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Abstract—Rapidly processing text data is critical for many
technical and business applications. Traditional software-based
tools for processing large text corpora use memory bandwidth
inefficiently due to software overheads and thus fall far short
of peak scan rates possible on modern memory systems. Prior
hardware designs generally target I/O rather than memory band-
width. In this paper, we present HARE, a hardware accelerator
for matching regular expressions against large in-memory logs.
HARE comprises a stall-free hardware pipeline that scans input
data at a fixed rate, examining multiple characters from a single
input stream in parallel in a single accelerator clock cycle.

We describe a 1GHz 32-character-wide HARE design targeting
ASIC implementation that processes data at 32 GB/s—matching
modern memory bandwidths. This ASIC design outperforms
software solutions by as much as two orders of magnitude. We
further demonstrate a scaled-down FPGA proof-of-concept that
operates at 100MHz with 4-wide parallelism (400 MB/s). Even at
this reduced rate, the prototype outperforms grep by 1.5-20× on
commonly used regular expressions.

Keywords — regular expression matching, text processing,
finite automata

I. INTRODUCTION

Fast analysis of unstructured textual data, such as system
logs, social media posts, emails, or news articles, is growing
ever more important in technical and business data analytics
applications [26]. Nearly 85% of business data is in the form
of unstructured textual logs [5]. Rapidly extracting information
from these text sources can be critical for business decision
making. For instance, a business might analyze trends in social
media posts to better target their advertising budgets.

Regular expressions (regexps) provide a powerful and flex-
ible approach for processing text and unstructured data [3].
Historically, tools for regexp processing have been designed
to match disk or network [21] bandwidth. As we will show,
the most widely used regexp scanning tool, grep, typically
achieves at most 100-300 MB/s scanning bandwidth on mod-
ern servers—a tiny fraction of available memory bandwidth.
However, the wide availability of cheap DRAM and upcoming
NVRAM [2] allows many important data corpora to be stored
entirely in high-bandwidth memory. Data management sys-
tems are being redesigned for in-memory datasets [22], [31].
Text processing solutions, and especially regexp processing,
require a similar redesign to match the bandwidth available in
modern system architectures.

Conventional software solutions for regexp processing are
inefficient because they rely on finite automata [18]. The large
transition tables of these automata lead to high access latencies
to consume an input character and advance to the next state.
Moreover, automata are inherently sequential [8]—they are
designed to consume only a single input character per step.
Straight-forward parallelization to multi-character inputs leads
to exponential growth in the state space [19].

A common approach to parallelize regexp scans is to shard
the input into multiple streams that are scanned in parallel
on different cores [17], [23], [25]. However, the scan rate of
each individual core is so poor (especially when scanning for
several regexps concurrently) that even the large core counts of
upcoming multicore server processors fall short of saturating
memory bandwidth [33]. Moreover, such scans are highly
energy inefficient. Other work seeks to use SIMD parallelism
[11], [27] to accelerate regexp processing, but achieves only
modest 2×-3× speedups over non-SIMD software.

Instead, our recent work on the HAWK text scan acceler-
ator [33] has identified a strategy to scan text corpora using
finite state automata at the full bandwidth of modern memory
systems, and has been demonstrated for scan rates as high
as 32 giga-characters per second (GC/s; 256 Gbit/s). HAWK
relies on three ideas: (1) a fully-pipelined hardware scan
accelerator that does not stall, assuring a fixed scan rate, (2) the
use of bit-split finite state automata [32] to compress classic
deterministic finite automata for string matching [7] to fit in
on-chip lookup tables, and (3) a scheme to efficiently gener-
alize these automata to process a window of characters each
step by padding search strings with wildcards. We elaborate
on these prior ideas in Section III.

HAWK suffers from two critical deficiencies: (1) it can
only scan for exact string matches and fixed-length patterns
containing single-character (.) wildcards, and (2) it is unable
to process Kleene operators (+, *), alternation (|,?), and
character classes ([a-z]), which are ubiquitous in practical
text and network packet processing [3], [4]. These restrictions
arise because HAWK’s strategy for processing multiple input
characters in each automaton step cannot cope with variable-
length matches.

We propose HARE, the Hardware Accelerator for Regular
Expressions, which extends the HAWK architecture to a broad
class of regexps. HARE maintains HAWK’s stall-free pipeline978-1-5090-3508-3/16/$31.00 © 2016 IEEE



design, operating at a fixed 32 GC/s scan rate, regardless
of the regexps for which it scans or input text it processes.
Similar to HAWK, we target a throughput of 32GB/s because
it is a convenient power-of-two and representative of future
DDR3 or DDR4 memory systems. HARE extends HAWK in
two key ways. First, it supports character classes by adding
a new pipeline stage that detects in which character classes
the input characters lie, extending HAWK’s bit-split automata
with additional bits to represent these classes. Second, it uses
a counter-based mechanism to implement regexp quantifiers,
such as the Kleene Star (*), that match repeating characters.
The combination of repetition and character classes presents
a particular challenge when consecutive classes accept over-
lapping sets of characters, as some inputs may match an
expression in multiple ways.

We evaluate HARE through:
• An ASIC RTL implementation of a stall-free HARE

pipeline operating at 1GHz and processing 32 characters per
cycle, synthesized using a commercial 45nm design library.
We show that HARE can indeed saturate a 32GB/s memory
bandwidth—performance far superior to existing software
and hardware approaches.
• A scaled-down FPGA prototype operating at 100 MHz

processing 4 characters per cycle. We show that even
this scaled-down prototype outperforms traditional software
solutions like grep.

II. OVERVIEW

HARE seeks to scan in-memory text corpora for a set of
regexps while fully exploiting available memory bandwidth.

A. Preliminaries

HARE builds on the previous HAWK architecture [33],
which provides a strategy for processing character windows
without an explosion in the size of the required automata.
HARE extends this paradigm to support two challenging fea-
tures of regular expressions: character classes and quantifiers.

HARE is not able to process all regular expressions as
no fixed-scan-rate accelerator can do so; some expressions
inherently require either backtracking or prohibitive automata
constructions, such as determinization. Moreover, when allow-
ing combinations of features, such as Kleene star and bounded
repetitions, even building a non-deterministic automaton can
incur an exponential blowup [29].

