A Linear-Time Heuristic for Improving Network Partitions

C.M. Fiduccia and R.M. Mattheyses

General Electric
Research and Development Center
Schenectady, NY 12301

Abstract

An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To deal with cells of various sizes, the algorithm progresses by moving one cell at a time between the blocks of the partition while maintaining a desired balance based on the size of the blocks rather than the number of cells per block. Efficient data structures are used to avoid unnecessary searching for the best cell to move and to minimize unnecessary updating of cells affected by each move.

Introduction

Given a network consisting of a set of cells (modules) connected by a set of nets (signals), the mincut partitioning problem consists of finding a partition of the set of cells into two blocks A and B such that the number of nets which have cells in both blocks in minimal. In general, this process is subject to a balancing condition which admits only those partitions whose blocks satisfy a user specified criterion based on size or cardinality constraints.

An exact solution to this problem is currently intractable in the sense that no polynomial-time algorithm for it is known to exist. Since in practice the network may be very large, a practical algorithm must of necessity employ heuristics which exhibit nearly linear running times. This problem has been treated by a number of researchers1-5 over the last decade. We present an iterative algorithm whose worst case running time, per pass, grows linearly with the size of the network, and which in practice typically converges in several passes. This linear-time behavior is achieved by a process of moving one cell at a time, from one block of the partition to the other, in a attempt to reduce the number of nets which have cells in both blocks. This idea has been independently applied by Shibasaki and Hirose6. A technique due to Kernighan and Lin3 is used to reduce the chance that the minimization process becomes trapped at local minima. Our main contribution consists of an analysis of the effects a cell move has on its neighboring cells and a subsequent efficient implementation of these results.

After specifying the network partitioning problem, we discuss the Kernighan and Lin heuristic and introduce the basic concept of cell gain which is used to select the cell to be moved from one block of the partition to the other. The properties of gain are then exploited to construct a data structure that allows efficient management of changing cell gains. We then address the problem of achieving a desired balance between the sizes of the two blocks of the partition in an environment which allows for differing cell sizes. The problem of determining which cells have their gains affected by each move is then addressed. In both cases, the total amount of work required, per pass, is shown to grow linearly with the size of the network. We close with a discussion of the behavior of a VAX-based implementation of the algorithm by giving the results and the execution times encountered when the program was run on several examples.

The Problem

Following Schweikert and Kernighan7 we view a network as a set of C cells (modules) cell(1),...,cell(C) connected by a set of N nets (signals), net(1),...,net(N). As far as partitioning is concerned, we may without loss of generality make the assumptions listed below about what comprises a network. We assume that a net is defined as a set consisting of at least two cells, and that each cell is contained in at least in one net. The number of cells in net(i) will be denoted...
by n(i). Any two cells which share at least one net are said to be neighbors. Each cell is assumed to have a size s(i) and a number of pins p(i), indicating that it belongs to exactly that many nets. These assumptions are easily established by the input routine. For input, we assume that the nets are presented one at a time, in any order; each net being completely given before another net is started. Since each pin is on one and only one net, the total number of pins p(1) + ... + p(N), call it P, may be taken as the length of the input and, hence, as the size of the network. It is established that neither C nor N will serve this purpose, since neither the number of pins per cell p(i) nor the number of cells per net n(i) is bounded. In any event, both C and N are O(P).

The following input routine will deal with real networks, whose nets are often given as lists of (cell, pin) pairs, which violate some of the above assumptions concerning what constitutes a net. Nets are sequentially numbered 1, 2, ... N as they are encountered in the input stream. Cells are assumed to be identified by integers in the range 1, 2, ... C. The principal function performed by the routine is to construct two data structures from the sequence of nets given as input. The first structure is a cell array, which for each cell contains a linked list of the nets that contain the cell. The second structure is a net array, which for each net contains a linked list of the cells on the net. In both cases, each linked list created is regarded as a set, with no duplicates and no implicit order. Each record in each of the arrays also contains several additional fields which the algorithm uses to perform its function.

/* net-list input routine */
FOR each net n = 1 ... N DO
  FOR each (cell, pin) pair (i, j) on net n DO
    /* maintain net property */
    IF net n is not at the front of the net-list for cell i
      THEN insert cell i into the cell-list of net n and
             insert net n into the net-list of cell i
    END IF
  END FOR
END FOR

One should also delete nets with only one cell and a cells that may no longer be on any of the remaining nets. It is clear that O(F) time will suffice to do all of the above work, provided that the number of (cell, pin) pairs in the input stream is O(P).

