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Abstract-Today’s typical computer-aided design environ- 
ment consists of a number of workstations connected together 
by a high-speed local area network. Although many CAD sys- 
tems make use of the network to share files or design databases, 
few, if any, CAD programs make use of this distributed com- 
puting resource to parallelize and speed up their work. This 
paper presents a placement program that makes use of this dis- 
tributed computing environment to achieve linear speedup 
without sacrificing the quality of the results obtained by the 
serial version of the program. The placement program is based 
on the genetic algorithm, which is a heuristic search method 
inspired by biological evolution models. The parallel imple- 
mentation has other desirable features such as the ability to 
operate in a heterogeneous network environment and dynamic 
and static load balancing. This paper describes the implemen- 
tation of the placement program and detailed experimental 
studies of the behavior of the algorithm with various parameter 
settings, network capabilities, and communication patterns. 

I. INTRODUCTION 
HE TYPICAL CAD environment consists of a num- T ber of workstations connected together by a high- 

speed network that allows a team of designers to access 
the design data base. Most individual CAD problems are 
typically solved on a single workstation. Compute-inten- 
sive jobs such as circuit simulation or maze routing are 
sometimes executed on a remote machine, which is more 
powerful than the regular workstations-this remote ma- 
chine may be a supercomputer or a special-purpose com- 
puter designed to execute efficiently a single algorithm 
such as routing or simulation. However, the loosely cou- 
pled parallel computing environment provided by the net- 
work is not used effectively by CAD algorithms. This pa- 
per explores the use of a new class of algorithms, called 
genetic algorithms, which can make effective use of this 
“freely available” resource to achieve speedup by 
spreading the computational effort over all available pro- 
cessors in the network. The particular CAD problem cho- 
sen here is standard cell placement, which is a well-stud- 
ied problem with many successful parallel solutions, all 
of which require extensive communication between the 
processors. The main contribution of this paper is in 
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showing how the new problem-solving methodology can 
be applied to this problem to obtain an efficient parallel 
algorithm that runs on a network of workstations, unlike 
previous parallel algorithms that required special parallel 
machines with shared memory or dedicated interconnec- 
tion networks. 

Standard cell placement is a crucial step in the layout 
of VLSI circuits that has a major impact on the final speed 
and cost of the chip. This problem has been studied for 
several years, and the best solutions have been obtained 
by iterative improvement algorithms such as simulated 
annealing [ 161, simulated evolution [ 1 11 , and stochastic 
evolution [ 151, which have some mechanism for escaping 
from local minima. Although these algorithms produce 
good solutions, they are typically characterized by long 
run times, prompting many researchers to search for par- 
allel implementations on many different types of parallel 
machines. 

Parallel simulated annealing has been implemented with 
good speedup on many different types of parallel ma- 
chines, such as shared memory machines, message pass- 
ing machines with local memory [ lo], and massively par- 
allel machines such as the connection machine [5]. A 
study by Kravitz and Rutenbar [ 121 showed that simulated 
annealing on a shared memory multiprocessor could be 
accelerated in two ways, by performing several moves in 
parallel and by performing the subtasks for each move in 
parallel. The amount of parallelism within a move is lim- 
ited, and good speedup can be achieved only by perform- 
ing several moves in parallel. However, if moves are per- 
formed in parallel, the system can get into an inconsistent 
state unless the processors are synchronized after every 
set of noninteracting moves is calculated in parallel. Par- 
allel moves are effective when the number of accepted 
moves is low, in the low-temperature regime of anneal- 
ing; this fact has been utilized by Rose et al. [14] to 
achieve excellent speedup by using a fast min-cut ap- 
proach to avoid the slow high-temperature annealing part. 
In the low-temperature phase, the chip area is partitioned 
and assigned to different processors such that each pro- 
cessor moves cells in a particular area and, whenever a 
move is accepted, broadcasts the result to all processors. 
There is a tradeoff between the communication costs and 
the need to broadcast information after each accepted 
move; typically several moves are accepted before a 
broadcast, which leads to some errors. Although error es- 
timates for standard cell placement algorithms are not 
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available, error control for the related problem of macro- 
cell placement has been studied by various authors [l] ,  
[9], and the efficiency of the multiprocessor is reduced to 
less than half when the error is held within 1 %. Since 
communication costs for simulated annealing are high 
even on a tightly coupled system, it is not desirable to 
speed up simulated annealing on a distributed system 
where communication time is of the order of several mil- 
liseconds. 

Whereas special-purpose parallel machines required for 
accelerating simulated annealing or some other CAD al- 
gorithm may be available in a few CAD environments, 
the typical CAD environment consists of a few worksta- 
tions connected together by a local area network such as 
ethernet. The workstations typically can support several 
user tasks, one of which can run in the foreground while 
the others run in the background. When the workstation 
is used for a text editing or graphics editing program, it 
may use its CPU only a fraction of the time and spend 
most of its cycles waiting for user input. The placement 
program described in this paper makes use of the idle 
cycles on all the networked machines to speed up the 
placement process. The communication cost is low be- 
cause the communication is handled by the operating sys- 
tem through the network interface, and the CPU does not 
have to wait for the communication to complete. The cu- 
mulative error due to this mode of operation has been 
found to be negligible in all test cases. The program is 
robust and dynamically adapts to run only on the lightly 
loaded machines. 

The genetic algorithm for standard cell placement that 
forms the basis for the distributed algorithm is described 
in the next section. The distributed algorithm is then de- 
scribed, followed by a discussion of the placement and 
speedup results obtained. This is followed by a discussion 
of some of the parameter settings used in running the al- 
gorithm and the performance of the algorithm in dynam- 
ically changing, heterogeneous computing environments. 

11. STANDARD CELL PLACEMENT USING THE GENETIC 
ALGORITHM 

A. Standard Cell Placement 
Given a logic circuit described in terms of primitive 

cells and their interconnections, standard cell placement 
is the problem of assigning these cells of (almost) uniform 
height and varying widths to locations on the circuit lay- 
out such that the overall area of the layout consisting of 
the cells and their interconnect wiring is minimized. Usu- 
ally, in addition to the layout area, several other circuit 
parameters, such as wiring delays, are taken into account 
by the placement algorithm. Standard cell placement may 
be modeled as a search process in the space of legal place- 
ments for a given circuit. A legal placement is a function 
mapping the set of cells to a set of locations (x, y) such 
that no two cells overlap and the set of assigned y coor- 
dinates has small cardinality; that is, the cells are as- 
signed to a small number of rows. The cost function for 

a legal placement is the resultant chip area or netlength or 
the chip operating speed or some combination of the pre- 
ceding. However, many standard cell placement algo- 
rithms do not generate strictly legal placements in the 
search process, allowing some degree of cell overlap. 
They use area and netlength as objective functions and 
include penalties for overlap of cells and for row length 
mismatch. 