We extend HAWK to support character classes, alternations,
Kleene operators, bounded repetitions, and optional quanti-
fiers. HARE allows Kleene (+,*) operators to be applied only
to single characters (or classes/wild-cards) and not multi-
character sub-expressions. Nevertheless, we demonstrate that
this subset of regexps covers the majority of real-world regexp
use cases.

B. Design Overview

HARE’s design comprises a stall-free hardware pipeline and
a software compiler. The compiler transforms a set of regexps
into state transition tables for the automata that implement the

matching process and configures other aspects of the hardware
pipeline, such as look-up tables used for character classes and
the configuration of various pipeline stages.

Figure 1 depicts a high-level block diagram of HARE’s
hardware pipeline. The figure depicts HARE as a six logical
stages, where input text originates in main memory and
matches are emitted to post-processing software (via a ring-
buffer in memory). Note that individual logical stages are
pipelined over multiple clock cycles to meet timing con-
straints. The two stages marked in orange (Character Class
Unit, CCU; and Counter-based Reduction Unit, CRU) are
newly added in HARE and provide the functionality to support
regexps; the remaining stages are similar to units present in the
HAWK baseline, which can match only fixed-length strings.

A HARE accelerator instance is parameterized by its
width W , the number of input characters it processes per
cycle. HARE streams data from main memory, using simple
stream buffers to manage contention with other cores/units.
W incoming characters are first processed by the CCU, which
uses compact look-up tables to determine to which of |C| pre-
compiled character classes (those appearing in the input reg-
exp) the input characters belong. The CCU outputs the original
input characters (W×8 bits) augmented with additional W×|C|
bits indicating if each input character belongs to a particular
character class.

The Pattern Automata perform the actual matching, navi-
gating the set of automata constructed by the HARE compiler
to match the sub-expressions of the input regexp. To make
the state transition tables tractable, the Pattern Automata rely
on the concept of bit-split state machines [32], wherein each
pattern automaton searches for matches using only a subset
of the bits of each input character. Bit-split state machines
reduce the number of outgoing transition edges (to two in
the case of single-bit automata) per state, drastically reducing
storage requirements while facilitating fixed-latency lookups.
We detail the bit-split concept and how we extend it to handle
character classes in Section III-B.

Each pattern automaton outputs a bit vector indicating
strings that may have matched at each input position, for the
subset of bits examined by that automaton in the present cycle.
These bit vectors are called partial match vectors or PMVs.
A sub-expression of the regexp matches in the input text only
if it is matched in all partial match vectors. The Intermediate
Match Unit computes the intersection of all PMVs, called the
intermediate match vector or IMV, using a tree of AND gates.

HAWK is only able to match fixed-length strings. Variable
length matches pose a problem because they thwart HAWK’s
strategy for addressing the multiple possible alignments of
each search string with respect to the window of W characters
processed in each cycle. The central innovation of HARE is
to split each regexp into multiple fixed-length sub-expressions
called components and match the components separately using
the pattern automata and intermediate match unit. The next
stage, the Counter-based Reduction Unit, combines separate
matches of the components and resolves ambiguities that
arise due to concatenated character classes to determine a
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Fig. 1: HARE block diagram. The hardware pipeline enables stall-free processing of regexps. Shaded components are newly added relative
to the baseline HAWK design.
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Fig. 2: An Aho-Corasick Pattern Matching Automaton. Automa-
ton for search patterns he, hers, his, and she. States 2, 5, 7, and 9
are accepting.

final match. This stage also allows it to handle Kleene (+,*),
and bounded repetition ({a,b}) quantifiers in the presence of
(potentially overlapping) character classes. Quantifiers pose a
challenge because they can match a variable number of input
characters. We elaborate on these issues in in Section III-D

III. FROM HAWK TO HARE

HARE builds on HAWK [33], which itself builds on the
Aho-Corasick algorithm [7] for matching strings.

A. Aho-Corasick algorithm

The Aho-Corasick algorithm [7] is widely used for locating
multiple strings (denoted by the set S) in a single scan of
a text corpus. The algorithm centers around constructing a
deterministic finite automaton for matching S. Each state in
the automaton represents the longest prefix of strings in S that
match the recently consumed characters in the input text. The
state transitions that extend a match form a trie (prefix tree) of
all strings accepted by the automaton. The automaton also has
a set of accepting states that consume the last character of a
string; an accepting state may emit multiple matches if several
strings share a common suffix. Figure 2 illustrates an Aho-
Corasick automaton that accepts the strings {he,she,his,hers}
(transitions that do not extend a match are omitted).

The classic Aho-Corasick automaton is a poor match for
hardware acceleration, due to two key flaws:
• High storage requirement: The storage requirements of
the state transitions overwhelm on-chip resources. To facilitate
fixed-latency next-state lookup (essential to achieve a stall-free
hardware pipeline), transitions must be encoded in a lookup
table. The size of the required lookup table is the product

of the number of states |S| and the alphabet size |α|, which
rapidly becomes prohibitive for an ASCII text.
• One character per step: In the classic formulation, the Aho-
Corasick automaton consumes only a single character per step.
Hence, meeting our performance goal of saturating memory
bandwidth (32GBps) either requires an infeasible 32-GHz
clock frequency or consuming multiple characters per step.
One can scale the classic algorithm by building an automaton
that processes digrams, trigrams, W -grams, etc. However, the
number of outgoing transition edges from an automaton grows
exponentially in the width W , yielding |α|W transition edges
per state. Constructing and storing such an automaton for even
modest W is not feasible.

B. Bit-split Automata

HAWK overcomes the storage challenge of the classic Aho-
Corasick automaton using bit-split automata [32]. This method
splits an Aho-Corasick automaton that consumes one character
per step into an array of automata that operate in parallel
and each consume only a subset of the bit positions of each
input character. The state of each bit-split automaton now
represents the longest matching prefix for its assigned bit
positions, and its output function indicates the set of possibly
matching strings; HAWK represents this set as a bit vector
called a partial match vector (PMV). The output function
of the original Aho-Corasick automaton is the disjunction of
these PMVs, which HAWK implements via a tree of AND
gates in its Intermediate Match Unit.

