in the list that satisfies all constraints. In the
example rule, an extraction is created with theCity argument bound to each simple NP in NPList2 that
passes the proper noun constraint.

A final part of the rule is a list ofkeywordsthat is created from the context strings and any slots that
have an exact word constraint. In our example rule, there is a single keyword phrase “cities such as” that is
derived from slot NP1 and the immediately following context. A rule may have multiple keyword phrases
if context or slots with exact string constraints are not immediately adjacent.

KNOWITALL uses the keywords as search engine queries, then applies the rule to the Web page that
is retrieved, after locating sentences on that page that contain the keywords. More details of how rules are
applied is given in Section 2.3. A BNF description of the rule language is given in Figure 8. The example
given here is a rule for a unary predicate,City . The rule language also covers n-ary predicates with arbitrary
relation name and multiple predicate arguments, such as the rule forCeoOf(Person,Company) shown
in Figure 9.

KNOWITALL ’s Extractor module uses extraction rules that apply to single Web pages and carry out
shallow syntactic analysis. In contrast, the Assessor module uses discriminators that apply to search engine
indices. These discriminators are analogous to simple extraction rules that ignore syntax, punctuation,
capitalization, and even sentence breaks, limitations that are imposed by use of commercial search engine
queries. On the other hand, discriminators are equivalent to applying an extraction pattern simultaneously
to the entire set of Web pages indexed by the search engine.

A discriminator consists of an extraction pattern with alternating context strings and slots. There are no
explicit or implicit constraints on the slots, and the pattern matches Web pages where the context strings and

6

slots are immediately adjacent, ignoring punctuation, whitespace, or HTML tags. The discriminator for a
unary predicate has a single slot, which we represent as an X here, for clarity of exposition. Discriminators
for binary predicates have two slots, here represented as X and Y, for arguments 1 and 2 of the predicate,
and so forth.

When a discriminator is used to validate a particular extraction, the extracted phrases are substituted into
the slots of the discriminator to form a search query. This is described in more detail in Section 2.4. Figure
5 shows one of several possible discriminators that can be used for the predicateCity and for the binary
predicateCeoOf(Person,Company) .

Discriminator for: City
“city X”

Discriminator for: CeoOf(Person,Company)
“X CEO of Y”

Figure 5: When the discriminator forCity is used to validate the extraction “Paris”, the Assessor finds hit
counts for the search query phrase “city Paris”. Similarly, the discriminator forCeoOf validates Jeff Bezos
as CEO of Amazon with the search query, “Jeff Bezos CEO of Amazon”.

We now describe how KNOWITALL automatically creates a set of extraction rules and discriminator
phrases for a predicate.

2.2 Bootstrapping

KNOWITALL ’s input is a set ofpredicatesthat represent classes or relationships of interest. The predicates
supply symbolic names for each class (e.g.“MovieActor”), and also give one or more labels for each class
(e.g.“actor” and “movie star”). These labels are the surface form in which a class may appear in an actual
sentence. Bootstrapping uses the labels to instantiate extraction rules for the predicate from generic rule
templates.

Figure 6 shows some examples of predicates for a geography domain and for a movies domain. Some
of these are “unary” predicates, used to find instances of a class such asCity andCountry ; some are
“n-ary” predicates, such as thecapitalOf relationship betweenCity andCountry and thestarsIn
relationship betweenMovieActor andFilm . In this paper, we concentrate primarily on unary predicates
and how KNOWITALL uses them to extract instances of classes from the Web. Preliminary experiments
show that the same methods work well on n-ary predicates.

The first step of Bootstrapping uses a set of domain-independent generic extraction patterns (e.g.Figure
1). The pattern in Figure 1 can be summarized informally as<class1 > ‘‘such as’’ NPList
That is, given a sentence that contains the class label followed by “such as”, followed by a list of simple
noun phrases, KNOWITALL extracts the head of each noun phrase as a candidate member of the class, after
testing that it is a proper noun.

Combining this template with the predicateCity produces two instantiated rules, one for the class label
“city” (shown in Figure 4 in Section 2.1) and a similar rule for the label “town”. The class-specific extraction
patterns are:

“cities such as ” NPList
“towns such as ” NPList

7

Predicate: City Predicate: Film
labels: “city”, “town” labels: “film”, “movie”

Predicate: Country Predicate: MovieActor
labels: “country”, “nation” labels: “actor”, “movie star”

Predicate: capitalOf(City,Country) Predicate: starsIn(MovieActor,Film)
relation labels: “capital of” relation labels: “stars in”, “star of”
class-1 labels: “city”, “town” class-1 labels: “actor”, “movie star”
class-2 labels: “country”, “nation” class-2 labels: “film”, “movie”

Figure 6: Example predicates for a geography domain and for a movies domain. The class labels and relation
labels are used in creating extraction rules for the class from generic rule templates.

Each instantiated extraction rule has a list of keywords that are sent as phrasal query terms to a search engine.
A sample of the syntactic patterns that underlie KNOWITALL ’s rule templates is shown in Figure 7.

Some of our rule templates are adapted from Marti Hearst’s hyponym patterns [22] and others were de-
veloped independently. The first eight patterns shown are for unary predicates whose pluralized English
name (or “label”) matches<class1>. To instantiate the rules, the pluralized class label is automatically
substituted for<class1>, producing patterns like “cities such as” NPList.

We have also experimented with rule templates for binary predicates, such as the last two examples.
These are for the generic predicate,relation(Class1,Class2) . The first produces the pattern
<city> “is the capital of”<country> for the predicatecapitalOf(City,Country) , and the pattern
<person> “is the CEO of”<company> for the predicateCeoOf(Person,Company) .

Bootstrapping also initializes the Assessor for each predicate in a fully automated manner. It first gener-
ates a set of discriminator phrases for the predicate based on class labels and on keywords in the extraction
rules for that predicate. Bootstrapping then uses the extraction rules to find a set of seed instances to train
the discriminators for each predicate, as described in Section 2.5.

2.3 Extractor

To see how KNOWITALL ’s extraction rules operate, suppose that<class1> in the pattern
<class1> “such as” NPList

is bound to the name of a class in the ontology. Then each simple noun phrase in NPList is likely to be
an instance of that class. When this pattern is used for the classCountry it would match a sentence that
includes the phrase “countries such as X, Y, and Z” where X, Y, and Z are names of countries. The same
pattern is used to generate rules to find instances of the classActor , where the rule looks for “actors such
as X, Y, and Z”.

In using these patterns as the basis for extraction rule templates, we add syntactic constraints that look
for simple noun phrases (a nominal preceded by zero or more modifiers). NP must be a simple noun phrase;
NPList must be a list of simple NPs; and what is denoted by<class1> is a simple noun phrase with the
class name as its head. Rules that look for proper names also include an orthographic constraint that tests
capitalization. To see why noun phrase analysis is essential, compare these two sentences.

A) “China is a country in Asia.”

8

NP “and other”<class1>
NP “or other”<class1>
<class1> “especially” NPList
<class1> “including” NPList
<class1> “such as” NPList
“such” <class1> “as” NPList
NP “is a” <class1>
NP “is the”<class1>

<class1> “is the” <relation> <class2>
<class1> “,” <relation> <class2>

Figure 7: The eight generic extraction patterns used for unary extraction rules, plus two examples of binary
extraction patterns. The first five patterns also have an alternate form with a comma,e.g.NP “, and other”
<class1>. (If a rule pattern includes punctuation, a search engine will return some Web pages that do not
match the rule. Nothing is extracted from such pages.) The terms<class1> and<class2> stand for an NP
in the rule pattern with a constraint binding the head of the phrase to a label of predicate argument 1 or 2.
Similarly, <relation> stands for a phrase in the rule pattern with a constraint binding it to a relation label of
a binary predicate.

B) “Garth Brooks is a country singer.”

In sentence A the word “country” is the head of a simple noun phrase, and China is indeed an instance of
the classCountry . In sentence B, noun phrase analysis can detect that “country” is not the head of a noun
phrase, so Garth Brooks won’t be extracted as the name of a country.

Let’s consider a rule template (Figure 1) and see how it is instantiated for a particular class. The Boot-
strapping module generates a rule forCity from this rule template by substituting “City” for “Class1”,
plugging in the plural “cities” as a constraint on the head of NP1. This produces the rule shown in Figure
4. Bootstrapping also creates a similar rule with “towns” as the constraint on NP1, if the predicate specifies
“town” as well as “city” as surface forms associated with the class name. Bootstrapping then takes the lit-
erals of the rule and forms a set of keywords that the Extractor sends to a search engine as a query. In this
case, the search query is the phrase “cities such as”.

The Extractor matches the rule in Figure 4 to sentences in Web pages returned for the query. NP1
matches a simple noun phrase; it must be immediately followed by the string “such as”; following that must
be a list of simple NPs. If the match is successful, the Extractor applies constraints from the rule. The head
of NP1 must match the string “cities”. The Extractor checks that the head of each NP in the list NPList2 has
the capitalization pattern of a proper noun. Any NPs that do not pass this test are ignored. If all constraints
are met, the Extractor creates one or more extractions: an instance of the classCity for each proper noun
in NPList2. The BNF for KNOWITALL ’s extraction rules appears in Figure 8.

The rule in Figure 4 would extract three instances ofCity from the sentence “We service corporate and
business clients in all major European cities such as London, Paris, and Berlin.” If all the tests for proper
nouns fail, nothing is extracted, as in the sentence “Detailed maps and information for several cities such as
airport maps, city and downtown maps”.

The Extractor can also utilize rules for binary or n-ary relations. Figure 9 shows a rule that finds in-

9

<rule> |= <predicate> <pattern> <constraints> <bindings> <keywords>
<predicate> |= ‘Predicate: ’ (<predName> |

<predName> ‘(’ <class> (‘,’ <class>)+ ‘)’)
<pattern> |= ‘Pattern: ’<context> (<slot> <context>)+
<context> |= (‘ ” ’ string ‘ ” ’ | <null>)
<slot> |= (‘NP’<d> | ‘NPList’<d> | ‘P’<d>)
<d> |= digit
<constraints> |= ‘Constraints: ’ (<constr>)*
<constr> |= <phrase> ‘= ” ’ string ‘ ” ’ | ‘properNoun(’<phrase> ‘)’
<phrase> |= (‘NP’<d> | ‘P’<d> | ‘head(NP’<d> ‘)’ |

‘each(NPList’<d> ‘)’ | ‘head(each(NPList’<d> ‘))’)
<bindings> |= ‘Bindings: ’ <predName> ‘(’ <phrase> (‘,’ <phrase>)* ‘)’
<predName> |= string
<class> |= string
<keywords> |= ‘Keywords: ’ (‘ ” ’ string ‘ ” ’)+

Figure 8: BNF description of the extraction rule language. An extraction pattern alternates context (exact
string match) with slots that can be a simple noun phrase (NP), a list of NPs, or an arbitrary phrase (P).
Constraints may require a phrase or its head to match an exact string or to be a proper noun. The “each”
operator applies a constraint to each simple NP of an NPList. Rule bindings specify how extracted phrases
are bound to predicate arguments. Keywords are formed from literals in the rule, and are sent as queries to
search engines.

stances of the relationCeoOf(Person,Company) where the predicate specifies one or more labels for
the relation, such as “CEO of” that are substituted into the generic pattern in the rule template

<class1> “,” <relation> <class2>
This particular rule has the second argument bound to an instance of Company, “Amazon”, which KNOW-
ITALL has previously added to its knowledgebase.

KNOWITALL automatically formulates queries based on its extraction rules. Each rule has an associated
search query composed of the rule’s keywords. For example, if the pattern in Figure 4 was instantiated for the
classCity , it would lead KNOWITALL to 1) issue the search-engine query “cities such as”, 2) download in
parallel all pages named in the engine’s results, and 3) apply the Extractor to sentences on each downloaded
page. For robustness and scalability KNOWITALL queries multiple different search engines.