Well-known placement algorithms such as simulated 
annealing start with a random or loose initial placement 
followed by iterative improvement in which a cell is 
moved to a new spot or swapped with another cell in each 

move." The best solutions to date have been obtained 
by algorithms that try to find a sequence of moves that 
decrease the cost functions without requiring the sequence 
to be strictly decreasing. This means that these algorithms 
can escape from local minima of the cost function by ac- 
cepting subsequences of moves that increase rather than 
decrease the cost function. A good survey of various 
placement techniques following this paradigm can be 
found in [ 181. 

" 

B. Genetic Placement Algorithm 

The genetic algorithm is an entirely different approach 
to the placement problem. Whereas other algorithms it- 
eratively improve a placement by moving a single cell or 
swapping two cells, the genetic algorithm works with a 
set of initial placements called the initial population. It 
attempts to combine the good features of two different 
placements to form a new placement. These good fea- 
tures, referred to as schema, are the relative placements 
of subsets of cells. Each placement of n cells, also called 
an individual, is an instance of 2" - 1 schema corre- 
sponding to the nonempty subsets of the set of n cells in 
the placement. The genetic algorithm repeatedly performs 
the reproduce-evaluate cycle as follows. In each iteration 
of this cycle, known as a generation, some of the indi- 
viduals in the current population are selected probabilis- 
tically and new copies of these individuals are created. 
This process is known as reproduction, and the individ- 
uals are selected for reproduction based on their j tnes s  
relative to the rest of the population, with the more fit 
individuals getting a higher probability of reproduction. 
The fitness is related to the cost function, and, in the case 
of a function minimization problem, is typically the in- 
verse of the cost function. The new individuals produced 
by the reproduction process are then subjected to the ge- 
netic operations of crossover, inversion, and mutation. 
Crossover is the most important of the operators, and it 
selects some schema from one parent individual and some 
schema from another parent to form a child individual 
which thus inherits schema from both parents. The cross- 
over operation also creates many new schema that did not 
exist in the parents; it is the most efficient search mech- 
anism in this algorithm. This is explained in more detail 
below. Inversion is an operator that changes the represen- 
tation of the individual without actually changing the in- 
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dividual so that the child is more likely to inherit certain 
schema from one parent; an example of how this works 
is shown subsequently, after certain other terms are de- 
fined. Mutation is the analog of a pairwise interchange in 
conventional placement algorithms. It helps to pull the 
algorithm out of local minima and prevents the crossover 
and reproduction mechanism from replacing all the indi- 
viduals in the population with multiple copies of a single 
fit individual. After the genetic operators are applied, the 
new individuals are evaluated on the basis of the cost 
function, and a new population is created by probabilis- 
tically selecting individuals from the old population and 
from among the newly created individuals, according to 
their relative fitness. This completes the reproduce-eval- 
uate cycle for one generation or iteration of the genetic 
algorithm. The basic ideas of the genetic algorithm were 
inspired by the process of biological evolution, where 
crossover is the basis of sexual reproduction and inheri- 
tance of characteristics, while mutation induces random 
changes in the individual. These ideas were developed 
several years ago [8] and are now being applied success- 
fully in various practical problems [6]. 

The single fundamental theorem of genetic algorithms 
is the schema theorem, which states that the number of 
instances of a schema in a given population increases from 
one generation to the next in proportion to its relative fit- 
ness compared with the other schema in the present pop- 
ulation. Convergence proofs of the genetic algorithm are 
difficult, since many different schema are created and de- 
stroyed in a single crossover operation and the fitness of 
any given schema relative to the rest of the population 
changes every generation as the population changes. For 
example, the genetic algorithm is modeled as a Markov 
process in [4]. Each state in the Markov chain corre- 
sponds to a particular population of individuals. It is 
shown that when the population size and the genetic pa- 
rameters (crossover and mutation rates) are held constant, 
a time-homogeneous Markov chain is obtained with a fi- 
nal stationary distribution of the probabilities of the states. 
However, this does not guarantee that the globally opti- 
mum solution would ever be found. 

Another problem with the genetic algorithms is the 
choice of optimal values for the population size, the 
crossover rate, the mutation rate, the inversion rate, and 
other parameters. This problem is currently being inves- 
tigated by many different researchers, but theoretical re- 
sults obtained so far are for extremely restricted classes 
of problems, and their application to practical problems 
is being investigated [7]. Under certain restrictive con- 
vergence criteria, the optimal population size has been 
shown [7] to be 3. However, under less restrictive con- 
vergence criteria, the optimal population size is related to 
the length n of the genetic representation of the individual 
as 2". For a string of length 50 the optimum population 
size is close to 2000; for a string of length 60, it is more 
than 8000. The string representation of an individual in a 

placement problem with n cells is O(n  log n) bits long, 
rendering the theoretical results meaningless when n is 
usually in the thousands. In the work reported here, the 
optimal population sizes were determined empirically, as 
were the other genetic parameters. Despite the lack of a 
good theoretical basis for the genetic algorithm, initial ex- 
periments with the genetic algorithm for standard cell 
placement [ 171 showed that this algorithm could perform 
as well as the then best known simulated annealing place- 
ment program, Timberwolf-3.3 [16]. At the same time, 
the process of migration that occurs in nature was incor- 
porated into a parallel version of the genetic algorithm as 
a new genetic operator [2]. The main motivation for this 
present work was the recognition that this new genetic 
operator could be applied to design a placement algorithm 
with minimal communication requirements to run on a 
network of workstations without sacrificing the result 
quality obtained by the sequential or uniprocessor genetic 
algorithm. Hence, the rest of this paper focuses on the 
speedup and placement quality of the multiprocessor al- 
gorithm as compared with the single-processor genetic al- 
gorithm. The simulated annealing program that was com- 
pared with the sequential version of the genetic algorithm 
has subsequently been improved vastly by incorporating 
the results of several theoretical studies, adding heuristics 
and fine-tuning the algorithm to the placement problem 
[13]. It is expected that future work in the theory of ge- 
netic algorithms will lead to improvements in the speed 
and placement quality of the serial genetic algorithm. 
However, the parallelization studies presented here would 
still allow this algorithm to be accelerated by running it 
on a network of workstations. 

C. Basic Placement Algorithm 
The basic serial algorithm for placement using just the 

crossover, inversion, and mutation operators is presented 
here. A placement configuration is represented by a string 
of records representing cells. Each record contains the 
following information. 

Cell id 
Cell position x 
Cell position y 

The position of the cell record in the string does not al- 
ways determine the physical location of the cell in the 
layout. However, at certain points in the algorithm, the 
cell position is recalculated based on the ordering of the 
cell records in the string, as follows. Starting from the 
first row, list the cells in order from left to right; at the 
end of the row go on to the next higher numbered row and 
list cells in reverse order, and continue until all cells are 
listed, changing directions after each row. Given a string 
of records, cells can be assigned positions in rows, by 
reversing the above process. The first cell in the string is 
assigned to the leftmost position in the first two start,, 



MOHAN AND MAZUMDER: WOLVERINES 1315 

the next cell is assigned to a location start, + 
sizeof(Jirst-ceZl) and so on, until the row is filled, and 
then the row number is incremented and the process goes 
on until all cell coordinates are assigned. There is no cell 
overlap, and row length variation is kept within 
~sizeof(largest-celZ). The area does not change with dif- 
ferent placement configurations since the number of rows 
is fixed and the spacing between rows is assumed con- 
stant. Hence, the only variation is in the netlength, and 
the cost function is based purely on netlength. 

