
LAB 7
Prof. Jenkins and Prof. Mazumd
Design and Programming of the M270
Computer

You will learn how to design the control unit of a
simple computer and how to program it in
“machine” code.
pro-
ple

g the
and

nt the
 to

uter
1.0 Introduction

While EECS 270 is not meant to turn you into a computer designer, it does actually
vide enough background in digital design to at least let you tackle the design of a sim
stored-program computer. This final lab experiment is concerned with understandin
basic organization of a computer. You are given an instruction set architecture (ISA)
a corresponding datapath and are asked to design the controller that will impleme
ISA on that datapath. To appreciate what you’ve accomplished, you are also asked
write a simple program that can be executed on “your” computer.

2.0 Preparation

• Chapter 9 of Hayes (one of our reference texts) gives a good overview of comp
organization and basic architecture. Read it.

• The M270 instruction set and its particular implementation in this project will be
discussed at length in class. Do not skip these lectures!
er EECS 270: Introduction to Logic Design 7-1
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

-
imal).
des:

CPU

he

te

em-
3.0 Design Specifications

M270 is an 8-bit computer with the following 16-bit instruction format:

where:

• OpCode is a 4-bit field that encodes 16 different instructions

• Ra is a 2-bit destination register field

• Rb is a 2-bit source register field, and

• n is an 8-bit two’s complement immediate operand

M270’s instruction set architecture (ISA) is based on an 8-bit address allowing pro
grams to access 256 bytes of primary memory (i.e. addresses 00 to FF in hexadec
Source operands are designated by Y and determined using three addressing mo

• Immediate: Yi = n

• Register: Yr = Rb + n (i.e. the contents of Rb plus n)

• Memory:Ym = MEM[Rb + n] (where MEM denotes the primary memory array)

3.1 Datapath Architecture

M270 has the bus-oriented datapath architecture shown in Figure 10. The primary
busses are the operand bussesXBUS andYBUS and the results busZBUS. The inter-
face to primary memory consists of an address busADDR and a bidirectionalDATA
bus; internally, the DATA bus is split into aDINBUS and aDOUTBUS. The major
components interconnected by these busses are:

• ALU : a multi-function arithmetic and logic unit.

• NF andZF: condition flags that get set to indicate that the result of an arithmetic
operation in the ALU is, respectively, negative and zero.

• IR : the instruction register which holds the first byte (OpCode, Ra, and Rb) of t
current instruction.

• RF: a register file consisting of 4 8-bit registers: R0, R1, R2, and R3.

• PC: the program counter

• NR: a register that holds the second byte of the current instruction (the immedia
operand n).

• YR: the source operand register that holds either Yr (register operand) or Ym (m
ory operand).

7 6 5 4 3 2 1 0

OpCode Ra Rb

n

7-2 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

ory.

ary
• MDR : the memory data register which acts as the data interface to primary mem

• MAR : the memory address register which acts as the address interface to prim
memory.

LEFT/RIGHT

BAR LED

DIPSW

1 8

1 8

XS40 LED LEDs

ALU

NF

ZF

RF

PC

NR

IR

CTRL

YR

MDR

MAR

OUTR

MEM

YBUS

XBUS

ZBUS

DATA

ADDR8

8

7

15

8

8

8

1

8

1

1

2

2

FIGURE 10. The M270 Datapath

DINBUS

DOUTBUS

INBUS
Prof. Jenkins and Prof. Mazumder EECS 270: Introduction to Logic Design 7-3
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

the
er in

ata
on

ful for
ory;

e

ne-
ion
e

Z)

e

-

The I/O interface to M270 is through the dip switches DIPSW on the input side, and
XS40 LEDs on the output side: the settings of DIPSW can be loaded into any regist
RF, and the contents of a special output registerOUTR can be displayed on the XS40
LEDs (all except the most significant bit since the LED has just seven segments.)

Primary memory is a 32KB static RAM chip that resides on the XS40 board. The d
and address lines of this RAM are connected to the BAR and LEFT/RIGHT LEDs
the XStend board as shown below:

These connections make the memory busses automatically observable and are use
debugging. Note that the M270 ISA allows access to just the first 256 bytes of mem
hence MAR is connected to the least significant byte of the memory address bus
(observable on the LEFT LED) whereas the seven most significant address bits ar
grounded.

3.2 Instruction Set

M270’s instruction set is shown in Table 1. For each instruction, the table gives its m
monic name, the values in each of its fields in hexadecimal, the effect of its execut
using “register transfer level” (RTL) notation, and a brief explanatory comment. Th
instructions can be grouped into three distinct classes:

• Program control instructions that allow a program’s normally-sequential control
flow to be altered. These include three branch instructions (BRU, BRN, and BR
and the HALT instruction that terminates program execution.