2.4 Assessor

KNOWITALL uses statistics computed by querying search engines to assess the likelihood that the Extrac-
tor’s conjectures are correct. Specifically, the Assessor uses a form ofpointwise mutual information(PMI)
between words and phrases that is estimated from Web search engine hit counts in a manner similar to
Turney’s PMI-IR algorithm [42]. The Assessor computes the PMI between each extracted instance and
multiple,automatically generated discriminator phrasesassociated with the class (such as “X is a city” for
the classCity).4 For example, in order to estimate the likelihood that “Liege” is the name of a city, the
Assessor might check to see if there is a high PMI between “Liege” and phrases such as “Liege is a city”.

4We use class names and the keywords of extraction rules to automatically generate these discriminator phrases; they can also
be derived from rules learned using PL techniques (Section 3).

10

Predicate: CeoOf(Person,Company)
Pattern: NP1 “,” P2 NP3
Constraints: properNoun(NP1)

P2 = “CEO of”
NP3 = ”Amazon”

Bindings: CeoOf(NP1,NP3)
Keywords: “CEO of Amazon”

Figure 9: An example of an extraction rule for a binary predicate that finds the CEO of a company. In this
case, the second argument is bound to a known instance of company from the knowledgebase, Amazon.

More formally, letI be an instance andD be a discriminator phrase. We compute the PMI score as
follows:

PMI(I, D) =
|Hits(D + I)|
|Hits(I)|

(1)

The PMI score is the number of hits for a query that combines the discriminator and instance, divided by the
hits for the instance alone. The raw PMI score for an instance and a given discriminator phrase is typically
a tiny fraction, perhaps as low as 1 in 100,000 even for positive instances of the class. This does not give
the probability that the instance is a member of the class, only the probability of seeing the discriminator on
Web pages containing the instance.

These mutual information statistics are treated as features that are input to aNaive Bayes Classifier
(NBC) using the formula given in Equation 2. This is the probability that factφ is correct, given features
f1, f2, . . . fn, with an assumption of independence between the features.

P (φ|f1, f2, . . . fn) =
P (φ)

∏
i P (fi|φ)

P (φ)
∏

i P (fi|φ) + P (¬φ)
∏

i P (fi|¬φ)
(2)

Our method to turn a PMI score into the conditional probabilities needed for Equation 2 is straightfor-
ward. The Assessor takes a set ofk positive andk negative seeds for each class and finds a threshold on
PMI scores that splits the positive and negative seeds. It then uses a tuning set of anotherk positive andk
negative seeds to estimateP (PMI > thresh|class), P (PMI > thresh|¬class), P (PMI ≤ thresh|class),
andP (PMI ≤ thresh|¬class), by counting the positive and negative seeds (plus a smoothing term) that are
above or below the threshold. We usedk = 10 and a smoothing term of 1 in the experiments reported here.

In a standard NBC, if a candidate fact is more likely to be true than false, it is classified as true. However,
since we wish to be able to trade precision against recall, we record the crude probability estimates computed
by the NBC for each extracted fact. By raising the probability threshold required for a fact to be deemed
true, we increase precision and decrease recall; lowering the threshold has the opposite effect. We found
that, despite its limitations, NBC gave better probability estimates than the logistic regression and Gaussian
models we tried.

Several open questions remain about the use of PMI for information extraction. Even with the entire
Web as a text corpus, the problem of sparse data remains. The most precise discriminators tend to have
low PMI scores for numerous positive instances, often as low as10−5 or 10−6. This is not a problem for
prominent instances that have several million hits on the Web. If an instance is found on only a few thousand

11

Web pages, the expected number of hits for a positive instance will be less than 1 for such a discriminator.
This leads to false negatives for the more obscure positive instances.

A different problem with using PMI is homonyms — words that have the same spelling, but different
meanings. For example, Georgia refers to both a state and country, Normal refers to a city in Illinois and a
socially acceptable condition, and Amazon is both a rain forest and an on-line shopping destination. When a
homonym is used more frequently in a sense distinct from the one we are interested in, then the PMI scores
may be low and may fall below threshold. This is because PMI scores measure whether membership in the
class is themost commonmeaning of a noun denoting an instance, not whether membership in the class is a
legitimate but less frequentusage of that noun.

Another issue is in the choice of a Naive Bayes Classifier. Since the Naive Bayes Classifier is notorious
for producing polarized probability estimates that are close to zero or to one, the estimated probabilities are
often inaccurate. However, as [15] points out, the classifier is surprisingly effective because it only needs
to make an ordinal judgment (which class is more likely) to classify instances correctly. Similarly, our
formula produces a reasonableorderingon the likelihood of extracted facts for a given class. This ordering
is sufficient for KNOWITALL to implement the desired precision/recall tradeoff.

2.5 Training Discriminators

In order to estimate the probabilitiesP (fi|φ) andP (fi|¬φ) needed in Equation 2, KNOWITALL needs a
training set of positive and negative instances of the target class. We want our method to scale readily to
new classes, however, which requires that we eliminate human intervention. To achieve this goal we rely on
a bootstrapping technique that induces seeds from generic extraction patterns and automatically-generated
discriminators.

Bootstrapping begins by instantiating a set of extraction rules and queries for each predicate from generic
rule templates, and also generates a set of discriminator phrases from keyword phrases of the rules and from
the class names. This gives a set of a few dozen possible discriminator phrases such as “country X”, “X
country”, “countries such as X”, “X is a country”. We found it best to supply the system with two names for
each class, such as “country” and “nation” for the classCountry. This compensates for inherent ambiguity
in a single name: “country” might be a music genre or refer to countryside; instances with high mutual
information with both “country” and “nation” are more likely to have the desired semantic class.

Bootstrapping is able to find its own set of seeds to train the discriminators, without requiring any hand-
chosen examples. It does this by using the queries and extraction rules to find a set of candidate seeds for
each predicate. Each of these candidate seeds must have a minimum number of hit counts for the instance
itself; otherwise the PMI scores from this seed will be unreliable.

After assembling the set of candidate seeds, Bootstrapping computes PMI(c,u) for each candidate seed
c, and each untrained discriminator phraseu. The candidate seeds are ranked by average PMI score and
the bestm become the first set of bootstrapped seeds. Thus we can use untrained discriminator phrases to
generate our first set of seeds, which we use to train the discriminators. Half of the seeds are used to find
PMI thresholds for each discriminator, and the remaining seeds used to estimate conditional probabilities.
An equal number of negative seeds is taken from among the positive seeds for other classes. Bootstrapping
selects the bestk discriminators to use for the Assessor, favoring those with the best split of positive and
negative instances. Now that it has a set of trained discriminators, KNOWITALL does two more bootstrap-
ping cycles: first, it uses the discriminators to re-rank the candidate seeds by probability; next, it selects a
new set of seeds and re-trains the discriminators.

In the experiments reported in this paper, we used 100 candidate seeds, each with a hit count of at least
1,000, and picked the best 20 (m = 20). Finally, we set the number of discriminatorsk to 5. These settings

12

BOOTSTRAP(information focusI, rule templatesT)
R= generate rules fromT for each predicate inI
Q = generate queries associated with each rule inR
U = generate untrained discriminators from rules inR, class names inI
UseQ to find at leastn candidate seeds for each predicate inI

with hit counts> h
First Iteration:

S= selectm candidate seeds for each predicate inI
with highest average PMI overU

D = trainU onS, select bestk discriminators for each predicate inI
Subsequent Iterations:

S= selectmcandidate seeds for each predicate inI
with highest probability fromD

D = trainU onS, select bestk discriminators for each predicate inI

Figure 10: Pseudocode for Bootstrapping.

have been sufficient to produce correct seeds for all the classes we have experimented with thus far.

2.6 Bootstrapping and Noise Tolerance

An important issue with bootstrap training is robustness and noise tolerance: what is the effect on perfor-
mance of the Assessor if the automatically selected training seeds include errors? Experiment 1 compares
performance forCountry trained on three different sets of seeds: correct seeds, seeds with 10% noise
(2 errors out of 20 seeds), and seeds with 30% noise. The noisy seeds were actual candidate extractions
that were not chosen by the full bootstrap process (“EU”, “Middle East Countries”, “Iroquois”, and other
instances semantically related to nation or country). There is some degradation of performance from 10%
noise, and a sharp drop in performance from 30% noise.

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

No noise
10% noise
30% noise

Experiment 1: The Assessor can tolerate10% noise in bootstrapped training seeds up to recall 0.75, but
performance degrades sharply after that.

13

Another question that troubled us is the source of negative seeds. Our solution was to train the Assessor
on multiple classes at once; KNOWITALL finds negative seeds for a class by sampling positive seeds from
other classes, as in [26]. We take care that each class has at least one semantically related class to provide
near misses. In these experiments,Country gets negative seeds fromCity , USState , Actor , and
Film , and so forth.

We tried the following alternative method of finding negative seeds. KNOWITALL runs its Extractor
module to produce a set of unverified instances, then takes a random sample of those instances, which are
hand-tagged as seeds. This training set has the added advantage of a representative proportion of positive
and negative instances. Experiment 2 shows an experiment where a random sample of 40 extractions were
hand-tagged as seeds. These seeds were then removed from the test set for that run. Surprisingly, the
recall-precision curve is somewhat worse than selecting negative seeds from the other classes.

A key point in training the discriminators is to provide useful “near misses” as negative training. Using
random words as negative training would nearly always give PMI scores of zero, and not produce accurate
PMI thresholds or conditional probabilities. It turns out that actual extraction errors will often have zero PMI
as well. Much better near misses come from using instances of classes that have a semantic relation to the
target class. Instances ofCity andUSState tend to co-occur with discriminator phrases forCountry ,
and help the Assessor learn higher PMI thresholds and more conservative estimates of conditional probabil-
ity.

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Neg. seeds from errors
Neg. from other classes

Experiment 2: Using negative seeds that are taken from seeds of other classes works better than tagging
actual extraction errors as negative seeds.

2.7 Resource Allocation

Our preliminary experiments demonstrated that KNOWITALL needs a policy that dictates when to stop look-
ing for more instances of a predicate. For example, suppose that KNOWITALL is looking for instances of the
predicateCountry : there are only around 300 valid country names to find, but the Extractor could continue
examining up to 3 million Web pages that match the query “countries including”, “or other countries”, and
so forth. The valid country names would be found repeatedly, along with a large set of extraction errors.
This would reduce efficiency – if KNOWITALL wastes queries on predicates that are already exhausted,

14

this diverts system resources from the productive classes. Finding thousands of spurious instances can also
overwhelm the Assessor and degrade KNOWITALL ’s precision.

We use aSignal to Noiseratio (STN) to determine the utility of searching for further instances of a
predicate. While the Extractor continues to find correct extractions at a fairly steady rate, the proportion of
newextractions (those not already in the knowledge base) that are correct gradually becomes smaller over
time. If nearly all the correct instances of a predicate are already in the knowledge base, new extractions
will be mostly errors. Thus, the ratio of good extractions to noise of new extractions is a good indicator of
whether KNOWITALL has exhausted the predicate.

KNOWITALL computes the STN ratio by dividing the number of high probability new extractions by the
number of low probability ones over the most recentn Web pages examined for that predicate (n = 5000).
A small smoothing term is added to numerator and denominator to avoid division by zero. When the STN
ratio drops below a cutoff point, the Extractor is finding mostly noise, and halts search for that predicate. A
cutoff of 0.10 means that there is ten times as much noise as good extractions.

The STN metric is a reflective, unsupervised computation, since KNOWITALL has no outside source
of information to tell it which instances are correct and which are noise. Instead, KNOWITALL uses the
probability estimates assigned by the Assessor, and defines “high probability” and “low probability” in
terms of thresholds on these probabilities. In the experiments reported here, we used a STN cutoff of 0.10
and defined high probability as probabilities above 0.90 and low probabilities as those below 0.0001. The
same settings were used for all predicates and all methods that included PMI probability assessment. The
setting of 0.0001 for low probability is due to the Nave Bayes probability updates tendency to polarize the
probability estimates. Relying on probability assignments by the Assessor is a limitation of the STN metric:
We typically run the List Extractor without using PMI assessment.5 LE uses an alternate Assessor method
that assigns higher probability to instances that are found on a larger number of lists. This method is not
suitable for a STN cutoff that is computed over new extractions, since all new extractions are necessarily on
only a single list so far, thus all new extractions have “low probability”.