Three genetic operators are used. They are crossover, 
mutation, and inversion. Crossover operates on two in- 
dividuals (parents) at a time. It generates a new individ- 
ual (ofspring) by combining schemata from both parents. 
Mutation produces random changes in a single individual. 
Inversion is an operation that changes in effective length 
of a schema without altering the fitness of the individual 
to increase the survival probability of longer schema. In 
effect, it changes the representation of an individual but 
does not affect the underlying placement. 

Crossover in its simplest form involves exchanging 
substrings between two individuals. However, this simple 
form of crossover cannot be applied here, as it can create 
strings that have no physical representation or logical 
meaning. For example, a simple crossover between two 
strings ABCD and BDCA could produce two new strings 
ABCA and BDCD. Here, each string has two repeated 
characters and one missing character (from the alphabet). 
If each character corresponds to a cell in the placement 
problem then a valid string should have one and only one 
instance of each character. Hence, more complex cross- 
over operators that preserve the correctness of the place- 
ment are needed. A modified crossover operator known 
as cycle crossover is used herein. 

Fig. l(a) shows how cycle crossover is performed. Start 
with the cell in location 1 of the first parent and copy it 
to location 1 of the offspring. Then consider the cell in 
location 1 of the second parent. This cannot be inherited 
by the child from this parent as the position is already 
occupied. Hence, copy this character into the child at the 
corresponding location in parent 1 .  Now consider the 
character at this position in the second parent. Obviously, 
this cannot be inherited by the child, so let this character 
be inherited from parent 1 .  Continue this process until the 
new character to be considered is one that is already in 
the child, that is, when the cycle is complete. Then choose 
the first possible character in the second parent and repeat 
the whole process above, reading parent 2 for parent 1 
and vice versa. The numbers shown below the child slots 
in Fig. l(a) show the order in which the child slots get 
filled. 

If the child inherits x positions from parent 1, it inherits 
n - x positions from parent 2 .  Suppose the two parents 
differ in x1 of the x positions inherited from parent 1 and 
in x2 of the n - x positions inherited from parent 2.  Then 
the child is an instance of (2"' - 1)(2x2 - l ) ( 2 n - x ' - x 2  - 

1 4 8 3 2 6 9 5 7 10 

CYCLES : ( A E D )  ( C B H F I )  ( G J )  

INHERITED FROM : 1 2 1 

(a) 

CYCLES : ( A E H B C I F D )  ( J G )  

INHERITED FROn : 1 2 

(b) 

Fig. 1. Cycle crossover: (a) normal; (b) after inversion. 

1) schema which do not occur in either of the parents. The 
child is also an instance of 2" - 1 schema inherited from 
parent 1 and 2"-" - 1 schema inherited from parent 2 .  
Hence, each crossover affects many different schema si- 
multaneously leading to an intrinsic parallelism in the 
search process of the genetic algorithm. 

The inversion operator changes the positions of cell 
records in the string representing a placement but does not 
change the actual physical locations of the cell in the lay- 
out. This operator takes a string and two randomly chosen 
points in the string and reverses the substring between the 
inversion points. For example, given a string AB.CDE.F, 
with the randomly chosen inversion point shown as dots, 
the result of the inversion operation is the string 
ABEDCF. However, the cell position in the records is not 
updated at this stage, so the new string still represents the 
same placement. Thus an inversion operation may inter- 
change the positions of cells E and F in parent 1 (the in- 
verted substring is EF) [see Fig. l(b)] but this parent 1 
still represents the same placement as the parent 1 in Fig. 
l(a), since the cell position records are not changed in the 
inversion process. However, the crossover operator now 
produces a totally different child [Fig. l(b)] and a much 
longer schema is transferred to the child from parent 1. 

The serial genetic algorithm for standard cell placement 
is shown in Fig. 2 .  An initial population of randomly gen- 
erated placement configurations is the starting point of the 
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Read net list; 

Create Initial Population of P 

Evaluate all Placement Configurations 

Placement Configurations; 

i n  the Population; 

For g Generations (iterations) do 

begin 

Select cy P configurations for reproduction 

and make copies of all.of them; 

Perform Inversion operation on selected 
Placement Configurations; 

Perform Crossover on selected Placeement 
Configurations to generate new 
Placement Configurations (Offspring) ; 

Perform Mutation operation on selected 
Placement Con f iqura t ions; 

Evaluate new Placement COnfigurations; 

Find Population average fitness; 

Select P Configurations (Individuals) for 
next generation, with fitter individuals 
getting a higher probability of selection; 

end; 

Write out best Placement 

Fig. 2. Serial placement algorithm. 

algorithm. Once the population sizep is known (generally 
specified by the user, since there is no "best choice" for 
every case), p random permutation strings over the set of 
integers from 1 to n ,  where n is the number of cells in the 
circuit, are generated. These permutation strings are used 
to create strings of cell records with the cell-id corre- 
sponding to the particular element in the permutation 
string. The cell position records are then filled in as de- 
scribed earlier. The netlength corresponding to each 
placement configuration is computed, and the fitness value 
for each individual is recorded as 1 /netlength. This com- 
pletes the process of creating the initial population. 

The first step in the iterative loop of the serial algorithm 
is the selection of individuals for reproduction. This pro- 
cess is carried out as follows. First, the mean fitness value 
for the entire population is calculated as f,,,,. Then the 
crossover rate parameter is used to determine the number 
of offspring or new individuals to be generated. If the 
crossover rate is c, and the population size is p ,  the num- 
ber of offspring is poK = p * c,, where c, is a fraction in 
the interval (0, 1 ) .  Next, individuals are chosen for repro- 
duction in a probabilistic manner, so that the expected 
number of offspring of an individual I with fitness f i  is 
(fi/fmean)p. Hence, the fitness of the individual relative 
to the rest of the population determines the individual's 
chances of reproduction; the higher the relative fitness the 
better the chances and vice versa. Once the number of 
offspring for each individual is determined, the offspring 
are created by making copies of the string representations 
of the parent individuals. The offspring are then subjected 
to the genetic operations of mutation, inversion, and 
crossover, in that order. These operations have been de- 
scribed earlier. Each individual among the offspring is 
mutated with a probability that is specified by the muta- 

tion rate parameter. Then the inversion operation is per- 
formed on each individual with a probability specified by 
the inversion rate parameter. Finally, the individuals in 
the offspring population are paired off at random and 
crossed over. The cell positions are updated at this stage, 
and the fitness of all the new individuals is computed. 
Then p individuals for the next generation are selected 
from this set of p + pof individuals. This selection is done 
in the same manner as before, with the probability of se- 
lection being dependent on the relative fitness of the in- 
dividual. 