Given any partition of the cells into two blocks A and B, a net is said to be cut if it has at least one cell in each block and uncut otherwise. Call this the cutstate of the net. This may be deduced from the net's distribution, this being the number of cells it has in blocks A and B respectively. Define the cutset of the partition to be the set of all nets which are cut. Finally, define the size |X| of a block of cells X to be the sum of the sizes s(i) of its constituent cells.

Given a fraction (ratio) 0 < r < 1, we wish to partition the network into two blocks A and B such that |A|/(|A|+|B|) = r, and such that the size (cardinality) of the resulting cutset is minimal. The ratio r is only intended to capture the balance criterion of the final partition produced by the algorithm. This should not be taken to mean that each move must maintain balance (although this is certainly not ruled out) nor that, in particular, the initial partition need be balanced. We will discuss this point in more detail later. In addition to specifying the ratio r and an initial partition (with one of A or B possibly empty), the user is allowed to designate certain cells as being "fixed" in either block A or block B of the partition. This allows the algorithm to be used to further refine blocks created by previous partitions.

The Basic Idea

Given a partition (A, B) of the cells, the main idea of the algorithm is to move a cell at a time from one block of the partition to the other in an attempt to minimize the cutset of the final partition. The cell to be moved, call it the base cell, is chosen both on the basis of the balance criterion and its effect on the size of the current cutset. Define the gain g(i) of cell(i) as the number of nets by which the cutset would decrease were cell(i) to be moved from its current block to its complimentary block. Note that a cell's gain may be negative. Indeed, g(i) must be an integer in the range -p(i) to +p(i). It is also clear that during each move we must keep in mind the balance criterion to prevent all cells from migrating to one block of the partition. For sure that would be the best partition were balance to be ignored. Thus the balance criterion is used to select the block from which a cell of highest gain is to be moved. It will often be the case that this cell has a non-positive gain. In that case, we still move the cell with the expectation that the move will allow the algorithm to "climb out of local minima". After all moves have been made, the best partition encountered during the pass is taken as the output of the pass. This minimization technique is due to Kernighan and Lin.
To prevent the cell-moving process from "thrashing" or going into an infinite loop, each base cell is immediately "locked" in its new block for the remainder of the pass. Thus only "free" cells are actually allowed to make one move during a pass, until either all cells become locked or the balancing criterion prevents further moves. The best partition encountered during the pass is then returned. Additional passes may then be performed until further improvements are obtained. In practice this typically occurs quickly, in several passes, resulting in a nearly linear algorithm; however, we make no claims about the number of passes required in the worst case, except to point out the obvious fact that, only O(N) passes are possible since the cutset is bounded by the number of nets.

The bulk of the work needed to make a move consists of selecting the base cell, moving it, and then adjusting the gains on its free neighbors. Unless this is carefully done, each cell will have its gain recomputed each time one of its neighbors moves. This is definitely not necessary. The naive approach will lead to an algorithm which performs \( (n(i))^2 + \cdots + (n(i))^2 = O(P^2) \) computations per pass. This stems from the fact that the neighborhood relation free cells is a complete graph with \( O(n^2) \) edges. Since a single gain computation for a cell with \( p(i) \) pins takes \( O(p(i)) \) work, this approach to maintaining cell gains will require more than \( O(P^2) \) work. This is particularly expensive even when one large net exists.

We solve the first problem, that of selecting a base cell having the largest gain in its block, by the use of a data structure which quickly returns a cell of highest gain and allows recomputed cell gains to be reentered into the structure in constant time. We consider the solution to this problem in the next section where we discuss the notion of cell gain.

The second problem, that of updating the gains of the neighbors of the base cell, is much more interesting. The naive algorithm consists of recomputing the gain of every free cell on every net of the base cell. We avoid these time consuming pitfalls by showing that a net \( n(j) \) never accounts for more than \( 2n(i) \) gain recomputations during one entire pass. Moreover, we show that each gain recomputation can be replaced by an appropriate sequence of simple gain increases/decrements which can be done in constant time. These solutions to the two problems reduce the total work required to perform one pass to \( O(P) \) in the worst case.