We used an additional cutoff metric, theQuery Yield Ratio(QYR), and halt search for new instances
when either STN or QYR falls below 0.10. QYR is defined as the ratio of query yield over the most recent
n Web pages examined, divided by the initial query yield over the firstn Web pages, where query yield is
the number of new extractions divided by the number of Web pages examined (adding a small smoothing
term to avoid division by zero). If this ratio falls below a cutoff point, the Extractor has reached a point of
diminishing returns where it is hardly finding any new extractions and halts the search for that predicate.
The ratio of recent query yield to initial query yield is a better indicator that a predicate is nearly exhausted
than using a cutoff on the query yield itself. The query yield varies greatly depending on the predicate and
the extraction method used: the query yield for learned rules tends to be lower than for rules from generic
patterns; the List Extractor method, where one query can produces a hundred extractions or more, has much
higher query yield than the other KNOWITALL extraction methods.

Experiment 3 shows the impact of the cutoff metrics. The top curve is forUSState where KNOWITALL

automatically stopped looking for further instances after the STN fell below 0.10 after finding 371 proposed
state names. The curve just below that is forUSState when KNOWITALL kept searching and found 3,927
proposed state names. In fact, none of the states found after the first few hours were correct, but enough of
the errors fooled the Assessor to reduce precision from 1.0 to 0.98 at the highest probability. The next two
curves showCountry with and without cutoff metrics. KNOWITALL found 194 correct and 357 incorrect
Country names with the cutoff metrics; it found 387 correct Countries, but also 2,777 incorrect extractions

5A metric that does not rely on the Assessor is also useful for predicates with discriminators that provide only weak evidence
for probability assignment.

15

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on
State−cutoff
State
Country−cutoff
Country

Experiment 3: A comparison ofUSState andCountry with and without metrics to cut off the search for
more instances of exhausted predicates. Our cutoff metrics not only aid efficiency, but improve precision.

without cutoff metrics. The data point at precision 0.88 and recall 0.76 with cutoff metrics represents 148
correct instances; without cutoff metrics, the point at precision 0.86 and recall 0.34 represents 130 correct
instances. So continuing the search actually produced fewer correct instances at a given precision level.

2.8 Extended Example

To better understand how KNOWITALL operates, we present a detailed example of learning facts about
geography. A user has given KNOWITALL a set of predicates includingCity , and KNOWITALL has
used domain-independent rule templates to generate extraction rules and untrained discriminator phrases for
City as described in Section 2.2.

Bootstrapping automatically selected seeds to train discriminators forCity that include prominent
cities like London and Rome, and the obscure cities Dagupan and Shakhrisabz. Negative training comes
from seeds for other classes trained at the same time, including names of countries and U.S. states. After
training all discriminator phrases with these seeds, Bootstrapping has selected the five best discriminators
shown in Figure 11. The thresholds are from one training set of 10 positive and 10 negative seeds; the
conditional probabilities come from another training set, with a smoothing factor of 1 added to the count of
positive or negative above and below the threshold.

Once Bootstrapping has generated the set of extraction rules and trained a set of discriminators for each
predicate, KNOWITALL begins its main extraction cycle. Each cycle, KNOWITALL selects a set of queries,
sends them to a search engine, and uses the associated extraction rules to analyze the Web pages that it
downloads.

Suppose that the query is “and other cities”, from a rule with extraction pattern: NP “and other cities”.
Figure 12 shows two sentences that might be found by the query for this rule. The extraction rule correctly
extracts “Fes” as a city from the first sentence, but is fooled by the second sentence, and extracts “East
Coast” as a city.

To compute the probability ofCity(Fes) , the Assessor sends six queries to the Web, and finds the
following hit counts. “Fes” has 446,000 hits; “Fes is a city” has 14 hits, giving a PMI score of 0.000031
for this discriminator, which is over the threshold for this discriminator. A PMI score over threshold for this

16

Discriminator:<I> is a city Discriminator: cities such as<I>
Learned Threshold T: 0.000016 Learned Threshold T: 0.0000053
P(PMI> T | class) = 0.83 P(PMI> T | class) = 0.75
P(PMI> T | ¬class)= 0.08 P(PMI> T | ¬class)= 0.08

Discriminator:<I> and other towns Discriminator: cities including<I>
Learned Threshold T: 0.00000075 Learned Threshold T: 0.0000047
P(PMI> T | class) = 0.83 P(PMI> T | class) = 0.75
P(PMI> T | ¬class)= 0.08 P(PMI> T | ¬class)= 0.08

Discriminator: cities<I>
Learned Threshold T: 0.00044
P(PMI> T | class) = 0.91
P(PMI> T | ¬class)= 0.25

Figure 11: Trained discriminators for the classCity . Bootstrapping has learned a threshold on PMI scores
that splits positive from negative training seeds, and has estimated conditional probabilities that the PMI
score is above that threshold, given that the extraction is of the class or not of the class.

“Short flights connect Casablanca with Fes and other cities.”

“Since 1984, the ensemble has performed concerts throughout
the East Coast and other cities.”

Figure 12: Two sentences that may be found by queries “and other cities”. The Assessor needs to distinguish
between a correct extraction of Fes from the first sentence and an extraction error, East Coast, from the
second.

17

discriminator is 10 times more likely for a correct instance than for an incorrect one, raising the probability
that Fes is a city. Fes is also above threshold for “cities Fes” (201 hits); “cities such as Fes” (10 hits); and
“cities including Fes” (4 hits). It is below threshold on only one discriminator, with 0 hits for “Fes and other
towns”. The final probability is 0.99815.

In contrast, the Assessor finds thatCity(East Coast) is below threshold for all discriminators.
Even though there are 141 hits for “cities East Coast”, 1 hit for “cities such as East Coast”, and 3 hits for
“cities including East Coast”, the PMI scores are below threshold when divided by 1.7 million hits for “East
Coast”. The final probability is 0.00027.

2.9 Experiments with Baseline KnowItAll

We ran an experiment to evaluate the performance of KNOWITALL as thus far described. We were partic-
ularly interested in quantifying the impact of the Assessor on the precision and recall of the system. The
Assessor assigns probabilities to each extraction. These probabilities are the system’s confidence in each
extraction and can be thought of as analogous to a ranking function in information retrieval: the goal is for
the set of extractions with high probability to have high precision, and for the precision to decline gracefully
as the probability threshold is lowered. This is, indeed, what we found.

We ran the system with an information focus consisting of five classes:City , USState , Country ,
Actor , andFilm . The first three had been used in system development and the last two,Actor andFilm ,
were new classes. The Assessor used PMI score thresholds as Boolean features to assign a probability to
each extraction, with the system selecting the best five discriminator phrases as described in Section 2.4.

We use the standard metrics ofprecisionandrecall to measure KNOWITALL ’s performance. At each
probabilityp assigned by the Assessor, we count the number of correct extractions at or above probabilityp.
This is done by first comparing the extracted instances automatically with an external knowledge base, the
Tipster Gazetteer for locations and the Internet Movie Database (IMDB) for actors and films. We manually
checked any instances not found in the Gazetteer or the IMDB to ensure that they were indeed errors.

Precision atp is the number of correct extractions divided by the total extractions at or abovep. Recall at
p is defined as the number of correct extractions at or abovep divided by the total number of correct extrac-
tions at all probabilities. Note that this is recall with respect to sentences that the system has actually seen,
and the extraction rules it utilizes, rather than a hypothetical, but unknown, number of correct extractions
possible with an arbitrary set of extraction rules applied to the entire Web.

Experiments 4 and 5 show precision and recall at the end of running KNOWITALL for four days. Each
point on the curves shows the precision and recall for extractions with probability at or above a given level.
The curve forCity has precision 0.98 at recall 0.76, then drops to precision 0.71 at recall 1.0. The curve
for USState has precision 1.0 at recall 0.98;Country has precision 0.97 at recall 0.58, and precision
0.79 at recall 0.87.

Performance on the two new classes (Actor and Film) is on par with the geography domain we
used for system development. The classActor has precision 0.96 at recall 0.85. KNOWITALL had more
difficulty with the classFilm , where the precision-recall curve is fairly flat, with precision 0.90 at recall
0.27, and precision 0.78 at recall 0.57.

Our precision/recall curves also enable us to precisely quantify the impact of the Assessor on KNOW-
ITALL ’s performance. If the Assessor is turned off, then KNOWITALL ’s output corresponds to the point
on the curve where the recall is 1.00. The precision, with the Assessor off, varies between classes: for
City 0.71,USState 0.96,Country 0.35,Film 0.49, andActor 0.69. Turning the Assessor on en-
ables KNOWITALL to achieve substantially higher precision. For example, the Assessor raised precision for
Country from 0.35 to 0.79 at recall 0.87.

18

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

City
Country
USState

Experiment 4: Precision and recall at the end of four days at varying probability thresholds for the classes
City , USState , andCountry . KNOWITALL maintains high precision up to recall .80 for these classes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Film
Actor

Experiment 5: Precision and recall at the end of four days for two new classes:Actor andFilm . KNOW-
ITALL maintains high precision for actors, but has less success with film titles.

19

The Assessor is able to do a good job of assigning high probabilities to correct instances with only a
few false positives. Most of the extraction errors are of instances that are semantically close to the target
class. The incorrect extractions forCountry with probability> 0.80 are nearly all names of collections of
countries: “NAFTA”, “North America”, and so forth. Some of the errors at lower probability are American
Indian tribes, which are often referred to as “nations”. Common errors for the classFilm are names of
directors, or partial names of films (a film named “Dalmatians” instead of “101 Dalmatians”).

The Assessor has more trouble with false negatives than with false positives. Even though a majority of
the instances at the lowest probabilities are incorrect extractions, many are actually correct. An instance that
has a relatively low number of hit counts will often fall below the PMI threshold for discriminator phrases,
even if it is a valid instance of the class. An instance receives a low probability if it fails more than half of
the discriminator thresholds, even if it is only slightly below the threshold each time.

3 Extending KnowItAll with Pattern Learning

While generic extraction patterns perform well in the baseline KNOWITALL system, many of the best ex-
traction rules for a domain do not match a generic pattern. For example, “the film<film> starring” and
“headquartered in<city>” are rules with high precision and high coverage for the classesFilm andCity .
Arming KNOWITALL with a set of such domain-specific rules can significantly increase the number of sen-
tences from which it can extract facts. This section describes our method for learning domain-specific rules.
As shown in Figure 13, we introduce the insight that Pattern Learning (PL) can be used to increase both
coverage (by learning extractors) and accuracy (by learning discriminators). We quantify the efficacy of this
approach via experiments on multiple classes, and describe design decisions that enhance the performance
of Pattern Learning over the Web.

Patterns
Pattern
Learner

(PL)

Extractors
(increase
coverage)

Discriminators
(increase
accuracy)

Figure 13: The patterns that PL produces can be used as both extractors and discriminators.

3.1 Learning Patterns

Our Pattern Learning algorithm proceeds as follows:

1. Start with a setI of seed instances generated by domain-independent extractors.

2. For each seed instancei in I: Issue a query to a Web search engine fori, and for each occurrence of
i in the returned documents record a context string comprised of thew words beforei, a placeholder
for the class instance (denoted by “<class-name>”), and thew words afteri. (Here, we usew = 4).6

6Limited-length context strings form a rather impoverished hypothesis space for PL, but the space was adequate in our experi-
ments. The other advantage of the strings, compared with more expressive languages for expressing PL patterns, is that the strings
can be used directly as search engine queries when the patterns are employed to generate and assess candidate instances.

20

3. Output the bestpatternsaccording to some metric—a pattern is defined as any substring of a context
string that includes the instance placeholder and at least one other word.