The individual with the highest fitness in the final pop- 
ulation is the solution point or the best placement. The 
fitness of an individual is a function of the netlength as- 
sociated with the placement: the higher the netlength, the 
lower the fitness. The initial population is chosen ran- 
domly. Hence repeated runs of the algorithm could pro- 
duce different solutions. Selection of individuals for the 
next generation is based on the fitness criterion: the higher 
the fitness of an individual relative to the population av- 
erage fitness, the higher its probability of survival into the 
next generation. The number of offspring to be generated 
and the fraction of the population to be mutated are de- 
cided by the values assigned to the genetic parameters 
crossover rate and mutation rate, respectively. Optimal 
values for these parameters were obtained by using meta- 
genetic optimization [ 171. Typical values of various pa- 
rameters a r e p  = 48 (population size), c, = 0.33 (cross- 
over rate), p, = 0.05 (mutation rate), i, = 0.15 (inversion 
rate), g = 30 000. 

The termination condition for the genetic algorithm is 
typically the identification of convergence. The popula- 
tion is said to have converged when all the individuals 
have the same genetic representation, that is, the entire 
population consists of multiple copies of the same indi- 
vidual. This condition was rarely observed in our exper- 
iments, except when the population size was reduced to 
the barest minimum for effective crossover (3). Hence the 
primary termination conditions were determined empiri- 
cally, based on the rate of improvement in fitness. 

D. Analysis of Serial Algorithm 
Let the run time of GASP, the serial genetic algorithm, 

be represented by T ~ ~ , ~ ~ ~ .  This time is a function of the 
population size p ,  the number of generations g,  the prob- 
lem size n (number of cells and nets), and the values as- 
signed to the genetic parameters. Since the genetic param- 
eters are the same for both the serial algorithm and the 
parallel versions to be discussed later, they are not shown 
explicitly in the following equations. 

Tseria/(n, P ,  S> = tinit (n ,  P> + g * (trep (n,  P> 

+ tC"U/h PI> + tour (n)  (2.1) 

(2.2) 

tread is the time required to perform the first step in the 
algorithm, reading in the circuit, and is a function of the 

tinif (n ,  P> = tread (n)  + tsetup (n,  P) 



MOHAN AND MAZUMDER: WOLVERINES 1317 

circuit size. tserup is the time required to create the initial 
population and is a function of both the circuit size and 
the population size. trep is the time required to perform all 
the genetic operations (for one generation) and create a 
set of new individuals. t,,,/ is the time required to evaluate 
the cost function for each of the new individuals and to 
select the survivors into the next generation. It is known 
that the largest single time factor in (2.1) is t,,,/, and g * 
teval is about 75 % of 7,erial. tout is the time required to write 
the best results out on to the disk, and is a function of 
circuit size. The typical breakup of the time spent by the 
serial algorithm on various tasks is evaluation 77%, re- 
production/crossover 22 % , and initialization and input- 
output about 1 %. 

Hence the benefits of parallelizing the reproduction and 
evaluation functions are obvious. Evaluation can easily be 
parallelized by evaluating each new individual on a sep- 
arate processor or by evaluating different aspects of the 
cost functions on different processors. On a distributed 
memory system this would entail the overhead of passing 
e ( p  * n) data over the communication medium in each 
generation. The reproduction/crossover phase begins with 
the selection of individuals, which is an inherently se- 
quential process that reduces the achievable speedup. The 
actual crossover operation can be parallelized in an ob- 
vious way but the communication cost remains. 

The rest of this paper is devoted to presenting a simple, 
yet effective parallelization technique that avoids the 
communication costs associated with trivial paralleliza- 
tion schemes and achieves maximum speedup while pro- 
ducing solutions of comparable quality to the serial al- 
gorithm. 

111. DISTRIBUTED PLACEMENT ALGORITHM 

The distributed placement procedure runs a basic ge- 
netic algorithm on each processor in the network and in- 
troduces a new genetic operator, migration, which trans- 
fers placement information from one processor to another 
across the network. Migration transfers genetic material 
from one environment to another, thereby introducing new 
genetic information and modifying the new environment. 
If the migrants are fitter than the existing individuals in 
the new environment they get a higher probability of re- 
production and hence their genetic material is incorpo- 
rated into the local population. When the population is 
very small it tends to converge after a few generations, in 
the sense that all the individuals come to resemble one 
another. Migration prevents this premature convergence 
or inbreeding by introducing new genetic material [2]. 
Hence, the genetic algorithm may be modified by splitting 
the large population over different processors and using 
the migration mechanism to prevent premature conver- 
gence. 

Although the idea of a distributed floor-planning algo- 
rithm using the migration mechanism was suggested in 
[3], that work did not study the speedup since the floor- 
planner was presented as a distinct algorithm in itself, 

rather than as a parallelization of a given algorithm. Fur- 
thermore, the floor-planner had a synchronization require- 
ment, whereby a processor had to wait for migrants from 
some other processor. This requirement increases the 
worst case effective communication time to the actual 
physical time required to transmit data from one machine 
to another across a shared network. This time can be large 
and can reduce the speedup by a significant factor. Our 
work avoids the synchronization problem by delegating 
the communication work to the operating system/com- 
munication processor, and by also not waiting on a read 
operation. Results presented here show that the result 
quality of the parallel algorithm is not degraded signifi- 
cantly by not waiting on read operations, whereas the 
speedup achieved is almost linear in the number of pro- 
cessors used because the communication time is now 
vastly reduced. Furthermore, a detailed experimental 
study of the migration mechanism is done. The statistical 
variations inherent in the algorithm are thoroughly stud- 
ied. It is shown that the distributed network environment 
can actually be used to speed up a successful placement 
algorithm to a significant extent. 

The basic algorithm, which runs on each processor in 
the network, is shown in Fig. 3. The genetic operators- 
crossover, invert, and mutate-are the same as those used 
in the serial algorithm [17]. The new feature here is the 
migration mechanism, which combines the algorithms 
running on different processors into a single distributed 
genetic algorithm. The migration mechanism transfers 
some individuals (placement configurations) to other pro- 
cessors, once every few generations. The epoch length is 
defined as the number of generations between two suc- 
cessive migrations. The effectiveness of the migration 
mechanisms depends on several factors, such as the num- 
ber of individuals transferred in each migration, the se- 
lection of the individuals for migration, and the epoch 
length. Too much migration can force the populations on 
different processors to become identical, making the par- 
allel algorithm inefficient, whereas too little migration 
may not effectively combine the subpopulations. This has 
been observed experimentally, as detailed in the next sec- 
tion. 

The processing time 7K with K processors on the net- 
work may be written as 

(3.1) 

where 

K =  
P =  
ne = 
e =  

trep = 

tevu1 = 

Number of processors/workstations 
Total population size 
Number of epochs 
Epoch length 
Time to perform reproduction/crossover 
operations 
Time to evaluate population fitness 
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read net list; 

Create Initial Population of p 
Placement Configurations; 

Evaluate all Configurations (Individuals); 

for n epochs do I 
e 

for e Generations (iterations) do ( 

Select cr * P Configurations for 
reproduction and make copies of them; 

Perform Inversion operation on 
selected Individuals; 

Perform Crossover operation on 
selected Configurations to generate 
new Configurations (Offspring); 

Perform Mutation operation on 
selected Offspring; 

Evaluate Offspring and find Population 
average fitness: 

) 

Select and write n Individuals on to network; 

Read O-nmigr Individuals from network 

Select p Individuals for next generation 

migr 

with fitter Individuals getting a 
higher probability of selection; 

) 

write out best Placement Configuration. 