For any partition \( (A, B) \) we have defined the gain \( g(i) \) of cell \( i \) as the number of nets by which the cutset would decrease, were cell \( i \) to be moved from its current block to its complimentary block.

\[
\begin{array}{c|c|c|c|c}
+2 & -1 & 0 & -4 \\
\end{array}
\]

Figure 1. Example of cell gains

Clearly, \( g(i) \) is an integer in the range \(-p(i) \leq g(i) \leq p(i)\), so that each cell has its gain in the range \(-p_{\text{max}} \leq g(i) \leq p_{\text{max}}\), where \( p_{\text{max}} = \max\{p(i)\} \) of cell \( i \) is initially free. In view of the restricted set of values which cell gains may take on, we can use "bucket" sorting to maintain a sorted list of cell gains. This is done using an array \( \text{BUCKET}[-p_{\text{max}} \ldots p_{\text{max}}] \), whose \( k \)th entry contains a doubly-linked list of free cells with gains currently equal to \( k \). Two such arrays are needed, one for block \( A \) and one for block \( B \). Each array is maintained by quickly moving a cell to the appropriate bucket whenever its gain changes due to the movement of one of its neighbors. Direct access to each cell, from a separate field in the \( \text{CELL} \) array, allows us to yank a cell from its current list and move it to the head of its new bucket list in constant time. Because only free cells are allowed to move, only they need to have their gains updated. Whenever a base cell is moved, it is "locked", removed from its bucket list, and placed on a "FREE CELL LIST" which is later used to reinitialize the \( \text{BUCKET} \) array for the next pass. This "FREE CELL LIST" saves a great deal of work when a large number of cells have permanent block assignments and are thus not free to move.

\[
\begin{array}{c|c|c|c|c}
+ \text{pmax} & & & & \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\text{MAX} & \text{GAIN} & \cdots & \text{CELL} & \text{CELL} & \cdots & 1 & 2 & \cdots & C \\
\end{array}
\]

Figure 2. Bucket list structure
This shows that $R$, in Proposition 1, is $O(N) = O(P)$. This establishing that the bucket lists can be maintained with $O(P)$ work per pass. QED

We are now in a position to establish the behavior of the our algorithm for maintaining cell gains.

**Proposition 4.** The total work required to initialize and maintain cell gains is $O(P)$ per pass.

**Proof.** The total amount of work required for gain maintenance during one pass of the algorithm is the sum of the work required for each individual net. Each update of net(1) uses $O(n(1))$ work. Proposition 3 shows that only a constant number of updates are required, per net per pass; since $n(1) + \ldots + n(N) = O(P)$, the linear behavior is obtained. QED

Combining Propositions 1 and 4, we may now state our main result.

**Theorem.** The minimization algorithm requires $O(P)$ time to complete one pass.

**Performance and Applications**

The algorithm has been implemented in the language C, and runs on a VAX 11/780. Its performance was evaluated by using it to partition several random-logic polycell designs. Four samples are listed below. The average chip has 267 cells, 245 nets, and 2650 pins. On these chips, the algorithm typically makes about 900 moves per cpu-second. This will of course depend on the average number of pins per cell and the sizes of the nets. The factor by which the algorithm will outperform the naive algorithm depends on network size and especially on the size of the largest nets. The new algorithm is superior especially when the network contains even one large net.

<table>
<thead>
<tr>
<th>CELLS</th>
<th>NETS</th>
<th>PINS</th>
<th>PASSES</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip 1</td>
<td>306</td>
<td>300</td>
<td>857</td>
<td>3</td>
</tr>
<tr>
<td>Chip 2</td>
<td>296</td>
<td>238</td>
<td>672</td>
<td>2</td>
</tr>
<tr>
<td>Chip 3</td>
<td>214</td>
<td>222</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>Chip 4</td>
<td>255</td>
<td>221</td>
<td>571</td>
<td>5</td>
</tr>
</tbody>
</table>

As a cell placement tool, in a polycell environment, the algorithm is being evaluated in two quite distinct ways. The first is a straightforward application to partition the cells into channels. We call this **inter-channel** placement. Its objective is to reduce the number of inter-channel connections needed. The second application is as an **intra-channel** placement tool. Here the objective is to reduce channel density and wire length. This is done recursively to determine first, in which half of the channel the cell should be placed, then in which quarter, and so on. We feel that this is a novel approach to intra channel placement.

**Acknowledgements**

The authors wish to thank Bob Darrow, who implemented the algorithms on the VAX. Without the feedback one gets from such implementations, it is difficult to evaluate a heuristic solution. Thanks are also due to Phil Lewis and Ron Rivest for their suggestions.

**References**


Paper 13.1