The goal of PL is to find high-quality patterns. A pattern’s quality is given by itsrecall (the fraction
of instances of the target class that can be found on the Web surrounded by the given pattern text) and its
precision(the fraction of strings found surrounded by the pattern text that are of the target class). The Web
contains a large number of candidate patterns (for example, PL found over 300,000 patterns for the class
City), most of which are of poor quality. Thus, estimating the precision and recall of patterns efficiently
(i.e. without searching the Web for each candidate pattern) is important. Estimating precision for patterns is
especially difficult because we have no labeled negative examples, only positive seeds. Instead, in a manner
similar to [26] we exploit the fact that PL learns patterns for multiple classes at once, and take the positive
examples of one class to be negative examples for all other classes. Given that a patternp is found forc(p)
distinct seeds from the target class andn(p) distinct seeds from other classes, we define:

EstimatedPrecision =
c(p) + k

c(p) + n(p) + m
(3)

EstimatedRecall =
c(p)
S

(4)

whereS is the total number of seeds in the target class, andk/m is a constant prior estimate of precision,
used to perform a Laplace correction in (3). The prior estimate was chosen based on testing extractions from
a sample of the learned patterns using PMI Assessment.

3.2 Learned Patterns as Extractors

The patterns PL produces can be used as extractors to search the Web for new candidate facts. For example,
given the learned pattern “headquartered in<city>,” we search the Web for pages containing the phrase
“headquartered in”. Any proper noun phrase occurring directly after “headquartered in” in the returned
documents becomes a new candidate extraction for the classCity .

Of the many patterns PL finds for a given class, we choose as extractors those patterns most able to
efficiently generate new extractions with high precision. The patterns we select must have high precision,
and extractorefficiency(the number of unique instances produced per search engine query) is also important.

For a given class, we first select the top patterns according to the following heuristics:
H1: As in [6], we prefer patterns that appear for multiple distinct seeds. By banning all patterns found

for just a single seed (i.e. requiring thatEstimatedRecall > 1/S in Equation 4),96% of the potential rules
are eliminated. In experiments with the class City, H1 was found to improve the average efficiency of the
resulting patterns by a factor of five.

H2: We sort the remaining patterns according to theirEstimatedPrecision (Equation 3). On experi-
ments with the class City, ranking by H2 was found to further increase average efficiency (by 64% over H1)
and significantly improve average precision (from 0.32 to 0.58).

Of all the patterns PL generates for a given class, we take the 200 patterns that satisfy H1 and are
ranked most highly by H2 and subject them to further analysis, applying each to 100 Web pages and testing
precision using PMI assessment.

3.2.1 Experimental Results

We performed experiments testing our Baseline system (KNOWITALL with only domain independent pat-
terns) against an enhanced version, Baseline+PL (KNOWITALL including extractors generated by Pattern
Learning). In both configurations, we perform PMI assessment to assign a probability to each extraction

21

(using only domain independent discriminators). We estimated the coverage (number of unique instances
extracted) for both configurations by manually tagging a representative sample of the extracted instances,
grouped by probability. In the case ofCity , we also automatically marked instances as correct if they
appeared in the Tipster Gazetteer. To ensure a fair comparison, we compare coverage at the same level of
overall precision, computed as the proportion of correct instances at or above a given probability. We used
the Google search engine in all experiments.

The results shown in Experiments 10 and 11 in Section 6 show that using learned patterns as extractors
improves KNOWITALL ’s coverage substantially. Examples of the most productive extractors for each class
are shown in Table 1.

Rule Correct Precision
Extractions

the cities of<city> 5215 0.80
headquartered in<city> 4837 0.79
for the city of<city> 3138 0.79

in the movie<film> 1841 0.61
<film> the movie starring 957 0.64
movie review of<film> 860 0.64

and physicist<scientist> 89 0.61
physicist<scientist>, 87 0.59
<scientist>, a British scientist 77 0.65

Table 1: Three of the most productive rules for each class, along with the number of correct extractions
produced by each rule, and the rule’s overall precision (before assessment).

3.3 Learned Patterns as Discriminators

Learned patterns can also be used as discriminators to perform PMI assessment. As described above, the
PMI scores for a given extraction are used as features in a Naive Bayes classifier. In the experiments below,
we show that learned discriminators provide stronger features than domain independent discriminators for
the classifier, improving theclassification accuracy(the percentage of extractions classified correctly) of the
PMI assessment.

Once we have a large set of learned discriminators, determining which discriminators are the “best” in
terms of their impact on classification accuracy becomes especially important, as we have limited access
to Web search engines. In the baseline KNOWITALL system, the same five discriminators are executed on
every extraction. However, it may be the case that a discriminator will perform better on some extractions
than it does on others. For example, the discriminator “cities such as<city>” has high precision, but
appears only rarely on the Web. While a PMI score of1/100, 000 on “cities such as<city>” may give
strong evidence that an extraction is indeed a city, if the city itself appears only a few thousand times on the
Web, the probability of the discriminator returning a false zero is high. For these rare extractions, choosing
a more prevalent discriminator (albeit one with lower precision) like “<city> hotels” might offer better
performance. Lastly, executing five discriminators on every extraction is not always the best choice. For
example, if the first few discriminators executed on an extraction have high precision and return true, the
system’s resources would be better spent assessing other extractions, the truth of which is less certain.

22

In [18] formalizes the problem of choosing which discriminators to execute on which extractions as an
optimization problem, and describes a heuristic method that includes the enhancements mentioned above.
The paper shows that the heuristic has provably optimal behavior in important special cases, and then verifies
experimentally that the heuristic improves accuracy.

3.4 Related Work

PL is similar to existing approaches to pattern learning, the primary distinction being that we use learned
patterns to perform PMI-IR [42] assessment as well as extraction. PL also differs from other pattern learning
algorithms in some details. Riloff and Jones [37] use bootstrapped learning on a small corpus to alternately
learn instances of large semantic classes and4 patterns that can generate more instances; similar bootstrap-
ping approaches that use larger corpora include Snowball [3] and DIPRE [6]. Our work is similar to these
approaches, but differs in that PL does not use bootstrapping (it learns its patterns once from an initial set
of seeds) and uses somewhat different heuristics for pattern quality. Like our work, Ravichandran and Hovy
[36] use Web search engines to find patterns surrounding seed values. However, their goal is to supportques-
tion answering, for which a training set of question and answer pairs is known. Unlike PL, they can measure
a pattern’s precision on seed questions by checking the correspondence between the extracted answers and
the answers given by the seed. As in work by Riloff [41] and others, PL uses the fact that it learns patterns
for multiple classes at once to improve precision. The particular way we use multiple classes to estimate a
pattern’s precision (Equation 3) is similar to that of Linet al. [26]. A unique feature of our approach is that
our heuristic is computed solely by searching the Web for seed values, instead of searching the corpus for
each discovered pattern.

A variety of work in information extraction has been performed using more sophisticated structures
than the simple patterns that PL produces. Wrapper induction algorithms [24, 30] attempt to learn wrappers
that exploit the structure of HTML to extract information from Web sites. Also, a variety of rule-learning
schemes [40, 7, 8] have been designed for extracting information from semi-structured and free text. Simi-
larly, richer language models have been used to learn lexico-syntactic patterns that identify examples of the
hyponym relation [39]. In this paper, we restrict our attention to simple text patterns, as they are the most
natural fit for our approach of leveraging Web search engines for both extraction and PMI assessment. For
extraction, it may be possible to use a richer set of patterns with Web search engines given the proper query
generation strategy [2]; this is an item of future work.

4 Subclass Extraction

Another method to extend KNOWITALL ’s recall is Subclass Extraction (SE), which automatically identifies
subclasses. For example, not all scientists are found in sentences that identify them as “scientist” – some
are referred to only as chemists, some only as physicist, some only as biologists, and so forth. If SE learns
these and other subclasses of scientist, then KNOWITALL can create extraction patterns to find a larger set
of scientists.

As it turns out, subclass extraction can be achieved elegantly by a recursive application of KNOW-
ITALL ’s main loop (with some extensions). In the following, we describe the basic subclass extraction
method (SEbase), discuss two variations (SEself andSEiter) aimed at increasing SE’s recall, and present
encouraging results for a number of different classes.

23

4.1 Extracting Candidate Subclasses

In general, theSEbase extraction module has the same design as the original KNOWITALL extraction mod-
ule. Its input consists of domain-independent extraction rules for generating candidate terms, for which
matches are found on the Web. The generic rules that extract instances of a class will also extract subclasses,
with some modifications. To begin with, the rules need to distinguish between instances and subclasses of
a class. The rules for extracting instances in Section 2.1 contain a proper noun test (using a part-of-speech
tagger and a capitalization test). Rules for extracting subclasses instead check that the extracted noun is a
common noun (i.e., not capitalized). While these tests are heuristic, they work reasonably well in practice,
and KNOWITALL also falls back on its Assessor module to weed out erroneous extractions. The patterns
for our subclass extraction rules appear in Table 2. Most of our patterns are simple variations of well-known
ones in the information-extraction literature [22].C1 andC2 denote known classes and “CN” denotes a
common noun or common noun phrase. Note that the last two rules can only be used once some subclasses
of the class have already been found.

Pattern Extraction
C1 {“,” } “such as”CN isA(CN, C1)
“such” C1 “as” CN isA(CN, C1)
CN {“,” } “and other”C1 isA(CN, C1)
CN {“,” } “or other” C1 isA(CN, C1)
C1 {“,” } “including” CN isA(CN, C1)
C1 {“,” } “especially”CN isA(CN, C1)
C1 “and” CN isA(CN, class(C1))
C1 {“,” } C2 {“,” } “and” CN isA(CN, class(C1))

Table 2: Rules for Subclass Extraction, whereCN is a common noun identified by these patterns as a
subclass of the classC1. In the last two rulesCN is a sibling class of classesC1 andC2. The {“,” }
indicates an optional comma in the pattern.

4.2 Assessing Candidate Subclasses

SE uses a generate-and-test technique for extracting subclasses, much as the main KNOWITALL algorithm
does for extracting instances. TheSEbase Assessor uses a combination of methods to decide which of the
candidate subclasses from theSEbase Extractor are correct. First, the Assessor checks the morphology of
the candidate term, since some subclass names are formed by attaching a prefix to the name of the class
(e.g., “microbiologist” is a subclass of “biologist”). Then the Assessor checks whether a subclass is a
hyponym of the class in WordNet and if so, it assigns it a very high probability. The rest of the extractions
are evaluated in a manner similar to the instance assessment in KNOWITALL (with some modifications).
The Assessor computes co-occurrence statistics of candidate terms with a set of class discriminators. Such
statistics represent features that are combined in a naive Bayesian probability update. TheSEbase Assessor
uses a bootstrap training method similar to that described in Section 2.5.

Initially, we had hoped to use instance information as part of the assessment process. For instance,
if a proposed subclass had extracted instances that are also instances of the target class, this would have
boosted the probability of it being a true subclass. However, our instance sampling procedure revealed that
reliable instances for a number of correct proposed subclasses could not be extracted (with generic rules)
as instances of the target superclass. Apparently some classes, like Scientist, are very general and naturally
decomposable, and so people tend to use more specific subclasses of the class when writing. Classes like

24

Physicist or City, on the other hand, are used more frequently together with instances, and they have far
fewer useful subclasses.

4.3 Context-independent and Context-dependent Subclasses

Before presenting our experimental results, we need to introduce two key distinctions. We distinguish be-
tween finding subclasses in acontext-independentmanner versus finding subclasses in acontext-dependent
manner. The termcontextrefers to a set of keywords provided by the user that suggest a knowledge domain
of interest (e.g., the pharmaceutical domain, the political domain, etc.). In the absence of a domain de-
scription, KNOWITALL finds subclasses in a context-independent manner and they can differ from context-
dependent subclasses. For instance, if we are looking for any subclasses of Person (or People), Priest would
be a good candidate. However, if we are looking for subclasses of Person (or People) in a Pharmaceutical
context, Priest is probably not a good candidate, whereas Pharmacist is.