Fig. 3 .  Parallel algorithm 

nmigr = Number of individuals transferred at 

t,,,, = Time to transfer one individual to the 
each migration 

communication subsystem 
= Time to start up the program on K pro- 

cessors 
tinit = Time required to read the netlist and cre- 

ate and evaluate the population 

ti 

teva/ >> *mmm 
n, * e = g = Number of generations 

It may be seen that there is an extra time factor t,,,, 
not seen in (2.1), and the reproduction and evaluation 
times are now functions of a smaller population assigned 
to each processor. As already observed in the case of the 
serial algorithm, the initialization and output times are 
negligible and may be safely ignored. The reproduction 
and evaluation times are both linear functions of the pop- 
ulation size p and, hence, scale linearly when the popu- 
lation is divided among the available processors. Hence, 
speedup of the parallel algorithm depends on the total 
communication cost, which, in turn, depends on the mi- 
gration rate, the epoch length, e ,  and the number of mi- 
grants nmigr. The minimum amount of information that has 
to be transferred in the migration process, contains for 
each cell in the placement configuration, its location (x, 
y) and a serial number used by the inversion operator. In 
addition, the cost of each configuration is also transmitted 
as the extra communication time required to transfer one 
number is small, compared with the time required for cost 
function evaluation. Hence, the communication time is a 
function of the problem size n ,  the number of migrants 
nmigr, and the epoch length e .  In a typical workstation, the 
actual communication is handled by a separate ethernet 

subsystem, and the CPU continues processing after down- 
loading the data to the communication subsystem for a 
write. The read process takes place when the CPU finds 
data waiting at the communication subsystem and reads 
it; if there is no data waiting to be read, the CPU does not 
wait for the data to become available and continues with 
the next step in the algorithm. Hence, the actual com- 
munication time for the CPU is reduced to the time re- 
quired to transfer data to and from the communications 
subsystem, and measurements have shown this to be neg- 
ligible. However, the communication pattern does load 
the network, and the tradeoff is between network conges- 
tion and closer coupling bewteen subpopulations on dif- 
ferent processors. It has been empirically observed that 
there is an optimum level of coupling between subpopu- 
lations, and the network congestion factor at this com- 
munication rate is low (see next section). 

If the total time for communication and assimilation of 
the migrants nmigr * t,,,, is small compared with the total 
time for performing all other actions in one epoch, the 
speedup is close to ideal. With increasing K,  the speedup 
increases but the efficiency goes down and the network 
traffic increases. The total network traffic T due to K pro- 
cessors is C2 * K * n/r, ,  where C2 is some constant, n is 
the number of cells in the circuit to be placed, and I-, is 
the time for one epoch which is given by I-, = e * (Cl /K 
* (t,(n, p )  + teval(n, p ) ) ) .  In other words, for a given 
circuit and population size, I-, = C3/K; T = C4 * K2.  
Here C1 is the linear scaing factor for the reproduction 
and evaluation ties considered as functions of the popu- 
lation size. Observations indicate that C1 is close to 1 (see 
Section IV). C3 is derived from CI for a fixed population 
size and circuit. C2 is related to the amount of information 
transmitted during each migration. Hence the traffic in- 
creases as K 2  and using empirical values for the constants 
in the above equations and assuming a network capacity 
of 1.25 X lo6 bytes/s (10 Mb/s  ethernet) speedup of 
close to 25 can be achieved with up to 25 processors with 
a 50% load on the network. Speedup of 8 can be achieved 
with eight processors and less than 10% loading of the 
network. With a large number of processors, the initial 
loading on the network is high, but after a few epochs the 
loading tends to stabilize to its average value. 

The major results of this analysis follow: 

If the communication time is small, the speedup is 
close to ideal. 
The implementation of the communication mecha- 
nism ensures that the communication time is always 
small, and close to ideal speedup is guaranteed. 
The speedup can be increased by increasing the num- 
ber of processors, but this results in increased net- 
work loading, and up to 25 processors may be used 
without unduly loading the network. 
The network loading factor depends on the genetic 
parameters as well as on the problem size. 

It may be noted that the speedup is specified in terms of 
the time required to perform a fixed number of genetic 
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get circuit name; 

get genetic parameters; 

get list of processors/machines; 

for i = 1 to #processors do 
rexec ( .. proc(i) . . I ;  

for i = 1 to #processors do 
write I socket(proc(i)), ..); 

4 
wait for termination messages 
from all processors; 

determine best placement; 

1319 

e. <initiated by controller processor> 

4. get communication data from master; 

open sockets to neighbors and connect; 

run parallel algorithm; 

-report best result to controller; 

operations and fitness evaluations on constant total pop- 
ulation. The migration mechanism is assumed to ensure 
the result quality, and empirical observation of this is pre- 
sented in the next section. An alternative measure of 
speedup that considers the time taken to achieve a given 
fitness value is also measured in the next section. 

A .  Implementation Issues 
The distributed placement algorithm has been imple- 

mented on a network of workstations (Sun systems). To 
facilitate the evaluation of various topologies, the pro- 
gram has been organized as follows: there is one master 
program that provides the user interface and also manages 
all other processes (processors). The master program uses 
the ‘‘rexec” facility to create processes on different sys- 
tems. Processors communicate by using the socket mech- 
anism. The master processor determines the communica- 
tion pattern. In the first version of the program, in order 
to explore different communication patterns, the master 
program also acts as the routing controller and routes all 
messages between any two processors. Hence, in this ver- 
sion, actual physical communication is between the mas- 
ter processor and the other processors only. However, 
with a fixed routing pattern, there need be no communi- 
cation bottleneck, and the steps executed by the master 
and slave processors are shown in Fig. 4. 

The master controller obtains from the user, the circuit 
name and the processors or machines to use. It then uses 
the rexec function to start the slave programs on all the 
specified machines. Once this is done, the controller sends 
each processor some information about the other proces- 
sors with which it should communicate and then goes to 
sleep. Each processor executes the parallel algorithm of 
Fig. 3 and sends a message to the master controller before 
terminating. When all the processors have terminated, the 
master controller identifies the best overall solution. The 
data structures used in the genetic algorithm running on 
each processor are the same as those used in the serial 
algorithm and described in Section 11. 

Both the master controller and the slave programs are 
written in C,  and make use of the rexec and socket func- 

tions provided by the UNIX system. Typically the master 
controller runs on the same machine as one of the slave 
programs since there is not much overlap between the two. 
All experimental observations have been made with the 
machines running their normal daily loads in addition to 
the distributed placement algorithm. 