• Data movementinstructions for loading, storing, and displaying the contents of th
register file:

• Data processinginstructions that perform arithmetic (ADDR and ADDM) and logi
cal (ANDR, ANDM, INVR, and INVM) operations on data.

INP: loads register Ra from the dip switches DIPSW

LDI: loads register Ra with the immediate operand Yi = n

LDR: loads register Ra with the register operand Yr = Rb + n

LDM: loads register Ra with the memory operand Ym = MEM[Rb + n]

STR: stores register Ra in memory location whose address is Rb + n

OUT: displays register Ra on the XS40 LEDs

LEFT LEDBAR LED

1 8

0 7123456

RAM Data Bus

0

3

6

4

12

5

7

8

11

14

12

910

13

RIGHT LED

RAM Address Bus
7-4 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

nce
re
3.3 Register Transfer Operations

Instruction processing in M270 is accomplished by the orderly execution of a seque
of RTL operations. The RTL operations permitted by the M270 datapath architectu
can be classified into the following three groups:

TABLE 1. M270 Instruction Set (field contents shown in hex)

Mnemonic First Byte Second Byte RTL Operation Comment

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

HALT 0 0 0 00 ____ Stop execution

BRU 1 0 Rb n PC← Yr Branch unconditionally

BRN 2 0 Rb n PC← Yr when NF = 1 Branch when negative

BRZ 3 0 Rb n PC← Yr when ZF = 1 Branch when zero

STR 4 Ra Rb n MEM[Yr]← Ra Store to memory

INP 5 Ra 0 00 Ra← DIPSW Input from DIPSW

OUT 6 Ra 0 00 S← Ra Output to XS40 LEDs

LDI 7 Ra 0 n Ra← Yi Load immediate operand

ADDR 8 Ra Rb n Ra← Ra + Yr Add from register

ANDR 9 Ra Rb n Ra← Ra & Yr And with register

INVR A Ra Rb n Ra← !Yr Invert register

LDR B Ra Rb n Ra← Yr Load from register

ADDM C Ra Rb n Ra← Ra + Ym Add from memory

ANDM D Ra Rb n Ra← Ra & Ym And with memory

INVM E Ra Rb n Ra← !Ym Invert memory

LDM F Ra Rb n Ra← Ym Load from memory
Prof. Jenkins and Prof. Mazumder EECS 270: Introduction to Logic Design 7-5
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

r on
e

SX

dress
ry

riate
on
lay

l sig-
d to
al
3.3.1 CPU Operations
These operations have the template

DST ← SRCX OP SRCY

where DST, SRCX, SRCY, and OP refer to a destination register, a source registe
the XBUS, a source register on the YBUS, and an ALU operation, respectively. Th
possible “values” for each of these “variables” are:

Note that in addition to ADD, AND, and INV, the ALU allows the values on the XBUS
and YBUS to be passed through to the ZBUS using the special ALU operations PAS
and PASSY.

3.3.2 Memory Operations
The CPU interfaces to primary memory through the memory data and memory ad
registers. The RTL operations corresponding to reading from and writing to memo
are:

3.3.3 Input/Output Operations
These operations correspond to the INP and OUT instructions: for INP, an approp
register in RF is the destination of a transfer from DIPSW; for OUT, the RTL operati
OUTR ← RF[Ra] transfers the content of register Ra to the output register for disp
on the XS40 LEDs.

3.4 Enabling RTL Operations

The RTL operations described above can be enabled by setting appropriate contro
nals on the various datapath components. Table 2 lists the signals that can be use
control the operation of M270’s datapath components. For example, the hypothetic
RTL operation NR← PC + MDR (which is not part of M270’s instruction repertoire!) can be

performed by making the following control signal settings:

DST: IR, RF, PC, NR, YR, MDR, MAR, OUTR

SRCX: RF, PC

SRCY: NR, YR, MDR

OP: ADD, AND, INV, PASSX, PASSY

READ: MDR ← MEM[MAR]

WRITE: MEM[MAR] ← MDR

NR_LOAD = 1 Enable the loading of NR from the ZBUS

PC_READ = 1 Enable the reading of PC on the XBUS

MDR_READ = 1 Enable the reading of MDR on the YBUS
7-6 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

trol of

It is important to note that the datapath architecture allows some RTL operations to
occur simultaneously as long as they do not cause resource conflicts, such as con