We also distinguish betweennamed subclassesandderived subclasses. Named subclassesare repre-
sented by novel terms, whereasderived subclassesare phrases whose head noun is the same as the name of
the superclass. For instance,Capital is a named subclass ofCity, whereasEuropean Cityis a derived sub-
class ofCity. While derived subclasses are interesting in themselves, we focus on the extraction of named
subclasses, as they are more useful in increasing KNOWITALL ’s instance recall. The reason is that extrac-
tion rules that use derived subclasses tend to extract a lot of the same instances as the rules using the name
of the superclass.

We now turn to our experimental results. We have evaluated our basic subclass extraction method in two
different settings.

a) Context-independent SE First, we chose three classes, Scientist, City and Film and looked for
context-independent subclasses using theSEbase approach described above.SEbase found only one named
subclass for City, “capital”, which is also the only one listed in the WordNet hyponym hierarchy for this
class. SEbase found 8 correct subclasses for Film and 11 for Scientist—this confirmed our intuition that
subclass extraction would be most successful on general classes, such as Scientist and least successful on
specific classes such as City. As shown in Experiment 7, we have evaluated the output ofSEbase along four
metrics: precision, recall, total number of correct subclasses and proportion of (correct) subclasses found
that do not appear in WordNet. As we can see,SEbase has high-precision but relatively low recall, reflecting
the low recall of our domain-independent patterns.

b) Context-dependent SEA second evaluation ofSEbase (Experiment 8) was done for a context-
dependent subclass extraction task, using as input three categories that were shown to be productive in pre-
vious semantic lexicon acquisition work [35]: People, Products and Organizations in the Pharmaceutical do-
main.7 SEbase exhibits the same high-precision/low-recall behavior we noticed in the context-independent
case. We also notice that most of the subclasses of People and Organizations are in fact in WordNet, whereas
none of the found subclasses for Products in the Pharmaceutical domain appears in WordNet.

Next, we investigate two methods for increasing the recall of the subclass extraction module.

4.4 Improving Subclass Extraction Recall

Generic extraction rules have low recall and do not generate all of the subclasses we would expect. In order
to improve our subclass recall, we add another extraction-and-verification step. After a set of subclasses for
the given class is obtained in the manner ofSEbase, the last two enumeration rules in Table 2 are seeded with

7For context-dependent subclass extraction, the search engine queries contain a relevant keyword together with the instantiated
extraction rule (for instance, “pharmaceutical” in the case of the Pharmaceutical domain).

25

known subclasses and extract additional subclass candidates. For instance, given the sentence “Biologists,
physicists and chemists have convened at this inter-disciplinary conference.”, such rules identify “chemists”
as a possible sibling of “biologists” and “physicists”. We experiment with two methods,SEself andSEiter

in order to assess the extractions obtained at this step.
a)SEself is a simple assessment method based on the empirical observation that an extraction matching

a large number of different enumeration rules is likely to be a good subclass candidate. We have tried to use
the enumeration rules directly as features for a Naive Bayes classifier, but the very nature of the enumeration
rule instantiations ensures that positive examples don’t have to occur in any specific instantiation, as long
they occur frequently enough. We simply convert the number of different enumeration rules matched by each
example and the average number of times an example matches its corresponding rules into Boolean features
(using a learned threshold). Since we have a large quantity of unlabeled data at our disposal, we estimate
the thresholds and train a simple Naive-Bayes classifier using theself-trainingparadigm [31], chosen as it
has been shown to outperform EM in a variety of situations. At each iteration, we label the unlabeled data
and retain the example labeled with highest confidence as part of the training set. The procedure is repeated
until all the unlabeled data is exhausted. The extractions whose probabilities are greater than 0.8 represent
the final set of subclasses (since subclasses are generally used by KNOWITALL for instance extraction, bad
subclasses translate into time wasted by the system and as such, we retain only candidate subclasses whose
probability is relatively high).

b) SEiter is a heuristic assessment method that seeks to adjust the probabilities assigned to the ex-
tractions based onconfidence scoresassigned to the enumeration rules in a recursive fashion. Theconfi-
dence scoreof a rule is given by the average probability of extractions matched by that rule. After rule
confidence scores have been determined, the extraction matching the most rules is assigned a probability
p = c(R1)+c(R2)

2 , whereR1 andR2 are the two matching rules with highest confidence scores. The rule
confidence scores are then re-evaluated and the process ends when all extractions have been assigned a prob-
ability. This scheme has the effect of clustering the extractions based on the rules they match and it works
to the advantage of good subclasses that match a small set of good extraction rules. However, as we will
later see, this method is sensitive to noise. As in the case ofSEself , we only retain the extractions whose
probability is greater than 0.8.

4.5 Experimental Results

We evaluated the methods introduced above on two of the three context-independent classes (Scientist and
Film) in Experiment 7.8 We also evaluated the methods on all three Pharmaceutical domain classes (People,
Product, Organization) in Experiment 8. We found that bothSEself andSEiter significantly improved upon
the recall of the baseline method; for both, this increase in recall is traded for a loss in precision.SEiter has
the highest recall, at the price of an average 2.3% precision loss with respect toSEbase. In the future, we
will perform additional experiments to assess which one of the two methods is less sensitive to noise, but
based upon inspection of the test set and the behavior of both methods,SEself appears more robust to noise
thanSEiter.

Another potential benefit of subclass extraction is an increase in the number of class instances that
KNOWITALL is able to extract from the Web. In the case of the Scientist class, for example, the number of
scientists extracted by KNOWITALL at precision 0.9 increased by a factor of 5.SEiter was used to extract
subclasses and add them to the ontology. We do not see this benefit for classes such as City, where most of

8We didn’t have enough subclasses to instantiate enumeration patterns for City asSEbase only identified one named City
subclass.

26

Method Scientist Film
Precision Recall NW Total Precision Recall NW Total

SEbase 0.91 0.28 0.08 11 1.0 0.36 0.5 8
SEself 0.87 0.69 0.15 27 0.94 0.77 0.82 17
SEiter 0.84 0.74 0.17 29 0.93 0.68 0.8 16

Experiment 6: Results of the 3 Subclass Extraction methods (SEbase, SEself and SEiter) for the
Scientist andFilm classes. For each method, we report Precision, Recall, NW, and Total. Recall
is defined in terms of the union of correct subclasses from all methods. Total is the number of correct sub-
classes found. NW is the proportion of correct subclasses missing from WordNet. The baseline system has
high precision, but low recall. Both extensions to SE increased recall dramatically with only a small drop in
precision.

Method People Organization Product
Precision Recall NW Total Precision Recall NW Total Precision Recall NW Total

SEbase 1.0 0.28 0.07 14 0.92 0.20 0.09 11 0.88 0.44 1.0 31
SEself 1.0 0.86 0.02 42 0.87 0.84 0.36 47 0.86 0.74 1.0 51
SEiter 0.95 0. 94 0.02 46 0.89 0.95 0.22 52 0.84 0.88 1.0 62

Experiment 7: Results for the Pharmaceutical domain of the 3 Subclass Extraction methods (SEbase, SEself

andSEiter). The extensions to SE give a large increase in recall with only a small drop in precision, as they
do with domain-independent experiments.

the extracted subclasses are derived subclasses (e.g., “European City”). The reason is that extraction rules
that use derived subclasses tend to extract a lot of the same instances as the rules using the name of the
superclass (see Table 2).

4.6 Discussion

It is somewhat surprising that simple features such as the number of rules matching a given extraction are
such good predictors of a candidate representing a subclass. We attribute this to the redundancy of Web data
(we were able to find matches for a large number of our instantiated candidate rules) and to the semantics of
the enumeration patterns. The subclass sets fromSEself andSEiter contain many of the same candidates,
althoughSEiter typically picks up a few more.

Another interesting observation is that the different sets of extracted subclasses have widely varying
degrees of overlap with the hyponym information available in WordNet. In fact, all but one of the subclasses
identified for People are in WordNet, whereas none of those Products appear there (e.g., Antibiotics, Anti-
histamines, Compounds, etc.). In the case of Organizations, there is a partial overlap with WordNet and it
is interesting that terms that can refer both to a Person and an Organization (“Supplier”, “Exporter” etc.)
tend to appear only as subclasses of Person in WordNet, although they are usually found as subclasses of
Organizations by KNOWITALL ’s subclass extraction methods.

5 List Extractor

We now present the third method for increasing KNOWITALL ’s recall, the List Extractor (LE). Where the
methods described earlier extract information from unstructured text on Web pages, LE uses regular page
structure to support extraction. LE locates lists of items on Web pages, learns a wrapper on the fly for each

27

list, automatically extracts items from these lists, then sorts the items by the number of lists in which they
appear.

LE locates lists by querying search engines with sets of items extracted by the baseline KNOWITALL

(e.g., LE might query Google with “London” “Paris” “New York” “Rome”). LE leverage the fact that many
informational pages are generated from databases and therefore have a distinct, but regular and easy-to-learn
structure. We combine ideas from previous work done on wrapper induction in our implementation of LE
to learn wrappers quickly (in under a second of CPU time per document) and autonomously (unlike much
of the work on wrapper induction, LE is unsupervised).

5.1 Background and Related Work

One of the first applications of wrapper learning appeared in [16], which describes an agent that queried
online stores with known product names and looked for regularities in the resulting pages in order to build e-
commerce wrappers. In [24], Kushmerick generalized how to automatically learn wrappers for information
extraction, and presented wrappers as regular expressions with some kind of structure or constraints. The
idea is that given a fully labeled training set of sample extractions from documents, one can learn a wrapper
or patterns of words that precede and follow the extracted terms. In addition to the prefixes and suffixes,
there is also a notion of heads and tails, which are points that delimit the context to which the extraction
pattern applies.

The base algorithm for wrapper induction is fairly straightforward. Given fully labeled texts (or oracles)
in which negative examples are those parts without labels, iterate over all possible patterns to find the best
heads, tails, prefixes, and suffixes, that match all the training data, and use these for extraction. The com-
plexity and accuracy depends on the expressiveness of the expressions (i.e. wild cards, semantic/synonym
matches, etc.), the amount of data to learn from, and the level of structure in the documents.

Cohen in [11] extended the notion of wrapper induction by generalizing how to automatically learn rules
to include linear regular expressions as well as hierarchical paths (DOM parse) in an HTML document.
Cohen also explored how to use these wrappers to automatically extract arbitrary lists of related items from
Web pages for other purposes [10]. We borrow both of these ideas in our implementation, but differ in how
our wrapper is trained, used, and measured experimentally.

Perhaps the work that most resembles LE is Google Sets, which is an interface provided by Google
that functionally appears almost identical to LE. The input to Google Sets is several words, and the output
is a list of up to 100 tokens that are found in lists on the Web. Since we do not know how Google Sets
is implemented and cannot get unlimited results from their interface, we are unable to compare the two
systems.

5.2 Problem Definition and Characteristics

The inputs to LE include the name of a class and a set of positive seeds. The output is a set of candidate
tokens for the given class that are found on Web pages containing lists of instances, where the list includes a
subset of the positive seeds. We take advantage of the repetition of information on the Web by being highly
selective on which documents we choose to extract from. In particular, we want documents that contain
many known positive examples and that exhibit a high amount of structure from which we can infer new
examples. It is reasonable to assume that this structure exists for many classes, since many professional Web
sites are automatically generated from databases.