IV. EXPERIMENTAL RESULTS 
The following major issues in the behavior of the dis- 

Result Quality: The placement results of the serial 
algorithm were compared with the multiprocessor 
placements to determine if the implementation of the 
migration mechanism was effective. Multiple runs 
with different circuits showed that the result quality 
was the same. 
Statistical Variations in Result Quality: The serial 
and parallel versions of the placement algorithm were 
run many times, and the mean and standard devia- 
tions of the final results were computed. It was found 
that the migration mechanism managed to preserve 
the essential characteristics of the serial algorithm 
results while providing good speedup. 
Speedup: Speedup was measured in two ways. The 
first speedup was based on the time required to ex- 
amine a fixed number of configurations (3.1). By 
keeping the communication costs low, this speedup 
was measured to be close to ideal. At the same time, 
the result quality was also monitored to ensure that 
the speedup was not at the cost of result quality. The 
second speedup calculation was based on the statis- 
tical observations, showing that for any desired final 
result achievable using the serial algorithm, the par- 
allel version could provide linear speedup (close to 
K for K processors). 
Migration: The effect of migration rate variations and 
the interplay between migration and the crossover 
mechanism were studied. Good parameter settings 
for migration and crossover were identified. 
Communication Patterns: Whereas the bus-based 
network provides full connectivity, allowing any 

tributed algorithm were studied experimentally. 
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machine to communicate with any other machine, the 
effects of the actual communication pattern on the 
result quality and speedup were studied. It was seen 
that as the number of processors was increased, an 
efficient communication pattern was required to make 
the migration mechanism effective. 
Coping with Network Heterogeneity: The effects of 
wide differences in machine capabilities and loads on 
the performance of the placement algorithm was 
studied. It was seen that the algorithm was robust. 
Static and dynamic load balancing schemes were im- 
plemented. 

All experiments were performed on the set of standard 
cell circuits containing from 100 to 5814 cells, including 
the following eight circuits used in benchmarking the se- 
rial genetic algorithm [17]: cktA 100 cells, cktB 183 cells, 
cktC 469 cells, cktD 752 cells, cktE 800 cells, cktF 2357 
cells, cktG 2907 cells, cktH 5814 cells. 

A. Convergence and Result Quality 
Fig. 5 plots the best netlength obtained against the gen- 

eration number, for the genetic algorithm running on one, 
two, four, and eight processors. These placement results 
are for the circuit cktA. Similar results were obtained for 
the other circuits. It was seen that in all the plots, as in 
Fig. 5 ,  there was a region of rapid improvement followed 
by a region of more gradual improvement. The total pop- 
ulation and the total number of configurations examined 
were kept constant in all these experiments. Thus for "K 
= 1," the uniprocessor case, the population size was 48, 
while for " K  = 8," the eight-processor case, the sub- 
population on each processor was six, making the total 
population 48. The other genetic parameters, such as 
crossover rate, mutation rate, inversion rate, and epoch 
length, were the same on all processors. The curves for 
the uni- and multiprocessor experiments all lie close to- 
gether for all the circuits. To get a more accurate com- 
parison of the results, the difference in the best netlength 
obtained in the uniprocessor and multiprocessor experi- 
ments in each generation has been plotted. 

Fig. 6 plots Anetlength = (netlengthl - netlength,) * 
100/netlengthl as a function of generation number for K 
= 2, 4 ,  8. It can be seen that Anetlength is initially neg- 
ative. This means that, in the initial stages, the unipro- 
cessor algorithm does slightly better than the multipro- 
cessor algorithm. However, A netlength becomes positive 
later on for all three cases in this experiment. It was ob- 
served in some other experiments that the A netlength var- 
ied somewhat from + 5 % to - 5 % . To test the hypothesis 
that this variation was due to the randomness inherent in 
the algorithm and not due to the migration mechanism it- 
self, the serial algorithm was run repeatedly (1000 times), 
and the results obtained were compared with the results 
from repeated runs of multiprocessor algorithm running 
on eight processors. Fig. 8 shows the scaled cost function 
on the X axis, and the fraction of the runs in which that 
cost function was the result is shown on the Y axis. It can 
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Fig, 7 .  Variation of final netlength in repeated experiments. 

be seen that the one- and eight-processor results are sim- 
ilar. The means and standard deviations of the distribu- 
tions were 49.708 and 2.712 for the eight-processor case 
and 48.107 and 2.956 for the one-processor case. When 
this factor is taken into account, it can be said that the 
parallel algorithm produces results of the same quality as 
the serial algorithm (to within 5%) .  Fig. 7 shows the final 
netlength difference in another set of runs on 1 to 16 pro- 
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TABLE I 
SPEEDUP A N D  RESULT QUALITY 

Num. Proc. 2 4 8 

cktB Netlength 
Delta 
Time (s) 
Speedup 

Delta 
Time (s) 
Speedup 

Delta 
Time (s) 
Speedup 

cktD Netlength 

cktF Netlength 

116 492 
0.76 
1417 

1.9 

156 471 
2.04 
6224 
1.88 

112 233 
- .37 

18 835 
1.94 

119 832 
-2.08 

136 
3.67 

153 528 
3.88 
3248 
3.61 

116 566 
-4.24 

9813 
3.73 

105 880 
9 .8  
360 

7.51 

165 088 
-3.34 

1744 
6.72 

118 505 
-5.97 

5303 
6.91 

cessors. Table I shows the consolidated result quality and 
speedup results for three representative circuits. It was 
observed that the runs of the multiprocessor algorithm 
produced final results within 5 %  of the uniprocessor re- 
sult with extremely high probability. 

The effect of population size on result quality was ob- 
served to determine optimum population sizes. Fig. 9 
shows the final netlength as a function of population size 
for the sequential algorithm and for the parallel version. 
All the data points shown in the figure were obtained with 
the same set of genetic parameters except the population 
size p and the number of generations g .  To keep the total 
number of configurations examined by the algorithm the 
same in all cases, the product p * g was kept constant as 
the population size was varied. The best result with the 
sequential algorithm was obtained with a population size 
of 96. This population was then split across, two, four, 
and eight processors in repeated runs of the parallel al- 
gorithm. It may be observed that K = 2 the parallel al- 
gorithm performs somewhat better than the seqential al- 
gorithm in terms of result quality while in other cases it 
is somewhat worse. In all cases the parallel algorithm pro- 
duces results within + 5 %  of the best sequential result, as 
observed earlier. 
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Fig. 9. Effect of population size on result quality. 