The bit-split technique reduces the number of outgoing
edges per state. In HAWK, each automaton examines only
a single input bit, hence, there are only two transition edges
per state, which are easy to store in a deterministic-latency
lookup table.

C. Scaling to W > 1

The bit-split technique drastically reduces storage, but still
consumes only a single character per machine step. The
primary contribution of HAWK is to extend this concept
to consume a window of W = 32 characters per step, to
search for |S| strings using an array of |S|×W 1-bit automata
operating in lock-step.

The key challenge to processing W characters per step is to
account for the arbitrary alignment of each search string with



respect to the window of W positions. For example, consider
an input search string he in input text heatthen, processed four
characters at a time. While he begins at the first position in first
four-character window (heat), it begins at the second position
in the second window (then).

HAWK addresses this challenge by rewriting each search
string into W strings corresponding to the W possible align-
ments of the original string with respect to the window,
padding each possible alignment with wildcard (.) characters
to a length that is a multiple of W . For example, for the string
he and W = 4, HAWK will configure the hardware to search
concurrently for <he..>,<.he.>, <..he>, and <...h e...>.

D. Challenges of Regexps

HAWK’s hardware is sufficient to search for exact
string matches and single-character (.) wildcards. However,
HAWK’s alignment/padding strategy is thwarted by regular
expression quantifiers, because quantifiers may match a vari-
able number of characters. To generalize HAWK’s padding
strategy in a straight-forward way, we must rewrite a single
regexp containing a quantifier (e.g., ab*c) to consider all
possible alignments of the prefix and all possible widths of the
quantifier sub-expression, which rapidly leads to an infeasible
combinatorial explosion.

HAWK’s approach is further confounded by character
classes, especially in cases involving multiple character
classes. Consider, for example, the regular expression [a-f][o-
r]ray can match six characters in the first position (characters
a to f ) and four characters in the second position (characters
o to r). HAWK needs to enumerate the characters within the
range of a character class to create all possible strings the
character class can potentially match—24 patterns in the above
example.

IV. HARE DESIGN

We now describe the details of HARE’s compilation steps
and hardware units. We refer readers to [33] for the details of
constructing bit-split automata and microarchitectural details
of the pattern automata and intermediate match unit, which
we only summarize here.

A. HARE Compiler

HARE’s compiler translates a set of regexps into configura-
tions for each of its stages. The compilation process proceeds
in four steps: (1) split components, (2) compute precedence
vectors and repetition bounds, (3) compile character classes,
and (4) generate bit-split machines. Then, HARE invokes
HAWK’s existing compilation steps to construct bit-split au-
tomata and generate a bit stream to load into the accelerator.
We describe the new compilation steps for regular expressions.

1) Component splitting: As previously noted, HAWK’s
string padding solution, which enables it to recognize matches
that are arbitrarily aligned to the W character window scanned
in each cycle, does not generalize to sub-expressions of a
regexp that may match a variable number of characters.

Instead of pre-constructing an exponential number of pattern
alignments, a key idea in HARE is to instead search for

smaller, fixed-length sub-expressions of a regexp separately
(and concurrently) and then confirm if the partial matches
are concatenated (and possibly repeated) in a sequence that
comprises a complete match. So, the first step of compilation
is to split a regexp into a sequence of such sub-expressions,
which we call components. The baseline HAWK is already
able to scan for multiple fixed-length strings at arbitrary
alignments; HARE configures it to search concurrently for all
components comprising a regexp. The HARE compiler splits a
regexp at the start and end of the operand of every quantifier
(?, *, +, {a,b}) and alternation (|). (As previously noted,
HARE does not support repetition operators applied to multi-
character sequences).

Consider the example regexp abc+de, containing a Kleene
Plus operator. The compiler splits the regexp at the operand of
the Kleene Plus, c, resulting in three components ab, c, and
de. The pattern automata are configured to search separately
for these components (at all alignments). After reduction in
the intermediate match unit, each IMV bit corresponds to a
particular component detected at a particular alignment. These
IMV bits are then processed in the counter-based reduction
unit to identify matches of the full expression.

2) Compute precedence vectors: To locate a complete
regexp match, HARE checks that components occur in the
input stream in a sequence accepted by the regexp. As a regexp
is split into multiple components, the compiler maintains
a precedence vector that indicates which components may
precede a given component in a valid match. The precedence
vector for the first component is the empty set. Subsequent
components include in their precedence vector all components
that may precede them in a legal match. For example, a
component following an optional (?) operator includes both
the optional component and its predecessor in its precedence
vector. We enumerate the rules for computing precedence
vectors for each operator below. Along with the precedence
vector, the compiler also records an upper and lower repetition
bound for each component. For literal components (i.e., not
a quantifier operand), the bounds are simply [1,1], otherwise,
the bounds are determined by the quantifier.

Together, the precedence vectors and repetition bounds are
used by the CRU to determine if a sequence of components
(represented in the stream of IMVs consumed by the unit) con-
stitutes a match. We next outline how to compute precedence
vectors and repetition bounds for each operator.
• Alternation – An alternation operator (|) indicates that mul-
tiple components may occur at the same position in a matching
input. The precedence vector for a component following an
alternation includes all alternatives. For instance, for a regexp
gr(e|a)y consisting of components gr, e, a and y, either
component e or component a can appear after component gr.
So, the precedence vectors for components e and a include
component gr, while the vector for component y includes both
components e and a. The lower and upper bounds for each
alternative are determined by their sub-expressions (e.g., [1,1]
for literals).
• Optional quantifier – A component followed by an optional