We do not have negative examples, so any learning procedure we use will have to rely on positive
examples only. This means that as we carve out a space that we believe separates the positive instances

28

LISTEXTRACTOR (seedExamples)
documents= searchForDocuments(seedExamples)
For eachdocumentin documents

parseTree= ParseHTML(document)
For eachsubtreein parseTree

keyWords= findAllSeedsInTree(subtree)
prefix= findBestPrefix(keyWords, subtree)
suffix= findBestSuffix(keyWords, subtree)
Add to wrapperTreefrom createWrapper(prefix, suffix))

For eachgoodWrapperin wrapperTree
Find extractionsusinggoodWrapper

Return list of extractions

Figure 14: High-level pseudocode for List Extractor

from the negative ones, we need to make some assumptions or apply some domain specific heuristics to
create a precise information extractor. This is done by analyzing the HTML structure of a document. In
particular, we localize our learning to specific blocks of HTML, and strongly favor complex hypotheses
over less restrictive ones. It is better to under-generalize than to over-generalize. The intuition is that under-
generalizing may result in false negatives for a given document, but that the missed opportunities on one
document are likely to appear again on other documents.

5.3 Algorithm

Now we will discuss the online wrapper induction algorithm outlined in Figure 14. The input to this
algorithm is a set of positive examples (seedExamples at line 1). The output is a list of tokens (extractions).

The first step is to use the seed examples to obtain a set of documents as shown in line 2. This is currently
done by selecting some number of random positive seeds to combine in a query to a search engine such as
Google. One can imagine more sophisticated ways of selecting seeds such as grouping popular or rare
instances together (assuming like-popularity instances are found together), or grouping seeds alphabetically
since lists are often alphabetical on the Web.

We apply the learning and extraction to each document individually. Within a document we further
partition the space based on the HTML tags. This is done by creating a subtree (or single HTML block from
the whole document) for every set of composite tags (such as<table> , <select> , <td> , etc.) that have
a start and end tag and more text and tags in between. Once we have selected an HTML block or subtree of
the parsed HTML, we must first identify all the positive seeds within that block that are the words used in
the search. We may add a threshold to skip and continue with the next block if not enough seeds are found.
At this point we apply the learning to induce a wrapper.

A prefix is some pattern that precedes a token (the seeds in our example). In order to learn the best prefix
pattern for a given block, we consider all the keywords in that block, and find some pattern that maximally
matches all of them. Generally we consider 3 - 10 keywords in a block to learn from (more discussion of this
later). One option is to build a prefix that matches as many exact characters as possible for each keyword
starting from the token and going outwards to the left. A more flexible option is to increase expressiveness
and have wildcards, Boolean characteristics, or semantic/synonym options in the matching, similar to Perl
regular expressions. The former option is too specific to generalize well in almost any context, and the

29

latter is complicated and requires many training examples (probably best for free text with many labeled
examples). We chose a compromise that we believe will work well in the Web domain. First we require that
all characters match up until the first HTML tag. For example,<center>hot Tucson</center> and
<td>hot Phoenix</td> would have a prefix “hot ”. If the text matches up to a tag, then we check if the
tags match. In this case we do not require that the whole tag match - we just require that the tag type be the
same, even though the attributes may differ. This means that for an<a...> tag, two keywords might have a
different “href=...” but still match. The only exception is when we match a text block (or text between tags).
Then these must match among all keywords in order to be included in the prefix. Some sample wrappers
look like (<td><a>TOKEN motels</td>) and (// TOKEN //). The best
prefix is generally considered to be the longest matching prefix. To learn a suffix, we apply the same idea
outwards to the right of the token.

Once a wrapper is learned, we add it to a wrapper tree. The wrapper tree is a hierarchical structure that
resembles the HTML structure. Each wrapper in the wrapper tree corresponds to blocks that subsume or
contain other wrappers and their blocks. This can be useful for later analysis and comparison of wrappers
for a given document in order to choose which wrappers to apply. One heuristic would be to only apply
wrappers that are at the leaves (i.e. smallest HTML block with several keywords). Another heuristic would
be to apply a wrapper only if it did not generalize any further than its children. After all the wrappers have
been constructed and added to the tree, we select the best ones according to such a measure (initialized with
defaults or learned in some way) and apply them to get extractions. Applying a wrapper simply means to
find other sequences in the block that match the pattern completely, and then to extract the specified token.

5.4 Example and Parameters

Keywords: Italy, Japan, Spain, Brazil

1 <html>
2 <body>
3 My favorite countries:
4 <table>
5 <tr><td><a>Italy</td><td><a>Japan</td><td><a>France</td></tr>
6 <tr><td><a>Israel</td><td><a>Spain</td><td><a>Brazil</td></tr>
7 </table>
8 My favorite pets:
9 <table>
10 <tr><td><a>Dog</td><td><a>Cat</td><td><a>Alligator</td></tr>
11 </table>
12 </body>
13 </html>

Wrappers (at least 2 keywords match):
w1 (1 - 13): <td><a>TOKEN</td>
w2 (2 - 12): <td><a>TOKEN</td>
w3 (4 - 7): <td><a>TOKEN</td>
w4 (5 - 5): <td><a>TOKEN</td><td><a>
W5 (6 - 6): </td><td><a>TOKEN</td>

Figure 15: Example HTML with learned wrappers. LE selects wrapper w3 that covers the table from lines
4 to 7 and extracts all the country names without errors. Other wrappers either over-generalize or under-
generalize.

30

We consider a relatively simple example in Figure 15 in order to see how the algorithm works, and to
illustrate the effects of different parameters on precision, recall, overfitting, and generalization. On top we
have the 4 seeds used to search and retrieve the HTML document, and below we have the 5 wrappers learned
from at least 2 keywords and their bounding lines in the HTML.

The first wrapper, w1, is learned for the whole HTML document, and matches all 4 keywords; w2 is
for the body, and is identical to w1, except for the context; w3 has the same wrapper pattern as w1 and w2,
contains all keywords, but has a noticeably different and smaller context (just the single table block); w4 is
interesting because here we see an example of overfitting. The suffix is too long and will not extract France.
We see a similar problem in w5 where the prefix is too long and will not extract Israel.

It is easy to see that the best wrapper is w3; w4 and w5 are too specific; while w2 and w1 are too general.
There are a few heuristics one can apply to prefer wrappers such as w3 over the others. One is to force most
or all keywords to match (in our case, forcing 3 or 4 words to match rather than 2 would not have allowed
w4 or w5). Another is to only consider leaf wrappers. In the case of having at least 2 words match for
a wrapper, this would not help since we would select w4 and w5. However, if we combine selecting leaf
wrappers with matching many key words, we would eliminate w4 and w5 and be left with w3, which is
optimal. The intuition is that generally as we go up the wrapper tree, we generalize our wrappers to a larger
part of the document which is more prone to errors. If we do not force many keywords to match, we get
smaller leaves and may be more precise lower in the tree, but miss out on some of the structure and get less
extractions. Below is a list of some parameters to consider when using this algorithm:

1. Number of keywords to match in a block
2. Selection of wrappers from the wrapper tree (leaves, all, other)
3. Length/complexity of prefix/suffix/both
4. Number of search words to use for retrieving documents
5. Selection of keywords for searching (random, alphabetical, popular/rare together/apart)

5.5 Results

We measured LE on three classes running it for varying number of seeds and queries. We left all parameters
at their default values (meaning the wrappers were fairly selective) and searched for documents using 4
randomly drawn seeds at a time. A sample of the results are shown in Experiment 9.

Class Seeds Queries Extractions Correct % Correct
City 3,000 9,000 190,000 90,000 47%
Film 300 9,000 31,000 24,500 79%
Scientist 50 5,000 65,000 15,000 23%
City 5 1 6,000 4,000 66%

Experiment 8: Results for LE.Seedsis the number of positive examples given as input.Queriesis the
number of times 4 tokens were randomly selected from the seeds to search for documents.Extractionsis the
total number of unique extractions. LE can find large numbers of extractions from relatively few queries.
Correct is the number of extractions in the class before using the Assessor to boost precision.

As Experiment 9 shows, LE is very efficient at finding many correct extractions in a class. In under two
minutes, it took five seeds and found about 4000 correct extractions. Actually this is not very impressive
since some lists were found on pages that contained over 18,000 correct city instances (so thecorrectsearch
query can get much better documents). However, in all cases, there was also a significant amount of junk.
Here are some of the reasons for this:

31

1. Airports, Hotels, Countries, and more junk are often listed with cities
2. Actors, Musicians, and misspellings are often listed with movies
3. Famous people, random names, and other information are often listed with scientists

Intuitively this makes sense as lists and HTML structure in general often group related things together.
Scientists are particularly difficult since they fall into many more general categories.

5.6 Discussion and Future Extensions

Although the percentage correct in all categories may not look very promising, these results are actually
quite good since cutting down the number of candidate tokens from the whole Web to the subsets above
helps the Assessor. Also, there may be many items found in lists and other structures on the Web that are
not found in free text by standard information extraction methods. For example, rare cities found on long
HTML select lists will often not be found in free text.

There are quite a few extensions that can be done to make LE work better. Finding more relevant
documents and lists, perhaps through better selection of seeds, will probably help, since there are clearly
thousands of lists still to be found in all the classes considered here. Making the wrappers more expressive
and learning the best wrapper parameters for each class could help too. For example, movies could use more
flexible matching since the titles sometimes have slightly different orders of words, but are still the same.

6 Experimental Comparison

We conducted a series of experiments to evaluate the effectiveness of Subclass Extraction (SE), Pattern
Learning (PL), and List Extraction (LE) in increasing the recall of the baseline KNOWITALL system on
three classesCity , Scientist , Film . We used the Google API as our search engine. The baseline, SE,
and PL methods assigned a probability of correctness to each instance based on PMI scores; LE assigned
probability based on the number of lists in which an instance was found. We estimated the number of correct
instances extracted by manually tagging samples of the instances grouped by probability, and computed
precisionas the proportion of correct instances at or above a given probability. In addition, in the case
of City , we automatically marked instances as correct when they appeared in the Tipster Gazetteer, and
likewise forFilm and the Internet Movie Database.

We were surprised to find that over half of our correct instances ofCity were not in the Tipster
Gazetteer. The LE method found a total of 78,157 correct extractions forCity , of which 44,611 or 57%
were not in the Tipster Gazetteer. Even if we consider only the high probability extractions, there are still a
large number of cities found by KNOWITALL that are missing from the Tipster Gazetteer: we found 14,645
additional ‘true’ cities at precision .80 and 6,288 ‘true’ cities at precision .90.

Experiments 10, 11, and 12 compare the number of extractions at two precision levels: at precision 0.90
for the baseline KNOWITALL system (B), the baseline combined with each method (PL, SE, LE) and “All”
for the union of instances extracted by B, PL, SE, and LE; and at precision .80 for the bars marked B2, PL2,
SE2, LE2, and All2. In each bar, the instances extracted by the baseline exclusively (B or B2) are the white
portion, and those extracted by both a new method and the baseline are shown in gray. Since each method
begins by running the baseline system, the combined height of the white and gray portions is exactly that of
the B bar in each Figure. Finally, instances extracted by one of this paper’s methods butnot by the baseline
are in black. Thus, the black portion shows the “added value” of our new methods over the baseline system.

In theCity class we see that each of the methods resulted in some improvement over the baseline, but
the methods were dominated by LE, which resulted in more than a 4-fold improvement, and found nearly

32

 B PL SE LE All B2 PL2 SE2 LE2 All2
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Method(s) used

N
um

be
r

of
 In

st
an

ce
s

in baseline
in both
not in baseline

Experiment 9: The number of correct instances ofCity at precision .90 and at precision .80 for baseline
KNOWITALL and extensions to the baseline system. Each extension increased recall, with List Extractor
giving more than a 4-fold improvement.

all the extractions found by other methods. We see very similar results for the classFilm (Experiment 11),
where LE gives a 7-fold improvement at precision .90 and 8-fold improvement at precision .80. We saw
a different behavior for the classScientist (Experiment 12), where SE’s ability to extract subclasses
made it the dominant method, though both PL and LE found useful extractions that SE did not. SE gave
a nearly 5-fold improvement over B forScientist at precision .90 and all methods combined gave a 7-
fold improvement. We believe that SE is particularly powerful for general, naturally decomposable classes
such asPlant , Animal , or Machine where text usually refers to their named subclasses (e.g., Flower,
Mammal, Computer). To use the psychological terminology of [38], we conjecture that text on the Web
refers to instances as elements of “basic level” categories such asFlower much more frequently than as
elements of superordinate ones such asPlant .