B. Speedup 
The first set of speedup measurements was based on 

measurements of the run time of the parallel algorithm for 
a fixed number of generations, 7K (3.1).  The speedup for 
a K processor experiment is computed as T ~ / T ~ .  Fig. 10 
shows the speedup obtained for cktC. Two curves are 
plotted; the curve labeled “total” is the speedup com- 
puted by dividing the total run time of the serial algorithm 
by the total run time of the parallel algorithm, whereas 
the curve labeled “regionl” is the speedup obtained in 
the initial stages of the algorithm where the improvement 
in netlength is fastest. While the curve labeled “total” is 
smooth and shows almost linear speedup, the curve la- 
beled “regionl” is less smooth, due to the nonuniform 
convergence of the algorithm in the initial stages. This 
nonuniform convergence is due to the effect of the popu- 
lation size and the choice of the initial random population. 
Similar results were obtained for other circuits. Fig. 1 1  
shows the total speedup for three representative circuits 
cktA, cktE, and cktG in another form. The consolidated 
speedup and result quality figures for three other circuits 
are shown in Table I. It can be seen that the final speedup 
in all cases was close to ideal, and the final result quality 
was not significantly different either. The speedup was 
close to ideal because, among the various time factors in 
(3.  l ) ,  the communication time t,,,, was extremely low, 
the initialization and setup times were negligible, and the 
reproduction and evaluation times t,, (n,  p )  and tevcrl (n ,  p )  
scaled properly with the population size, as expected. 

Additional studies on the speedup of the parallel algo- 
rithm were done to rule out scattering effects (due to the 
random number generator) that might lead one to erro- 
neous conclusions about the speedup. The algorithm was 
run repeatedly on one, two, four, and eight processors, 
and the best netlength obtained in each epoch was noted. 
Then a single best-fit curve was obtained for each of the 
four cases (Fig. 12). It was found that in all cases the 
curves had the form a + b / t 0 . 5 .  The a values for all the 
curves were almost the same, indicating that the result 
quality would be the same, given sufficient run time. The 
b values decreased as the number of processors increased, 
reflecting the faster convergence and the speedup ob- 
tained by using multiple processors. The observed b val- 
ues show that the time required to reach a certain given 
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Fig. 12. Empirical convergence curves. 

value of the cost function can be reduced by a linear factor 
by adding more processors. Let the required value of the 
cost function be yo. Then the equations obtained by curve- 
fitting predict the time required to obtain this value to be 
(b /yo  - a))'. Let b, be the y value for the uniprocessor 
case and bK be the b value for the K processor case. As- 
suming the a values are equal, the speedup obtained using 
K processors is (b,  /bK)2. It is observed that this factor is 
a linear function of K.  This second speedup result shows 
that if an adaptive termination condition were to be used, 
stopping the algorithm once the algorithm achieved some 
preset solution quality, the parallelization scheme pre- 
sented here would still achieve excellent speedup. For ex- 

ample, if the placement program were modified for gate 
array placement, with a cost function that emphasizes 
routability rather than minimum wire length, the algo- 
rithm may be modified to terminate once the solution is 
''routable" instead of examining a predetermined number 
of placement configurations. 

Hence, the parallel algorithm attains linear speedup in 
two different senses. In the first case, the parallel algo- 
rithm examines the same number of configurations as the 
serial algorithm, and the speedup factor is close to K as 
the communication, synchronization, and initialization 
costs are kept extremely small. At the same time, the re- 
sult quality is not significantly different from the unipro- 
cessor case. In the second case, the same result is de- 
manded in both the uniprocessor and the K processor runs. 
The time required to do this decreases linearly with the 
number of processors used, showing a linear speedup. 

C. Migrution and Crossover 
Fig. 13 plots the best netlength obtained on each of the 

sixteen processors as a function of the generation number. 
It can be seen that the curves intersect quite often, indi- 
cating that the improvement in netlength occurs in bursts, 
with intervening periods of stagnation. Whenever a par- 
ticular processor is stagnant for a long time, a new indi- 
vidual introduced into the subpopulation by migration 
provides the impetus for a new burst of improvement. 

The efficacy of the migration mechanism was explored 
in the next set of experiments. Fig. 14 shows the conver- 
gence curves for different values of epoch length. The 
number of migrants was kept constant, while the epoch 
length was varied. The best netlength obtained, taking into 
account all the subpopulations, was plotted against the 
generation number for different epoch lengths ranging 
from 10 to infinity. 

It can be seen that there is a big difference in the con- 
vergence rates and the final solution for different epoch 
lengths. Very short epoch lengths (10 and 20) and very 
long epoch lengths (90 and infinity) led to poor results. 
Long epoch lengths imply less transfer of information be- 
tween subpopulations. In the extreme case of infinite ep- 
och length, there is no migration at all and the parallel 
genetic algorithm running on K processors with a total 
population of p is equivalent to a sequential genetic al- 
gorithm run K times with a population of p / K .  Hence the 
solution obtained in the case of long epoch lengths cor- 
responds to the best solution obtained with multiple runs 
of the serial algorithm using a much smaller population. 
Conversely, when the epoch length is very small the sub- 
populations tend to converge. This means the effective 
population size is still p / K ,  but the final solution is worse 
than the case of no migration at all because all the sub- 
populations are identical, making this run of the K pro- 
cessor algorithm equivalent to a single run of the unipro- 
cessor algorithm with a population of p / K  rather than K 
runs as in the case of no migration. It was observed that 
the K processor algorithm performed best for some inter- 
mediate value of epoch length, as seen in Fig. 14. 
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Fig. 14. Migration rate variation 

The migration rate is a function of the epoch length and 
the number of migrants transferred in each epoch. In- 
creasing the number of migrants while keeping the epoch 
length and crossover rate constant corresponds to the 
transfer of larger fractions of the subpopulation from one 
processor to another. This causes the subpopulations to 
become almost identical after a few generations, just as 
in the case of extremely short epoch lengths. Conversely, 
decreasing the number of migrants while keeping the ep- 
och length and crossover rate fixed, or increasing the 
crossover rate while keeping the number of migrants and 
the epoch length fixed, reduces the beneficial influence of 
migration. If the epoch is too short, the subpopulations do 
not have enough time to generate new, highly fit individ- 
uals through crossover before the next migration. Hence 
a single highly fit individual quickly gets replicated in 
every subpopulation, and the net effect is of K almost 
identical subpopulations evolving in parallel. This repre- 
sents a huge wastage of search effort. Similar effects 
would be seen if the number of migrants increased to a 
large fraction of the population size. Conversely, if the 
crossover rate is high, good solutions (schema) are not 
fully exploited because the population size is fixed and 

new, good solutions are generated at a high rate (due to 
the high crossover rate), and the survival probability of 
any one of the good solutions is decreased. Thus a higher 
crossover rate increases the exploration part of the genetic 
algorithm while decreasing the exploitation part which is 
actually the chief strength of the algorithm as compared 
with stochastic hill-climbing techniques such as simulated 
annealing. This means a higher crossover rate reduces the 
effectiveness of the exploitation part of the algorithm, and 
the migration mechanism, which is supposed to aid in the 
exploitation of good schema, becomes irrelevant. 

The crossover rate was doubled, keeping the migration 
rate constant, and the convergence curves for different ep- 
och lengths were plotted. The effect of epoch length vari- 
ation was seen to be minimal, and the best final solution 
was not as good as that obtained with a lower crossover 
rate. With the observation that the crossover rate could 
influence the effect of the migration rate (epoch length), 
the next experiment was an attempt to obtain the best 
crossover rate for a given migration rate. The epoch length 
and the number of migrants per epoch were kept constant 
while the crossover rate was varied. The results are shown 
in Table 11, which shows the final netlength for various 
crossover rates indicated by the number of offspring per 
generation; the higher the crossover rate, the more off- 
spring per generation (see Subsection 11-C). Large cross- 
over rates nullify the effect of migration leading to poor 
solutions. Hence, the best results are obtained by keeping 
the crossover rate and the number of migrants low and 
finding an optimal epoch length to obtain the best solu- 
tion. 