quantifier can appear zero or one time. The successor of an
optional component includes the optional component and its
predecessor in its precedence vector. For example, for regexp
ab?c, consisting of components a, b, and c, the precedence
vector for b includes only a. However, the precedence vector
for c includes both a and b. The bounds for optional compo-
nents are [1,1]. Note that the minimum bound for component
b is not zero; if the component appears, it must appear at least
once. The possibility that the component b may not appear is
reflected in the precedence vector of component c.
• Bounded repetition quantifier – A bounded repetition
quantifier sets a range of allowed consecutive occurrences of
a component. For instance, the expression ab{2,4}c matches
an input text starting with a followed by two, three, or four
consecutive occurrences of b and finally terminating with c.
Since all the components must appear at least once in the
sequence, the precedence vector for each component includes
only its immediate predecessor. The min and max bounds
of component b are configured to match the bounds of the
repetition quantifier i.e. [2,4]. Our implementation constrains
bounds to a maximum of 256 to limit the width of the counters
in the counter-based reduction unit.
• Kleene Plus – The operand of a Kleene Plus must appear
one or more times in a match. Hence, each component’s
precedence vector includes only its immediate antecedent.
For the earlier example abc+de, the precedence vector of c
includes only ab and de includes only c. The max bound of
a Kleene Plus operand is set to a special value indicating an
unbounded number of repetitions. So, the min and max bound
on components ab and de are [1,1], whereas, for c the bounds
are [1,inf].
• Kleene Star – A Kleene Star (*), which matches a
component zero or more times, is handled as if it were a
Kleene Plus followed by an optional quantifier ((+)?). So, the
precedence vector of its successor component includes it and
its predecessor. In a regexp ab*c, the component c can either
follow one or more repetitions of component b or a single
instance of component a. Its precedence vector thus includes
both the components a and b. Like the Kleene Plus, the bounds
for the operand of a Kleene Star are set to [1,inf]. As with
optional components, the minimum bound of component b is
not zero; if the component appears, it appears at least once.

3) Compiling character classes: Character classes define
sets of characters that may match at a particular input position.
For instance, the regexp tr[a-u]ck matches ASCII characters
between a and u at the third position, including strings track
and truck. The naive approach of expanding character classes
by enumerating all the characters in the character class range
and matching all such patterns separately rapidly leads to
blowup in the size of the automata. Bit-split automata, as used
in HAWK, provide no direct support for character classes and
must resort to such alternation.

We observe that we can augment the eight bit-split automata
that process a single character with additional automata that
process arbitrary Boolean conditions, for example, whether a
character belongs to a particular character class. We determine

tr[a-u]ck
gr[ae]y

. . [a-u] . .

. . [ae] .
tr.ck
gr.y

. . [a-u] . . . . .

. . . [a-u] . . . .

. . . . [a-u] . . .

. . . . . [a-u] . .

. . [ae] . 

. . . [ae] . . . .

. . . . [ae] . . .

. . . . . [ae] . .

tr.ck . . .
. tr.ck . .
. . tr.ck .
. . . tr.ck

gr.y
. gr.y . .
. . gr.y .
. . . gr.y

0 1 1 1 1 0 0 1

List of components |S|

Parallel sets of components with 
and without character classes are 
created.

Each set of components is padded 
to obtain |S|xW components to 
account for an alignment across a 
W -character window 

Each bit of the padded components 
is mapped to the corresponding bit-
split machine.

Fig. 3: Compiling components containing character classes. The
components containing character classes are split in two, separating
character classes from literals. These sets are separately padded and
compiled to create bit-split automata.

if an ASCII character belongs to a class using a simple
lookup table in HARE’s CCU. For each character class in
the regexp, the compiler emits a 256-bit vector, wherein a
given bit is set if the corresponding ASCII character belongs
to the class. For instance, for the character class [a-u], bits
97 (corresponding to a) through 117 (corresponding to u) are
set. These vectors are programmed into HARE’s CCU, which
outputs a one when a character falls within the class. Note
that our scheme can be readily extended to Unicode character
ranges by replacing the lookup table with range comparators.

Next, HARE breaks components containing character
classes into two separate components, one comprising only
literal characters, where character classes are replaced with
single-character (.) wildcards, and the second comprising
only character classes, with literals replaced by wild cards.
Figure 3 illustrates the process of breaking and padding (for
a 4-wide accelerator) these components for two example
regexps including character classes. The regexps tr[a-u]ck
and gr[ae]y consist of only a single component as they do
not have any operators. The literal components are encoded
in pattern automata exactly as in HAWK. The character class
component uses the additional pattern automata that receive
the output of the CCU. Both patterns are then padded for all
possible alignments, as in the HAWK baseline.

Note that the main complexity of character classes arises
in regexps where classes with overlapping character sets may
occur at the same position in matching inputs (e.g., due to an
alternation or Kleene operator). Placing classes into separate
components facilitates their handling in the reduction stage.

4) Generate bit-split state machines: Once the two sets of
components (one comprising only literal characters, the other
comprising character classes) are generated, HARE’s compiler
invokes HAWK’s algorithm to generate the bit-split machines
processing W -characters per clock cycle. As illustrated in
Figure 3, the two sets of components are padded front and
back with wildcard characters to account for their alignment
within a W -character window. The compiler then generates



bit-split automata for the padded components according to the
algorithm proposed by Tan and Sherwood [32].

B. HARE Hardware Units

We next describe the microarchitecture of HARE’s hardware
pipeline, as depicted in Figure 1 and Figure 4.

1) Character Class Unit: Figure 4 (top) illustrates the
character class unit (CCU). For each character class used in a
regexp, the HARE compiler emits a 256-bit vector indicating
which characters belong to the class. These vectors are pro-
grammed into a W -ported lookup table in the CCU. We denote
the number of classes supported by the unit as |C|. Each
of the W characters that enter the accelerator pipeline each
clock cycle probes the lookup table and reads a |C|-bit vector
indicating to which classes, if any, that character belongs.
These |C|-bit vectors augment the 8-bit ASCII encodings of
each character and all are passed to the pattern automata units.

2) Pattern Automata: As described in Section III-C,
HAWK provisions W×8 bit-split automata to process a W -
wide window of 8-bit ASCII characters each clock cycle.
These automata emit W×8 partial match vectors indicating
which components may match at that input position. The
PMVs are each |S|×W bits long, where |S| represents the
number of distinct components the accelerator can simultane-
ously match (our implementations use |S|=64). The PMVs are
then output to the intermediate match unit.

HARE adds W×|C| automata units to process the output
of the CCU. These automata store the transition tables for
character class components constructed as described in Section
IV-A3, emitting additional PMVs representing the potential
character class matches to the intermediate match unit. The
(8+|C|)×W bit-split automata operate in lock-step, consuming
the same window of W characters, and emit (8+|C|)×W
PMVs comprising |S|×W bits each. Figure 4 (middle) illus-
trates the pattern automata. Each cycle, an automaton consults
the transition table stored in its local memory to compute the
next state and corresponding PMV to emit, based on whether it
consumed a zero or one. We refer readers to [33] for additional
microarchitectural details of the pattern automata, which are
unchanged in HARE.