ALU_ADD = 1 Enable the ALU to perform an ADD operation

TABLE 2. M270 Control Signals

Component Signal Name RTL Operation Comment

ALU ALU_PASSX ZBUS← XBUS Pass value on XBUS to ZBUS

ALU_PASSY ZBUS← YBUS Pass value on YBUS to ZBUS

ALU_ADD ZBUS ← XBUS + YBUS Add XBUS to YBUS

ALU_AND ZBUS ← XBUS & YBUS And XBUS with YBUS

ALU_CMP ZBUS← !XBUS Invert XBUS

RF RF_ASEL RFADDR← RF_ASEL? Rb: Ra Select address of register in RF

RF_DSEL RFSRC← RF_DSEL? INBUS: ZBUS Select source of transfer into RF

RF_READ XBUS ← RF[RFADDR] Read RF

RF_LOAD RF[RFADDR]← RFSRC Load RF

PC PC_READ XBUS← PC Read PC

PC_LOAD PC← ZBUS Load PC

PC_INC PC← PC + 1 Increment PC

PC_CLEAR PC← 0 Clear PC

IR IR_LOAD IR ← ZBUS Load IR

NR NR_READ YBUS← NR Read NR

NR_LOAD NR ← ZBUS Load NR

YR YR_READ YBUS← YR Read YR

YR_LOAD YR ← ZBUS Load YR

MAR MAR_LOAD MAR ← ZBUS Load MAR

MDR MDR_SEL MDRSRC← MDR_SEL? ZBUS: DINBUS Select source of transfer into MDR

MDR_READ YBUS← MDR; DATA ← MDR Read MDR

MDR_LOAD MDR ← MDRSRC Load MDR

MEM MEM_READ DINBUS ← MEM[MAR] Read from primary memory

MEM_WRITE MEM[MAR] ← MDR Write to primary memory

OUTR OUTR_LOAD OUTR← ZBUS Load OUTR
Prof. Jenkins and Prof. Mazumder EECS 270: Introduction to Logic Design 7-7
University of Michigan–Fall 2000

Design Specifications LAB 7: Design and Programming of the M270 Computer

em-
ny

n of
ssed

itec-

a-
ck,
g the

g
 one
e

gh
un
a bus. Specifically, any ALU operation can be performed simultaneously with any m
ory or input operation. Additionally, the PC can be incremented independently of a
other operation.

3.5 Instruction Cycle

The M270 ISA can be implemented by the following instruction processing cycle:

The M270 datapath architecture may not allow a direct single-cycle implementatio
some of the RTL operations in the above table. For instance, memory can be acce
only through MAR and MDR. Thus the RTL operationIR ← MEM[PC] which loads the
first byte of the current instruction into IR must be decomposed into the following three arch

ture-supported RTL operations:

The “top-level” state diagram of the M270 controller is shown in Figure 11. Its oper
tion is controlled by three signals that are applied through the PC parallel port: Clo
Reset, and Start. Before normal operation starts, M270 must be “reset” by assertin
synchronous Reset input. This puts the computer into its Idle state with PC (amon
other registers) initialized to 0. Normal operation is indicated by asserting Start for
clock cycle; this initiates the fetch/generate Y/decode/execute instruction cycle. Th
computer returns to its idle state upon executing a HALT instruction.

Applying the clock signal from the PC parallel port is useful for single-stepping throu
program execution. If you feel that your implementation is correct and would like to r
it “at-speed”, you may use the 12-MHz on-board clock by connecting M270’s clock
input to pin 13.

Phase RTL Operation(s) Comment

Fetch IR← MEM[PC] Load first byte of instruction into IR

PC← PC + 1 Increment PC

NR ← MEM[PC] Load second byte of instruction into NR

PC← PC + 1 Increment PC to point to next instruction

Generate Y YR← RF[Rb] + NR Compute Yr, the “register” operand

if memory reference instruction:
YR ← MEM[YR]

Compute Ym, the “memory” operand

Decode /
Execute

Perform RTL operation according to
Table 1

Decode and execute the instruction

RTL Operation Control Signal Settings

MAR ← PC PC_READ = 1; ALU_PASSX = 1; MAR_LOAD = 1;

MDR ← MEM[MAR] MEM_READ = 1; MDR_SEL = 0; MDR_LOAD = 1;

IR ← MDR MDR_READ = 1; ALU_PASSY = 1; IR_LOAD = 1;
7-8 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

Design Notes and Hints LAB 7: Design and Programming of the M270 Computer

the
s

al
e
re-
4.0 Design Notes and Hints

• The RAM chip on the XS40 board can be “loaded” using the same GXSLOAD
utility used to download the FGPA bitstream configuration file. Save the desired
contents of memory in a text file with a .HEX extension and drag/drop the file on
GXSLOAD icon to load it into the RAM. The file should have one or more text line
formatted as follows:

– <#bytes> <starting address> <byte 1> <byte 2> . . . <last byte>

Note that the first character in each line is a dash, and that fields are hexadecim
numbers separated by spaces. For example, if we want to load the RAM with th
four bytes 21 F3 5E 77 starting at address 110D (all values in hex), we would p
pare the one-line .HEX file:

– 4 110D 21 F3 5E 77

Fetch

Generate Y

Decode / Execute

Idle

Reset

Start

! Start

HALT instruction

All other
instructions

FIGURE 11. Major phases of the M270 instruction processing cycle

D2 D1 D0

Start ClockReset

PC Parallel Port
Prof. Jenkins and Prof. Mazumder EECS 270: Introduction to Logic Design 7-9
University of Michigan–Fall 2000

Deliverables LAB 7: Design and Programming of the M270 Computer

on
 of

to

ith
ct

con-
nes
his
atic

8
ur
u
atic
our

elow.

f

se
rve

er.
g
m
%;

ou
ons
 the
• An assembler for the M270 instruction set was written by R. Krishna. For details
how to use it, check with your lab GSI. This assembler simplifies the generation
“object” code (i.e. the .HEX file) even though for this simple ISA it is not too hard
generate object code manually.

5.0 Deliverables

A project containing the datapath of M270 has been created for your use. Check w
your lab GSI on the logistics of copying this project into your own directory. The proje
consists of two top-level schematics: M270 and RAMPORT. The M270 schematic
tains the entire datapath as well as an ABEL macro shell for the controller that defi
its inputs and outputs. Your primary task is to write the ABEL code that implements t
controller, and to debug it by running some test programs. The RAMPORT schem
contains the I/O interface to the RAM chip.

An additional schematic, called MEM, is also available. MEM uses “soft” RAM32X
parts from the xc4000x library to simulate the actual RAM chip. While debugging yo
controller design, you will find it easier to use MEM instead of RAMPORT since yo
will be able to use the simulator to load and observe its contents. The MEM schem
should be removed and replaced with RAMPORT once you’re ready to implement y
design and download it to the logic board.

This is a three-week lab; the due date for each of the pre-lab deliverables is noted b

5.1 Pre-Lab (30%)

1. Hardcopy of the ABEL file that implements M270’s controller (10%; due: week o
March 27.)

2. Hardcopy of a test program that checks each of M270’s instructions. You may u
the INP and OUT instructions to inject values into M270’s registers and to obse
the results of applying each of its instructions (10%; due: week of March 27.)

3. Hardcopy of a program that sorts the numbers 7, -15, 4, -2, 25 in ascending ord
You may load these numbers into a location of your choice in memory by puttin
them directly in the HEX file that contains your program. Verify that your progra
is correct by displaying the numbers in sorted order using the OUT instruction (10
due: week of April 3.)

5.2 In-Lab (30%)

By now, you should know what you’re expected to do in-lab. For this experiment, y
need to demonstrate that your controller correctly implements all of M270’s instructi
and that your sorting program works. For an extra 10% bonus credit, demonstrate
“at-speed” operation of your computer by using the 12MHz on-board clock.

5.3 Post-Lab (40%)

Prepare your lab report as described in theEECS270 Laboratory Overview handout.
Make sure you complete and include all parts of the report including theCover Sheet,
7-10 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

Deliverables LAB 7: Design and Programming of the M270 Computer

al.
cle
theDesign Narrativesection, and theDesign Documentationsection. Include as part of
your design documentation all corrected pre-lab requirements.

In your design narrative, explain any difficulties encountered and how you resolved
them. Also, explain why the ZF and NF flip-flops are enabled by the ALU_ADD sign
Finally, describe how you would modify this datapath architecture to allow a two-cy
instruction fetch (one to load IR and one to load NR).
Prof. Jenkins and Prof. Mazumder EECS 270: Introduction to Logic Design 7-11
University of Michigan–Fall 2000

Deliverables LAB 7: Design and Programming of the M270 Computer
7-12 EECS 270: Introduction to Logic Design Prof. Jenkins and Prof. Mazumder
University of Michigan–Fall 2000

	1.0 Introduction
	2.0 Preparation
	3.0 Design Specifications
	3.1 Datapath Architecture
	3.2 Instruction Set
	3.3 Register Transfer Operations
	3.3.1 CPU Operations
	3.3.2 Memory Operations
	3.3.3 Input/Output Operations

	3.4 Enabling RTL Operations
	3.5 Instruction Cycle
	4.0 Design Notes and Hints
	5.0 Deliverables
	5.1 Pre-Lab (30%)
	5.2 In-Lab (30%)
	5.3 Post-Lab (40%)