While our methods clearly enhance KNOWITALL ’s recall, what impact do they have on its extraction
rate? As an information carnivore, KNOWITALL relies heavily on Web search engines for both extraction
and assessment. Since it would be inappropriate for KNOWITALL to overload these search engines, we limit
the number of queries per minute that KNOWITALL issues to any given search engine. Thus, search engine
queries (with a “courtesy wait” between queries) are the system’s main bottleneck. We measure extraction
rate by the number of unique instances extracted per search engine query. We focus onuniqueextractions
because each of our methods extracts “popular” instances multiple times. Table 3 shows that LE not only
finds five to ten times more extractions than the other methods, but also has an extraction rate overforty
times greaterthan the other methods.

Table 4 shows how the trade-off between recall and precision has major impact on KNOWITALL ’s
performance. For each class and each method, KNOWITALL finds a total number of extractions that is
larger than the number of extractions that it can reliably classify as correct. For example, LE finds a total
of 151,016 extractions forCity that include 78,157 correct cities, for an overall precision of 0.52 before
applying the Assessor. A perfect Assessor would give high probability to all of the correct extractions, and
low probability to all the errors; instead, the set of extractions with precision .80 has only 33,136 correct

33

 B PL SE LE All B2 PL2 SE2 LE2 All2
0

10000

20000

30000

40000

50000

60000

70000

Method(s) used

N
um

be
r

of
 In

st
an

ce
s

in baseline
in both
not in baseline

Experiment 10: Number of correct instances ofFilm at precision .90 and .80. List Extractor gives a 7-fold
increase at precision .90 and an 8-fold increase at precision .80.

 B PL SE LE All B2 PL2 SE2 LE2 All2
0

5000

10000

15000

Method(s) used

N
um

be
r

of
 In

st
an

ce
s

in baseline
in both
not in baseline

Experiment 11: Correct instances ofScientist at precision .90 and .80. For this class, Subclass Ex-
traction gives the greatest improvement, with 5-fold increase over the baseline system at precision .90. All
methods combined give a 7-fold increase.

34

Method Extractions Queries Extraction Rate
B 51,614 391,434 0.132
PL 31,163 273,978 0.114
SE 28,672 255,082 0.112
LE 245,783 45,250 5.432
All 304,557 846,674 0.360

Table 3: The total number of unique extractions by each method, along with the number of queries issued
and the extraction rate (extractions per query). List Extractor not only finds 5 to 10 times as many extractions
as other methods, but has an extraction rate more than 40 times greater.

cities. KNOWITALL has trouble distinguishing many of the correct extractions from the errors.

Class Method Extractions Correct Precision Corr. at Precision .90 Corr. at Precision .80

City B 10,094 8,342 0.83 5,852 8,342
City PL 11,338 7,442 0.66 5,883 6,548
City SE 5,045 3,514 0.70 2,023 2,965
City LE 151,016 78,157 0.52 20,678 33,136

Film B 36,739 21,859 0.59 4,645 7,436
Film PL 15,306 9,755 0.64 2,286 2,648
Film SE 16,820 9,840 0.57 2,286 4,424
Film LE 78,859 61,418 0.72 27,973 55,575

Scientist B 4,781 3,690 0.77 1,599 2,905
Scientist PL 4,519 2,119 0.47 751 1,869
Scientist SE 6,807 6,168 0.91 6,168 6,168
Scientist LE 15,907 10,147 0.64 1,245 3,773

Table 4: The total number of extractions, total number correct, and overall precision for each class and
method. The total number of correct extractions greatly exceeds the number of correct extractions at preci-
sion .80, which suggests that our current Assessor achieves high precision at the cost of a large number of
false negatives.

We were pleasantly surprised that the alternatelist frequencyAssessor method used by LE has perfor-
mance comparable to the PMI method. The PMI probability computation requires a set of search engine
queries to get hit counts for each discriminator for each new extraction, which accounts for most of the
queries in Table 3. LE is more efficient, because it does not use hit counts, but uses a probability computa-
tion that increases monotonically with the number of lists in which an extraction is found. The list frequency
method outperformed the PMI method for the classFilm , finding 70% of the correct films at precision .80
as compared to 34% of correct films at precision .80 for the Baseline system. On the other hand, the PMI
method performed better than the list frequency method for the classesCity , andScientist . This raises
an interesting question of whether a frequency-based probability computation can be devised that is effective
in maintaining high precision, while avoiding a hit count bottleneck.

The variation in overall precision in Table 4 corresponds to variation in effectiveness of the Assessor
in distinguishing correct extractions from noise. The baseline system halted its search for cities while the
overall precision was fairly high, 0.83, because the Assessor was assigning low probability to obscure, but
correct cities and the signal-to-noise ratio fell below 0.10. This was even more pronounced for SE, which
cut off search for more scientists, at an overall precision of 0.91.

35

While each of the methods tested have numerous parameters that influence their performance, we ran
our experiments using the best parameter settings we could find for each method. While the exact results
will vary with different settings, or classes, we are confident that our main observations — the large increase
in recall due to our methods in concert, and an impressive increase in extraction rate due to LE — will be
borne out by additional studies.

7 Related Work

One of KNOWITALL ’s main contributions is adapting Turney’s PMI-IR algorithm [42, 43, 44] to serve as
validation for information extraction. PMI-IR uses search engine hit counts to compute pointwise mutual in-
formation that measures the degree of correlation between a pair of words. Turney used PMI from hit counts
to select among candidate synonyms of a word, and to detect the semantic orientation of a phrase by compar-
ing its PMI with positive words (e.g.“excellent”) and with negative words (e.g.“poor”). Other researchers
have also made use of PMI from hit counts. Magniniet al. [27] validate proposed question-answer pairs for
a QA system by learning “validation patterns” that look for the contexts in which the proposed question and
answer occur in proximity. Uryupina [45] classifies proposed instances of geographical classes by embed-
ding the instance in discriminator phrases much like KNOWITALL ’s, which are then given as features to the
Ripper classifier.

KNOWITALL is distinguished from many Information Extraction (IE) systems by its novel approach to
bootstrap learning, which obviates hand-labeled training examples. Unlike IE systems that use supervised
learning techniques such ashidden Markov models(HMMs) [21], rule learning [40, 7, 8], maximum entropy
[32], or Conditional Random Fields [29], KNOWITALL does not require any manually-tagged training data.

Bootstrap learning is an iterative approach that alternates between learning rules from a set of instances,
and finding instances from a set of rules. This is closely related to co-training [4], which alternately learns
using two orthogonal view of the data. Joneset al. [23] gives a good overview of methods used in bootstrap
learning. IE systems that use bootstrapping include [37, 1, 6, 33, 12, 9]. These systems begin with a
set of hand-tagged seed instances, then alternately learn rules from seeds, and further seeds from rules.
KNOWITALL is unique in not requiring hand-tagged seeds, but instead begins with a domain-independent
set of generic extraction patternsfrom which it induces a set of seed instances. KNOWITALL ’s use of
PMI validation helps overcomes the problem of maintaining high precision, which has plagued previous
bootstrap IE systems.

KNOWITALL is able to use weaker input than previous IE systems because it relies on the scale and
redundancy of the Web for an ample supply of simple sentences. This notion ofredundancy-based extraction
was introduced in Mulder [25] and further articulated in AskMSR [28]. Of course, many previous IE
systems have extracted more complex relational information than KNOWITALL . KNOWITALL is effective
in extractingn-ary relations from the Web, but we have yet to demonstrate this experimentally.

KNOWITALL ’s List Extractor (LE) module uses wrapper induction to look for lists of relevant facts on
Web pages. This uses wrapper techniques developed by Kushmericket al. [24], and extended by Cohen
et al. [11, 10] to learn hierarchical paths (DOM parse) in an HTML document. Perhaps the work that most
resembles LE is Google Sets: the input is several words, and the output is a list of up to 100 tokens that are
found in lists on the Web. Since we do not know how Google Sets is implemented, we are unable to compare
the two systems’ algorithms. However, LE achieves far greater recall than Google Sets, at comparable levels
of precision.

Several previous projects have automated the collection of information from the Web with some success.
Information extraction systems such as Google’s Froogle, Whizbang’s Flipdog, and Elion, collected large

36

bodies of facts but only in carefully circumscribed domains (e.g., job postings), and only after extensive
domain-specific hand tuning. KNOWITALL is both highly automated and domain independent. In fairness,
though, KNOWITALL ’s redundancy-based extraction task is easier than Froogle and Flipdog’s task of ex-
tracting “rare” facts each of which only appears on a single Web page. Semantic tagging systems, notably
SemTag [14], perform a task that is complementary to that of KNOWITALL . SemTag starts with the TAP
knowledge base and computes semantic tags for a large number of Web pages. KNOWITALL ’s task is to
automatically extract the knowledge that SemTag takes as input.

KNOWITALL was inspired, in part, by the WebKB project [13]. However, the two projects rely on very
different architectures and learning techniques. For example, WebKB relies on supervised learning methods
that take as input hand-labeled hypertext regions to classify Web pages, whereas KNOWITALL employs
unsupervised learning methods that extract facts by using search engines to home in on easy-to-understand
sentences scattered throughout the Web.

8 Future Work

There are numerous directions for future work if KNOWITALL is to achieve its ambitious goals. First,
while KNOWITALL can extract n-ary predicates (see, for example, the extraction rule in Figure 9), this
ability has not been tested at scale. In addition, we need to generalize KNOWITALL ’s bootstrapping and
assessment modules as well as its recall-enhancing methods to handle n-ary predicates. Second, we need
to address tricky extraction problems including the word sense disambiguation (e.g., Amazon is both a
river and a bookstore), the extraction of temporally changing facts (e.g., the identity of the president of
the United States is a function of time), the distinction between facts, opinions, and misinformation on the
Web (e.g., Mulder [25], KNOWITALL ’s ancestor, was misled by a page entitled “popular Misconceptions
in Astronomy”), and more. Fourth, we plan to investigate EM and related co-training techniques [4, 34]
to improve the assessment of extracted instances. Finally, several authors have identified the challenges of
moving from today’s Web to the Semantic Web. We plan to investigate whether KNOWITALL ’s extractions
could be used as a source of semantic annotations to Web pages, which would help to make the Semantic
Web real.

The main bottleneck to KNOWITALL ’s scalability is the rate at which it can issue search-engine queries;
While KNOWITALL issues over 100,000 queries to Web search engines daily, it inevitably exhausts the
number of queries it is allowed to issue to any search engine in any given day, which forces it to “rest” until
the next day. In order to overcome this bottleneck, we are incorporating an instance of the Nutch open-
source search engine into KNOWITALL . Our Nutch instance has indexed 60,000,000 Web pages. However,
since our the Nutch index is still one to two orders of magnitude smaller than the indices of commercial
engines, KNOWITALL will continue to depend on external search engines for some queries. Using the
information food chain terminology, incorporating the Nutch instance into KNOWITALL will transform it
from an information carnivore to aninformation omnivore.

We have shown that KNOWITALL ’s PMI-based Assessor is effective at sorting extracted instances by
their likelihood of being correct in order to achieve a reasonable precision/recall tradeoff. However, this
Assessor suffers from two limitations. First, computing PMI necessities several search-engine queries (d+1
queries ford discriminators) for each instance assessed. Second, because PMI scores are combined using a
Naive Bayes Classifier—the probabilities assigned to instances tend to be inaccurate. We are developing a
new Assessor that addresses both problems by computing accurate probability estimates for instances based
on the number of times they repeat in the extraction data, obviating any additional queries. See [17] a formal
treatment of the new Assessor and early experimental results showing that its probability estimates are far

37

more accurate than those of the PMI-based Assessor.
Finally, we have also considered creating a multi-lingual version of KNOWITALL . While its generic

extraction patterns are specific to English, KNOWITALL could bootstrap its way into other languages by
using the patterns to learn instances of a class (e.g., cities in France) and then use its pattern learning module
to learn extraction rules and discriminators in French, which may be particularly effective at extracting
the names of French cities. In fact, we could restrict underlying search engines such as Google to return
only pages in French. KNOWITALL ’s architecture applies directly to multi-lingual extraction — the main
elements that would need to be generalized are the class labels, which are currently in English, and “plug
in” modules such as its part of speech tagger.