3) Intermediate Match Unit: The intermediate match unit
(IMU), as illustrated in Figure 4 (bottom), combines partial
matches produced by the W lanes of the pattern automata to
produce a final match. The W×(8+|C|) PMVs are intersected
(bitwise AND) to yield an intermediate match vector (IMV)
of |S|×W bits. Each bit in the IMV indicates that a particular
component has been matched by all automata at a specific
location within the W -character window.

4) Counter-based reduction unit: The counter-based re-
duction unit (CRU): (1) determines if components appear in
a sequence accepted by the regexp, (2) counts consecutive
repetitions of a component, (3) resolves ambiguities among
consecutive character classes that accept overlapping sets of
characters, and (4) determines if the repetition counts for the
components fall within the bounds set by the HARE compiler.
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Fig. 4: Accelerator sub-units. The character class unit compares
the input characters to the pre-compiled character classes, pattern
automata processes the bit streams to generate PMVs which are later
reduced by IMU to compute component match.

Our CRU design leverages the min-max counter-based al-
gorithm proposed by Wang et al [35], which was designed
to address character class ambiguities (3). Their algorithm
consumes a single input character per step; we extend it to
accept W -character windows per step and handle alternation
operators and multi-character components. Throughout our
discussion, we refer to Figure 5, which depicts the unit and
an example of a complex expression that includes several of
the subtle issues the CRU must address.

The input to the CRU in each clock cycle is the intermediate
match vector produced by the intermediate match unit. IMVi,j
is a bit matrix comprising |S| rows, one per component j in
the regexp, and W columns, one per position i in the input
window. IMVi,j is set if a component has been detected to
end at that input position. A new IMV matrix arrives each
clock cycle. Figure 5 (top) illustrates arriving IMV s for |S|=5,
W=4, and two clock cycles.

Internally, the CRU maintains three kinds of state, depicted
in the remaining parts of Figure 5.

Two matrices of counter-enable signals MAX ENi,j and
MIN ENi,j account for the relationship between consecutive
components. They track whether component j respectively
may or must consume input character i to extend a match,
based on the input consumed by preceding components.
Loosely, if component j − 1 matches at position i − 1, or



component j consumed character i − 1, then these signals
indicate that component j may consume character i. In our
initial explanation, we assume that the precedence vector for
component j includes only component j − 1, and relax this
restriction later.

The two matrices {MINi,j ,MAXi,j} of counters indicate
respectively the minimum number of repetitions that must be
consumed and the maximum number of repetitions that may
be consumed by component j to extend a match to position i.
These repetition counts must be represented as a range, rather
than an exact count, to handle adjacent character classes that
accept overlapping character sets. In general, it is not known
which input characters correspond to which components until
a match is complete. Indeed, the CRU does not actually assign
input characters to particular components as some regexps can
match a given pattern in multiple ways. Rather, it determines
if any match is possible.

Finally, a set of regexp match vectors RMVi,j track if the
regexp matches up to and including component j at position
i. RMVi,j is set if MAXi,j is above the lower repetition
bound for component j and MINi,j is below the upper bound,
indicating that there is a feasible mapping of the input to
components up to the ith character. A regexp matches at
position i when the RMVi,j for the final component j is set.

Min-max matching for W > 1. We first describe our
generalization of Wang’s algorithm for min-max matching
for W > 1, with reference to Algorithm 1. The min-max
matching algorithm can match regexps containing a sequence
of consecutive character classes when the character classes
accept overlapping character sets. We describe the algorithm
assuming precedence vectors form a strict chain (i.e., no
*,|,? operators), and with only single-character components.
We then remove these restrictions.

Consider a sequence of (potentially repeated) character
classes CC1...CCn, such as [a-d]{2,4}[abe]{2,3}. This
expression is challenging because some input texts can match
the expression in multiple ways and it is generally impossible
to assign input characters to specific components incrementally
as the input is consumed. For example, the input adbceb
can be matched by assigning adbc to CC1 and eb to CC2.
However, a scheme that incrementally assigns characters might
match ad to CC1 and attempt to match bce to CC2, at which
point the match cannot be extended. The min-max algorithm
resolves such ambiguous matches.

Initialization. (Lines 1-4). All counters, counter-enable, and
RMV are initialized to zero, and the lower and upper bounds
BL and BU for each component are initialized based on the
bounds emitted by the HARE compiler. Each clock cycle,
IMVi,j arrives from the intermediate match unit indicating
components 0 <= j < |S| ending at positions 0 <= i < W .

Determine counter-enables. (Lines 5-10). The counter-
enable step captures the relationship between consecutive
components and determines if the character at position i
can potentially extend a match. More precisely, it determines
if character at position i may potentially be consumed by
component j based on whether the preceding input through

Algorithm 1 Algorithm for computing regexp match using
counter-based reduction unit.
Input: Intermediate Match Vector IMV, number of components |S|, architecture width
W, lower bounds BL, and upper bounds BU
Output: Regexp match vector RMV .
1: MIN EN = [[0 from 0 to |S|-1] from 0 to W-1]
2: MAX EN = [[0 from 0 to |S|-1] from 0 to W-1]
3: MIN = [[0 from 0 to |S|-1] from 0 to W-1]
4: MAX = [[0 from 0 to |S|-1] from 0 to W-1]
5: for i = 1 to W-1 do
6: for j = 1 to |S|-1 do
7: MIN EN[i][j] = RMV[i-1][j-1] || MIN[i-1][j] > 0
8: MAX EN[i][j] = RMV[i-1][j-1] || MAX[i-1][j] > 0
9: end for

10: end for
11:
12: for i = 1 to W-1 do
13: for j = 1 to |S|-1 do
14: if MIN EN[i][j] & IMV[i][j] then
15: MIN[i][j] = RMV[i][j-1] ? MIN[i-1][j] + 1 : 0
16: end if
17: end for
18: end for
19:
20: for i = 1 to W-1 do
21: for j = 1 to |S|-1 do
22: if MAX EN[i][j] & IMV[i][j] then
23: MAX[i][j] = MAX[i-1][j] + 1
24: end if
25: end for
26: end for
27:
28: for i = 1 to W-1 do
29: for j = 1 to |S| do
30: RMV[i][j] = MAX[i][j] >= BL[i][j] & MIN[i][j] <= BU[i][j]
31: end for
32: end for

i − 1 matches the preceding regexp components up to (and
possibly including) j. If RMVi−1,j−1 is set, then component
j − 1 matches through position i − 1, hence, character i
may be the first occurrence of component j. Alternatively,
if character at position i− 1 was consumed by j, then i may
be an additional repetition extending the match of component
j. Note that the RMV for j = −1 is considered to be set at
all positions in the input, meaning that first component j = 0
may begin at any position.

