

NDR-Spice for pushtum devices TCAD 95, 00 Physics-based fevice models Proc IEEE 98	Logic Circuits Proc. IEEE 98 MVL T. Comp 98 Bistable Logic U.S. Pat. 99	DC characterization of Quantum circuit topologies	Silicon-based tunneling devices Si-Ge diodes
Interconnect extraction and simulation using DQM and MMC TMTT 00	Memories IEICE 99 Nanopipelining Proc. IEE 93	Transient analysis of GMOS orcuit topologies	OMOS Integrated Circuit Prototypes NAND/Majority/NOR Full Adder/SDA, DFF 32-bit Correlator
Statistical circuit optimization tool	Communication Circuits Correlator DDFS Turbocode Decoder	Circuit analysis Noise margin Power and delay Stability	RTD-HBT, RTD- HEMT Circuits Majority gate, NAND/ NOR gates

Circuit	Technology	Power	Speed/Delay	Noise Margins	
ND3 DR3 CARRY	RTBT	10 mW 10 mW 10 mW	40 ps 37 ps 34 ps	0.3 V 0.3 V 0.3 V	
IOR3 MINORITY IAND3	RTD-HEMT (depletion)	0.48 mW 0.6 mW	5 GHz (25 GHz max)	IH=90mA,IL=0 NMH=17mA, NML=9mA	
NOR3 MINORITY	RTD-HEMT (enhancement)	0.3 mW	5 GHz (25 GHz max)	same as above	
NOR3 MINORITY 32-bit Adder	RTD-HBT	0.5 mW	25 GHz	0.3V	
MAJORITY Full Adder	QMOS	0.1 mW 0.4 mW	200 ps 2.5 GHz	0.5 V	
32-bit Correlator	RTD-HBT RTD-HEMT QMOS	1.5 W 1 W 0.6 W	10 GHz 3 GHz 2.5 GHz		
r-gate MVL Gate-Arrav	RTD-HBT	327 mW 3.2 mW 500 mW	2.87 ns 33.33 ns 2 GHz	0.3V	

Parameter	0.5 μm CMOS	MODFET- RTD	HBT-RTD	GaAs CHFET
Power/Gate	0.3 mW	0.3 mW	0.5 mW	0.1 mW
Gate Delay	500ps	200ps	40ps	250ps
Noise	1.5V	17µA	0.3V	0.75
Margin	@ 3V <i>op</i>	@ 90μA <i>op</i>	@ 1V <i>op</i>	@ 1.5Vop
Device	Large due to	Small due to	Small due to	Large due to
Count per Euroction	regular	NDR V-I Chrs	NDR V-I Chrs	regular
1 dilocion	V-I Chrs	01110	01113	V-I Chrs
Packing	Very high	Low	Low	Low

5050 4.6 0 2080 1 0 5050 4.6 0 5050 4.6 0	before failing 0055 509 0064 459 0058 474 0064 503	-	P = G = S = R =	Plain New Gmin-step Source-step RTD-stepp	ton's Meth sing sping ing	hod			
6040 5.5 0 7030 6.4 0	0052 504		PL =	Plain New	ton's Meth	od with Lim	iting Algorithm	0.275	
8020 7.3 0	0049 433	티날	Rarias		D	"	SPICE305	R I D-stepping	Limiting Aigo
			0	8e-05	0.0055	1.011e-09	P 93	P 93	PL 35
		- I F	0	8e-05	0.0046	2.211e-09	P 87	P 87	PL 42
			2	0.20-05	0.0043	4.110e-10 6.110e-10	P+G 159	P+R 147 D+R 151	PL 20 PL 37
			4	1.120-04	0.004	4 110e-10	P+G 158	P+R 152	PL 39
			0	1.12e-04	0.0067	1.411e-09	P+G+S 368	P+R 145	PL 50
			0	1.16e-04	0.0052	2.211e-09	P+G+S 368	P+R 145	PL 19
			2	80-05	0.0058	1.2110-09	P+G+S 386	P+R 152	PL 26
			2	8e-05	0.0064	1.211e-09	P+G+S 434	P+R 152	PL 32
			4	8.8e-05	0.0064	8.110e-10	P+G+S 369	P+R 152	PL 42
			4	1.08e-04	0.0043	1.211e-09	P+G+S 380	P+R 152	PL 36
			4	1.12e-04	0.0064	1.211e-09	P+G+S 368	P+R 152	PL 28
			4	10-04	0.0061	2.2116-09	FAILURE 428	P#R 152	PL 20
			4	1042-04	0.0046	1.0116-09	FAILURE 434	P#R 152 D+D 162	PL 20
			10	1.042-04	0.0046	1.211e-09	FAILURE 436	P+R 152	PL 53
			16	9.6e-05	0.0052	1.411e-09	FAILURE 429	P+R 152	PL 28
			18	8.8e-05	0.0055	1.011e-09	FAILURE 437	P+R 152	PL 44
			18	8.8e-05	0.0058	1.011e-09	FAILURE 429	P+R 152	PL 31
			18	9.2e-05	0.0061	1.211e-09	FAILURE 429	P+R 152	PL 21
			18	1.12e-04	0.0046	1.011e-09	FAILURE 429	P+R 152	PL 24
			18	1.12e-04	0.0058	2.211e-09	FAILURE 429	P+R 152	PL 30

VEDICS: a variable-mesh electromagneticsbased device and interconnect simulator Prof. Pinaki Mazumder University of Michigan Ann Arbor, MI 48109-2122 E-mail: mazum@eecs.umich.edu

Design and Simulation of HEMT/RTD based circuits

<section-header><section-header><section-header><section-header><list-item><section-header><list-item><section-header><section-header><section-header><section-header><section-header>

<section-header><section-header><section-header><list-item><list-item><figure>

Conclusion and Future Work

Conclusion

- RTD/HEMT device model as well as the device parameters extraction results have been described.
- Three HEMT/RTD based Flip-flops, one RTD/HEMT based clocked multiplexer have been designed and simulated. The design considerations are discussed and the simulation results are shown with various frequencies.
- We have designed a RTD/HEMT based multi-valued pre-decoder. The different design style are discussed and evaluated.

Future work:

۲

- FDTLM based RTD/HEMT DFF design and simulation.
- FDTLM based RTD/HEMT frequency divider design and simulation.
- Multiplexer and Demultiplexer design using RTD/HEMT devices.

COPYRIGHT © 1999 BY PINAKI MAZUMDER http://www.eecs.umich.edu/~mazum

- Clock recovery circuitry design.
- RTD based ADC architecture exploration and design

NDR

Pinaki Mazumder