9 Conclusions

The bulk of previous work on Information Extraction has been carried out on small corpora using hand-
labeled training examples. The use of hand-labeled training examples has enabled mechanisms such Hidden
Markov Models or Conditional Random Fields to extract information from complex sentences. In contrast,
KNOWITALL ’s focus is onunsupervisedinformation extraction from the Web. KNOWITALL takes as input
a set of predicate names, but no hand-labeled training examples of any kind, and bootstraps its extraction
process from a small set of generic extraction patterns. To achieve high precision, KNOWITALL utilizes a
novel generate-and-test architecture, which relies on mutual-information statistics computed over the Web
corpus.

The paper reports on several experiments that shaped KNOWITALL ’s design. The experiments suggest
general lessons for the designers of unsupervised extraction systems. Experiment 1 showed that KNOW-
ITALL can tolerate up to 10% noise in its bootstrapped training seeds. This noise tolerance is essential to
unsupervised extraction. Experiment 2 showed that negative training seeds for one class can be garnered
from the positive training seeds of related classes (cf. [26]). Finally, Experiment 3 demonstrated the impor-
tance of a well-designed search cutoff metric for both extraction efficiency and precision.

Ourpattern learning(PL),subclass extraction(SE), andlist extraction(LE) methods greatly improve on
the recall of the baseline KNOWITALL system described in [20], while maintaining precision and improving
extraction rate. Experiments 4 through 9 suggest design lessons specific to each method. Experiments 10
through 12 report on the relative performance of the different methods on the classesCity , Film , and
Scientist . Overall, LE gave the greatest improvement, but SE extracted the most newScientists .
Remarkably, we found that LE’s extraction rate was overforty times greaterthan that of the other methods.

Although KNOWITALL is still “young”, it suggests futuristic possibilities for systems that scale up
information extraction, new kinds of search engines based on massive Web-based information extraction,
and the automatic accumulation of large collections of facts to support knowledge-based AI systems.

Acknowledgments

This research was supported in part by NSF grants IIS-0312988 and IIS-0307906, DARPA contract
NBCHD030010, ONR grants N00014-02-1-0324 and N00014-02-1-0932, and a gift from Google. Google
generously allowed us to issue a large number of queries to their XML API to facilitate our experiments.
We thank Jeff Bigham, and Nick Kushmerick for comments on previous drafts, and Bob Doorenbos, Mike
Perkowitz, and Ellen Riloff for helpful discussions.

38

References

[1] E. Agichtein and L. Gravano. Snowball: Extracting Relations from Large Plain-Text Collections. In
Proceedings of the 5th ACM International Conference on Digital Libraries, pages 85–94, San Antonio,
Texas, 2000.

[2] E. Agichtein and L. Gravano. Querying Text Databases for Efficient Information Extraction. InPro-
ceedings of the 19th IEEE International Conference on Data Engineering (ICDE 2003), pages 113–
124, Bangalore, India, 2003.

[3] E. Agichtein, L. Gravano, J. Pavel, V. Sokolova, and A. Voskoboynik. Snowball: A Prototype System
for Extracting Relations from Large Text Collections. InProceedings of the 2001 ACM SIGMOD
International Conference on Management of Data, Santa Barbara, California, 2001.

[4] A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-Training. InProceedings of
the 11th Annual Conference on Computational Learning Theory, pages 92–100, Madison, Wisconsin,
1998.

[5] E. Brill. Some Advances in Rule-Based Part of Speech Tagging. InProceedings of the Twelfth National
Conference on Artificial Intelligence, pages 722–727, Seattle, Washington, 1994.

[6] S. Brin. Extracting Patterns and Relations from the World Wide Web. InWebDB Workshop at 6th
International Conference on Extending Database Technology, EDBT’98, pages 172–183, Valencia,
Spain, 1998.

[7] M.E. Califf and R.J. Mooney. Relational Learning of Pattern-Match Rules for Information Extraction.
In Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing,
pages 6–11, Menlo Park, CA, 1998. AAAI Press.

[8] F. Ciravegna. Adaptive Information Extraction from Text by Rule Induction and Generalisation. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pages
1251–1256, Seattle, Washington, 2001.

[9] F. Ciravegna, A. Dingli, D. Guthrie, and Y. Wilks. Integrating Information to Bootstrap Information
Extraction from Web Sites. InProceedings of the IIWeb Workshop at the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2003), pages 9–14, Acapulco, Mexico, 2003.

[10] W. Cohen and W. Fan. Web-Collaborative Filtering: Recommending Music by Crawling the Web.
Computer Networks (Amsterdam, Netherlands: 1999), 33(1–6):685–698, 2000.

[11] W. Cohen, M. Hurst, and L.S. Jensen. A Flexible Learning System for Wrapping Tables and Lists
in HTML Documents. InProceedings of the 11th International World Wide Web Conference, pages
323–241, Honolulu, Hawaii, 2002.

[12] M. Collins and Y. Singer. Unsupervised Models for Named Entity Classification. InProceedings of
the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, pages 100–111, Maryland, USA, 1999.

[13] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery. Learning
to Construct Knowledge Bases from the World Wide Web.Artificial Intelligence 118(1-2), pages
69–113, 2000.

39

[14] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins,
J. Tomlin, and J. Zien. SemTag and Seeker: Bootstrapping the Semantic Web via Automated Semantic
Annotation. InProceedings of the 12th International Conference on World Wide Web, pages 178–186,
Budapest, Hungary, 2003.

[15] P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Classifier under Zero-One
Loss.Machine Learning, 29:103–130, 1997.

[16] R. Doorenbos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent for the World-Wide
Web. In Proceedings of the First International Conference on Autonomous Agents, pages 39–48,
Marina del Rey, California, 1997.

[17] D. Downey, O. Etzioni, and S. Soderland. A Probabilistic Model of Redundancy in Information Ex-
traction. Submitted for publication.

[18] D. Downey, O. Etzioni, S. Soderland, and D.S. Weld. Learning Text Patterns for Web Information
Extraction and Assessment. InAAAI-04 Workshop on Adaptive Text Extraction and Mining, pages
50–55, 2004.

[19] O. Etzioni. Moving Up the Information Food Chain: Softbots as Information Carnivores. InProceed-
ings of the Thirteenth National Conference on Artificial Intelligence, 1996. Revised version reprinted
in AI Magazine special issue, Summer ’97.

[20] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Web-Scale Information Extraction in KnowItAll. InProceedings of the 13th International
World Wide Web Conference (WWW-04), pages 100–110, New York City, New York, 2004.

[21] D. Freitag and A. McCallum. Information Extraction with HMMs and Shrinkage. InProceedings of
the AAAI-99 Workshop on Machine Learning for Information Extraction, Orlando, Florida, 1999.

[22] M. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. InProceedings of the 14th
International Conference on Computational Linguistics, pages 539–545, Nantes, France, 1992.

[23] R. Jones, R. Ghani, T. Mitchell, and E. Riloff. Active Learning for Information Extraction with Multi-
ple View Feature Sets. InProceedings of the ECML/PKDD-03 Workshop on Adaptive Text Extraction
and Mining, Catvat–Dubrovnik, Croatia, 2003.

[24] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper Induction for Information Extraction. InPro-
ceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages 729–737. San
Francisco, CA: Morgan Kaufmann, 1997.

[25] C. T. Kwok, O. Etzioni, and D. Weld. Scaling Question Answering to the Web.ACM Transactions on
Information Systems (TOIS), 19(3):242–262, 2001.

[26] W. Lin, R. Yangarber, and R. Grishman. Bootstrapped Learning of Semantic Classes from Positive
and Negative Examples. InProceedings of ICML-2003 Workshop on The Continuum from Labeled to
Unlabeled Data, pages 103–111, Washington, D.C, 2003.

[27] B. Magnini, M. Negri, and H. Tanev. Is It the Right Answer? Exploiting Web Redundancy for An-
swer Validation. InProceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 425–432, 2002.

40

[28] M.Banko, E.Brill, S.Dumais, and J.Lin. AskMSR: Question Answering Using the Worldwide Web. In
Proceedings of 2002 AAAI Spring Symposium on Mining Answers from Texts and Knowledge Bases,
pages 7–9, Palo Alto, California, 2002.

[29] A. McCallum. Efficiently Inducing Features of Conditional Random Fields. InProceedings of the
Nineteenth Conference on Uncertainty in Artificial Intelligence, pages 403–410, Acapulco, Mexico,
2003.

[30] I. Muslea, S. Minton, and C. Knoblock. Hierarchical Wrapper Induction for Semistructured Informa-
tion Sources.Autonomous Agents and Multi-Agent Systems, 4(1/2):93–114, 2001.

[31] K. Nigam and R. Ghani. Understanding the Behavior of Co-training. InProceedings of the KDD-2000
Workshop on Text Mining, pages 105–107, Boston, Massachussetts, 2000.

[32] K. Nigam, J. Lafferty, and A. McCallum. Using Maximum Entropy for Text Classification. InProceed-
ings of IJCAI-99 Workshop on Machine Learning for Information Filtering, pages 61–67, Stockholm,
Sweden, 1999.

[33] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to Classify Text from Labeled and Un-
labeled Documents. InProceedings of the 15th Conference of the American Association for Artificial
Intelligence (AAAI-98), pages 792–799, Madison, Wisconsin, 1998.

[34] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text Classification from Labeled and Unlabeled
Documents using EM.Machine Learning, 39(2/3):103–134, 2000.

[35] W. Phillips and E. Riloff. Exploiting Strong Syntactic Heuristics and Co-Training to Learn Seman-
tic Lexicons. InProceedings of the 2002 Conference on Empirical Methods in Natural Language
Processing, pages 125–132, Philadelphia, Pennsylvania, 2002.

[36] D. Ravichandran and D. Hovy. Learning Surface Text Patterns for a Question Answering System.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages
41–47, Philadelphia, Pennsylvania, 2002.

[37] E. Riloff and R. Jones. Learning Dictionaries for Information Extraction by Multi-level Bootstrapping.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages 474–479, 1999.

[38] E. Rosch, C. B. Mervis, W. Gray, D. Johnson, and P. Boyes-Bream. Basic objects in natural categories.
Cognitive Psychology, 3:382–439, 1976.

[39] R. Snow, D. Jurafsky, and A.Y. Ng. Learning Syntactic Patterns for Automatic Hypernym Discovery. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors,Advances in Neural Information Processing
Systems 17. MIT Press, Cambridge, MA, 2005.

[40] S. Soderland. Learning Information Extraction Rules for Semi-structured and Free Text.Machine
Learning, 34(1–3):233–272, 1999.

[41] M. Thelen and E. Riloff. A Bootstrapping Method for Learning Semantic Lexicons using Extraction
Pattern Contexts. InProceedings of the 2002 Conference on Empirical Methods in NLP, pages 214–
221, Philadelphia, Pennsylvania, 2002.

41

[42] P. D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. InProceedings of the
Twelfth European Conference on Machine Learning, pages 491–502, Freiburg, Germany, 2001.

[43] P.D. Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classifi-
cation of Reviews. InProceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 129–159, Philadelphia, Pennsylvania, 2002.

[44] P.D. Turney and M. Littman. Measuring Praise and Criticism: Inference of Semantic Orientation from
Association.ACM Transactions on Information Systems (TOIS), 21(4):315–346, 2003.

[45] O. Uryupina. Semi-Supervised Learning of Geographical References within Text. InProceedings of
the NAACL-03 Workshop on the Analysis of Geographic References, pages 21–29, Edmonton, Canada,
2003.

42