Update minimum counts. (Lines 12-18). The minimum
counts MINi,j reflect the count of characters that must be
consumed by component j because they cannot be consumed
by the preceding component j − 1. If MIN ENi,j is set,
then character i may be consumed by j. If IMVi,j is set, then
i belongs to the character class of component j. However, if
character i may also be consumed by the preceding component
j − 1, as reflected by RMVi,j−1, then it is not necessary
for component j to consume the character and MINi,j is
reset, else it is incremented. The min counter, therefore, always
reflects the fewest characters that can be accounted for by
repetitions of component j.

Update maximum counts. (Lines 20-26) The max coun-
ters, on the other hand, reflect the largest number of char-
acters that could be consumed by component j. As above,
MAX ENi,j indicates if character i may be consumed by j,
and IMVi,j indicates if the character matches component j.
If both conditions hold, the maximum counter is incremented.

Update RMVs. (Lines 28-32). Once MIN and MAX
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Fig. 5: Counter-based reduction unit pipeline - CRU combines the
separate matches of the components generated by IMU. It maintains
three states, namely counter enables, counters, and RMV to determine
whether components of a regexp occur in a desired order.

are computed, RMV is computed as previously described;
RMVi,j is true if MIN and MAX fall within BU and BL,
respectively. A full regexp matches when RMVi,j for final
component is set.

Example. Figure 5 illustrates how the CRU processes the
regexp [ab][bc]+d?efc{2} consisting of components [ab],
[bc], d, ef, and c. The figure illustrates the matching process
for the input string abcefccg. The figure shows IMVs for two
clock cycles, indicating where each component has matched in
the input. 1© indicates where two different character classes,
corresponding to components [ab] and [bc] can match input
character b at i = 1. Note that the counter-enables for
component [ab] (j = 0) are always enabled and the minimum
counter is always reset to zero, as a match of the regexp may
begin at any point in the input. Component [ab] (j = 0)
matches character a at i = 0 and increments MAX0,0 to 1.
Hence, RMV0,0 is set, since MIN0,0 is below upper bound
BU0 = 1 and MAX0,0 equals lower bound BL0 = 1.

The second character b is then processed and the counters
MIN1,1 and MAX1,1 are enabled, since RMV0,0 is set,
enabling MIN EN1,1 and MAX EN1,1, indicated by 2©.
Furthermore, the counters MAX1,0 and MAX1,1 are both

incremented as IMV1,0 and IMV1,1 are set. In other words,
b can be consumed by either of the first two components.

Note that MIN1,1 is not incremented, since b may be
consumed by component j = 0, as indicated by 3©. Since both
counters for j = 1 satisfy the component’s repetition bounds,
RMV1,1 is set, indicated by 4©. When the third character is
consumed, the counters MIN2,4 and MAX2,4 are not enabled
as the preceding components did not match, indicated by 5©.

Handling optional/alternative components. We next gen-
eralize the min-max algorithm to handle optional and alterna-
tive components. Recall that HARE’s compiler emits, for each
component, a precedence vector indicating the components
that may precede it (see Section IV-A2). Rather than calculate
MIN EN and MAX EN based solely on the immediately
preceding component j−1, they are calculated as the logical-
OR of all components in j’s precedence vector. In words,
component j may consume character i if any of its possible
predecessors can consume character i− 1.

Multi-character components. As originally proposed,
Wang’s min-max algorithm assumed the input would be con-
sumed a single character at a time and had no need to handle
multi-character components. Because PMV bits are a limited
resource, it is critical for HARE to match multi-character
sub-strings with a single component where possible, since
HAWK provides that capability. We support multi-character
components by storing the length of each component in a
vector LENj . When indexing RMVi,j for a multi-character
component, we right-shift the vector (in i) by LENj − 1
positions. That is, we ignore the columns of RMVi,j that fall
within component j, and instead reference the last character
of the preceding component.

We complete the preceding example to illustrate these
extensions. In Figure 5, component ef may be preceded by
either [bc] or d. Hence, in the second clock cycle, when
computing MIN EN0,3 and MAX EN0,3 for component
ef as indicated by 6©, both possible predecessors [bc] (j = 1)
and d (j = 2) are considered. Moreover, since the length of
ef is two, count-enables, MIN , and MAX are calculated
by referring to RMV2,j rather than RMV3,j . Ultimately as
illustrated by 7©, the expression is matched when RMV2,4 = 1
in the second cycle (indicated by the green cell), when the
MIN and MAX counts for component c (j = 4) match its
bound of exactly 2 repetitions.

V. EVALUATION

We evaluate two implementations of HARE, an RTL-level
design targeting an ASIC process and a scaled-down FPGA
prototype to validate feasibility and correctness. We study
a suite of over 5500 real-world and synthetically generated
regexps. We first contrast HARE against conventional software
solutions and then evaluate area and power of the ASIC
implementation of HARE for different processing widths.

A. Experimental Setup

We compare HARE’s performance against software base-
lines on an Intel Xeon class server with the specifications listed



Processor Dual socket Intel E5645
12 threads @ 2.40 GHz

Caches 192 KB L1, 1 MB L2, 12 MB L3
Memory Capacity 128 GB

Memory Type Dual-channel DDR3-1333
Max. Mem. Bandwidth 21.3 GB/s

TABLE I: Server specifications.

in Table I. We select three software baselines: grep version
2.10, the Lucene search-engine lucene [16] version 5.5.0, and
the Postgres relational database postgres [30] version 9.5.1.

We generate input text using Becchi’s traffic generator [9].
The traffic generator is parameterized by the probability of
a match pM; that is, the probability that each character it
emits extends a match. For instance, for a pM=0.75, the traffic
generator extends the preceding match with probability 0.75
and emits a random character with probability 0.25.

We implement the HARE ASIC design in Verilog and
synthesize it for varying widths W of 2, 4, 8, 16, and 32. In our
ASIC implementation, we configure HARE to match at most
64 components in a single pass. We target a commercial 45nm
standard cell library operating at 1.1V and clock the design
at 1GHz. Although this library is two generations behind
currently shipping technology, it is the latest commercial
process to which we have access. We synthesize the complete
design using Synopsys Design-Ware IP Suite and report the
timing, area and power estimates from Design Compiler.

To validate feasibility and correctness, we implement a
scaled-down design on the Altera Arria V SoC development
platform. Due to FPGA limitations, we implement a 4-wide
HARE design. We use the FPGA’s block RAMs to store
pattern automata transition tables and PMVs; the available
block RAMs limit the scale of the HARE design. Due to the
overheads of global wiring to far-flung block RAMs, we limit
clock frequency to 100MHz. Our software compiler generates
pattern automata transition tables, PMVs, and reducer unit
configurations, which we load into the block RAMs.

Because of the limited on-board memory capacity and poor
bandwidth to host system memory available on our platform,
we synthetically generate input text on the fly on the FPGA
to test the functionality of the HARE FPGA. We tested
300 synthetic and hand-written regular expressions that stress
various regexp features. We generate random text using linear
feedback shift registers and then use a table-driven approach
to periodically insert pre-generated matches into the synthetic
text and confirm that all matches are found.

B. Regexp Workloads

We evaluate the capability and performance of HARE using
a combination of human-written and automatically generated
regexps from a variety of sources. Our human-written regexps
are drawn from the online repository RegExLib [3] and
the Snort [4] network intrusion detection library. Moreover,
we derive synthetically generated regexps from the libraries
provided by Becchi [9]. Table II shows the characteristics
of each workload, indicating the number of expressions, the
fraction HARE can support, the average number of compo-
nents, and the average length of components. Several regexps

Workload Regexps Supported Comp. Comp. Len

dotstar0.3 300 99.0% 3.8 14.6
dotstar0.6 300 99.0% 4.4 12.5
dotstar0.9 300 99.0% 4.9 9.9
exact-match 300 99.6% 2.1 23.4
range05 300 99.6% 2.9 18.9
range1 300 99.3% 3.4 15.2
snort 1053 85.6% 4.6 5.5
RegExLib 2673 56.4% 12.3 1.7

TABLE II: Characteristics of regexp workloads.

on RegExLib are syntactically incorrect and we therefore
discard them. HARE can support up to 99% of regexps in
the workloads proposed by Becchi and around 86% of the
regexps in the Snort library. In addition, despite the complexity
of many of the expressions on RegExLib (some involving
more than 50 components), HARE can support over 56% of
them. Moreover, of the regexps we do not support, 83% of
the Snort regexps and 45% of the RegExLib regexps contain
non-regular operators, such as back references and look-
ahead; when allowing these operators the matching problem
is NP-complete [6]. The remaining unsupported expressions
either contain nested repetitions or apply repetition operator
to multi-character sub-strings. The HARE compiler detects
unsupported regexps, reports a detailed error, and does not
produce false negatives. Table II was derived from regexps
flagged as unsupported by the compiler.
HARE resource constraints. A HARE hardware implemen-
tation imposes two fundamental resource constraints: the num-
ber of supported character classes (|C|), which is constrained
in the CCU and by the number of pattern automata, and the
number of components in a regular expression (|S|), which
is restricted by the number of PMV and IMV bits. Regular
expressions that exceed these constraints cannot be processed
in a single pass without additional software support.

Other implementation constraints, such as the maximum
component length (equal to W ), or the maximum precedence
vector length (four per component) are automatically handled
by the HARE compiler by splitting a component that exceeds
the constraints into multiple components. All the workloads
proposed by Becchi lie under these constraints. For Snort and
RegExLib, the maximum precedence lengths of 9 and 59,
respectively, exceed the hardware limit. The HARE compiler
splits these components, increasing PMV utilization.

C. Performance - Scanning single regexp

We first contrast HARE’s ASIC and FPGA performance
with software baselines while scanning an input text for a
single regular expression. We generate several 1GB inputs
while varying pM . To exclude any time the software solutions
spend materializing output, we execute queries that count the
number of matches and report the count. We randomly select
100 regexps from each of the eight workloads for performance
tests, and report average performance over these 100 runs.
In the interest of space, we report results for only three of
Becchi’s six benchmarks, as the remaining benchmarks show
similar trends in the performance. For Lucene, we first create
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concurrently. HARE’s performance is insensitive to the number of expressions, provided the aggregate resource requirements of the expressions
fit within HARE’s implementation limits.

an inverted index of the input and do not include index
creation time in the reported performance results. Similarly for
Postgres, we first load the input into the database, excluding
the load time from the results. We report their throughput by
dividing the query execution time by the number of characters
in the input text.

Figure 6 compares the throughput of grep, Lucene, and
Postgres to the fixed scan rates of the HARE designs. The
software systems are configured to use all 12 hardware threads
of the Xeon E5645. The 32GB/s constant processing through-
put of ASIC HARE is an order of magnitude higher than
the software solutions. While HARE can saturate memory
bandwidth, none of the other solutions come close. Even the
scaled-down FPGA HARE implementation outperforms grep,
which can only process at a maximum throughput of 300MB/s.
Lucene and Postgres perform consistently above 1GB/s but fall
considerably short of HARE’s processing throughput.

D. Performance - Scanning multiple regexps

Figure 7 compares the performance of HARE and the soft-
ware systems when scanning for multiple regexps concurrently
(by separating a list of patterns with alternation operators). We

randomly choose regexps from the workloads and vary their
number from two to 16. We concatenate portions of the input
text produced for each regexp (with pM=0.75) to ensure that
all occur within the combined 1GB input text.

As expected, as the software systems search for more
regexps, their throughput decreases. The performance of grep
drops precipitously to 5MB/s when processing 16 regexps
simultaneously; in practice, it is often better to perform multi-
regexp searches consecutively rather than concurrently with
grep. Postgres and Lucene still maintain a processing through-
put of above 1GB/s even while scanning for 16 regexps. Again,
note that we do not include the time Lucene and Postgres take
to precompute indexes and load the input. On the contrary,
HARE can still process the regexps simultaneously at constant
throughput of 32GB/s.

E. ASIC Power and Area

We report the area and power requirement of ASIC HARE
and its sub-units when synthesized for 45nm technology. We
synthesize the HARE design for widths varying from two to
32 characters. As per our goal, we pipeline each design to
meet a 1GHz clock frequency.
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Fig. 8: ASIC HARE area and power. Pattern automata dominates
area and power consumption of HARE due to the storage for bit-split
machines. Overall, all the implementations of HARE consumes lower
power than Xeon W5590.

As shown in Figure 8 (top), we find that the area and
power requirement of HARE is dominated by the storage for
state transition tables and PMVs in the pattern automata unit.
Moreover, the contribution of pattern automata units to the
total HARE area and power increases as the width of HARE
grows, because the storage required for the bit-split machines
grows quadratically with the accelerator width.

In Figure 8 (bottom), we compare the total area and power
of HARE to an Intel W5510 processor. We select this pro-
cessor for comparison because it is implemented in the same
technology generation as our ASIC process. We see that the
8-wide and 16-wide instances of HARE require just 1.8% and
6.8% of the area of a W5510 chip. Moreover, the 8-wide
and 16-wide HARE consumes only 6.3% and 24.6% of the
power of our baseline processor. Even the 32-wide instance
of HARE can be implemented in 26.7% of the area while
consuming lower power than the W5510. Note that the 45nm
technology used in our evaluation is two generations behind
the state of the art. As the area and power requirements scale
with technology, HARE would occupy a much smaller fraction
of chip area relative to current state-of-the-art processors.

F. FPGA prototype

We validate the HARE design by implementing a scaled-
down version on the Altera Arria V FPGA. We implement
a 4-wide instance of HARE provisioning 64 components at
100MHz. The scaled-down HARE design uses 12% of the
logic and 14% of the block memory capacity of the FPGA.
Since we generate input text synthetically on the FPGA,
HARE scans the input at a constant throughput of 400MB/s.
Even when scaled down, HARE still scans the input text 1.9x
faster than grep when scanning for a single regexp and this
gap widens when processing multiple regexps.

VI. RELATED WORK

Parallel regexp matching. Several works seek to parallelize
matching by running the regexp automaton separately on
separate substrings of the input and combining the results
obtained on each part of the text [17]. Since each substring
may start at an arbitrary point in the input, the automaton
must consider all states as start states, which is problematic for
large automata. PaREM [23] tries to minimize the number of
states on which the automaton runs by exploiting the structure
of automata that have sparse transition tables. Mytkowicz et
al. [25] further optimize this concept by representing transi-
tions as matrices and combining multiple automata executions
using matrix multiplication. They also use SIMD to perform
multiple lookups for different sections of the input text at once.

Parabix [20] introduces the idea of processing character bits
in parallel and combining the results using Boolean operations.
This design allows Parabix to exploit SIMD instructions.
Cameron [12] extends the design of Parabix to directly handle
non-determinism and provides a tool chain to generate marker
streams, the bit-stream that mark the matches in the input
text. For different regexp operations, the tool manipulates the
marker stream to update the regexp matches.

The Unified Automata Processor (UAP) [14] implements
specialized software and hardware support for different au-
tomata models e.g., DFAs, NFAs, and A-DFAs. This frame-
work proposes new instructions to configure the transition
states, perform finite automata transitions and synchronize the
operations of parallel execution lanes. HARE’s approach of
using a stall-free scan pipeline with parallel bit-split automata
and min-max matching bears little similarity to UAP’s imple-
mentation approach. The UAP relies on parallel processing
of multiple input streams to achieve its peak bandwidth of
295 Gbit/sec, but achieves at most a 1.13 GC/s scan rate per
stream. In contrast, HARE saturates a memory bandwidth of
32 GC/s (256Gbit/s) when scanning a single input stream.
ASIC and FPGA based solutions. Micron’s Automata Pro-
cessor [13] implements NFAs at the architecture level. Transi-
tion tables are stored as 256-bit vectors, which are then con-
nected over a routing matrix. Counting and boolean operations
are then used to count the matches of sub-expressions and
combine sub-expression results. The processor can consume
input strings at a line rate of 1Gbit/sec per chip.

IBM PowerEN SoC integrates RegX, an accelerator for
regular expressions [21]. RegX splits regexps into multiple
sub-patterns, implements separate DFAs and configures the
transition tables using programmable state machines called B-
FSMs [34], and finally combines the sub-results in the local
result processor. RegX runs at a frequency of 2.3 GHz and
achieves a peak scan rate of 9.2Gbit/sec.

A Micron Automata Processor processing 1 character/cycle
consumes around 4W [13], while the IBM PowerEn RegX
accelerator consumes around 2W [15]. In comparison, a 1-
wide HARE implementation consumes less than 1W.

Helios [1] is another accelerator that processes regexps for
network packet inspection at line rate. In addition, several



works [10], [24], [28], [36], [37] propose mechanisms to match
regexps on FPGAs. They focus on building a finite automaton
and encode it in the logic of the FPGA. HARE’s 32GB/sec
(256Gbit/sec) scan rate is much more ambitious than these
prior ASIC or FPGA designs.

VII. CONCLUSION

Rapid processing of high-velocity text data is necessary
for many technical and business applications. Conventional
regular expression matching mechanisms do not come close
to exploiting the full capacity of modern memory bandwidth.
We showed that our HARE accelerator can process data at
a constant rate of 32 GB/s and that HARE is often better
than state-of-the-art software solutions for regular expression
matching. We evaluate HARE through a 1GHz ASIC RTL
implementation processing 32 characters of an input text per
clock cycle. Our ASIC implementation can thus match mod-
ern memory bandwidth of 32GB/s, outperforming software
solutions by two orders of magnitude. We also demonstrate
a scaled-down FPGA prototype processing 4 characters per
clock cycle at a frequency of 100MHz (400 MB/s). Even at this
reduced rate, the prototype outperforms grep by 1.5-20× on
commonly used regular expressions.
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