D. Communication Time 

The total communication time is a function of the epoch 
length, as stated earlier. Fig. 15 plots the percentage of 
time spent on communication as a function of epoch 
length. The data were obtained from several runs of the 
distributed algorithm on circuit cktA. The actual com- 
munication and run times for several runs of the parallel 
algorithm on 8 processors are shown in Table 111. It can 
be seen that the communication time is less than 5% of 
the total run time when the epoch length is greater than 
50. This observation, along with the results of the pre- 
vious section, shows that the communication time is not 
a major factor for typical runs of the distributed genetic 
algorithm. It may be noted that the communication time 
here is just the time required to communicate with the 
network subsystem in the workstation; the actual com- 
munication time across the network does not directly af- 
fect the speedup or the solution quality. 

E. Effect of Communication Pattern on Placement 
Quality 

This section discusses the effect of different communi- 
cation patterns on the distributed genetic algorithm. The 
communication pattern establishes a virtual network to- 

--_ 
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TABLE I1 lated to the diameter D of the network. The minimum 
number of epochs needed to propagate information to all 
the subpopulations is D, where D is the diameter of the 

CROSSOVER RATE VARIATION 
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0 20  40  60  00  100 120 
Epoch Length 

Fig. 15. Communication time. 

TABLE 111 
COMMUNICATION A N D  R U N  TIMES 

Five different newtworks of eight processors were sim- 
ulated using the simulation mechanism built into the pro- 
gram (as described earlier). The migration mechanism of 
the parallel algorithm has two components: “sending” 
individuals to other processors and “getting” individuals 
from other processors. “Send” always succeeds, but a 
“get” operation can fail if the processor that has to sup- 
ply the data is not ready. When a “get” operation fails 
in one epoch and succeeds in the next, the data obtained 
in the next “get” operation correspond to the best solu- 
tions of the previous epoch. This is the same as increasing 
the time to propagate solutions across the network by one 
epoch length, and is hence most critical in a ring network. 
In practice, at least a few, but not all, “get” operations 
can be expected to fail, unless the processors are either 
perfectly synchronized or have totally unbalanced loads. 
Hence two kinds of ring networks have been simulated: 
one in which every get operation succeeds, called 
“ring + ,” and one in which every “get” operation is de- 
layed by l epoch, called “ring- .” Hypercube and square 
mesh topologies were simulated, as well as a totally con- 
nected network in which each processor sends and gets 
data to and from randomly chosen processors in each ep- 
och. In the hypercube connection, processors communi- 
cate along one dimension in each epoch. For example, 
processor (100) (100 represents the coordinates of the 
processor in three-space where each coordinate value can 
be either 0 or 1) in a three-dimensional hypercube com- 

Epoch Length Run Time (s) Time (s) municates with processors (000), (110), and (101), re- 
spectively, in successive epochs. In a square mesh, on the 
other hand, a processor at location ( x ,  y) communicates 
with processors at locations (x - 1, y), ( x ,  y - l ) ,  (x  + 
1, y )  , and ( x ,  y + 1) in successive epochs (processors at 
the boundary of the mesh may thus not have any com- 
munication in certain epochs). Hence the largest number 
of epochs required to transmit information from any one 

Total Communication 

30 68 10 
40 68 8 
50 66 6 
60 6 1  4 
70 63 3 

pology on top of the ethernet bus structure. The algorithm 
succeeds in generating a good solution if 

The subpopulations do not converge prematurely. 
The different subpopulations converge in the sense 
that the distance between two populations is con- 
stantly reduced. 

The first condition is satisfied by the migration mech- 
anism. The second condition can be satisfied if there is 
sujicient communication or migration. The value of nmigr 
should be chosen carefully so as to avoid premature con- 
vergence and ensure proper transfer of genetic material. 
Hence the communication pattern and virtual network di- 
ameter are important factors in ensuring placement qual- 
ity. For a given population size, the time to converge de- 
pends on the time to propagate an individual across the 
network to all the subpopulations. This time is clearly re- 

processor in the network to another processor in the net- 
work is just the diameter D of the network, log K for an 
N-dimensional hypercube ( K  = 2 N ) ,  and for a square 
mesh with K processors. 

With the epoch length kept small, ring + was better than 
ring- as expected, and all five solutions were compara- 
ble, with the mesh connection producing the best results 
(see Fig. 16). With a longer epoch length, convergence 
was delayed on all networks, but the results were all still 
roughly equal, with the hypercube producing the best re- 
sults (see Table IV). This suggests that, for small problem 
sizes, when network loading is not an important factor, 
the actual communication pattern is not important. How- 
ever, for large problem sizes, with significant network 
loading at short epoch lengths, the epochs have to be long 
to avoid network congestion problems, and an efficient 
communication pattern is essential for proper conver- 
gence. 
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Fig. 16. Effect of network topology on convergence. Fig. 17. Equal and unequal division of load. 

TABLE IV 
EFFECT OF NETWORK TOPOLOGY 

Topology Final Network 

Random 4 9  536 

Ring - 4 7  768 
Mesh 4 6  524 
Hypercube 4 6  127 

Ring + 47  999  

F. Load Balancing 
The next experiment tested the robustness of the algo- 

rithm in a distributed environment where processors of 
varying capabilities could be present. The population was 
divided unequally across six processors in such a way that 
the expected run time of each processor was the same (to 
ensure maximum efficiency). The result obtained was 
compared to the uniprocessor result and the result ob- 
tained by splitting the population evenly across six similar 
processors. These results are shown in Fig. 17, where " K  
= 1" corresponds to the uniprocessor case, " K  = 6" 
corresponds to six unequal processors, and " K  = 6eq" 
corresponds to six equal processors. The total population 
in all three cases was 108, and the subpopulations in the 
case of the unequal processors were 48,  24, 12, 12, 6 ,  
and 6. It can be seen that the curves for K = 1 and K = 
6 are almost coincident, showing that the parallel algo- 
rithm produces acceptably good results even if the popu- 
lation is unevenly divided across the processors. Hence 
static load balancing is feasible. 

With the knowledge that static load balancing is feasi- 
ble, the next step was to implement dynamic load balanc- 
ing. Two different schemes for dynamic load balancing 
were considered. In the first scheme, the number of pro- 
cessors used remains constant, but the population on each 
processor varies with time. In the second scheme, the 
master controller has a list of n processors from which it 
selects the K least loaded machines. The load on each ma- 
chine is checked periodically. When the load on any ma- 
chine exceeds a specified level, the controller terminates 

the process running on that machine and transfers the pop- 
ulation to the least loaded machine on its list. 

The first scheme is not practicable because of the gran- 
ularity of the genetic operators with respect to the popu- 
lation sizes used. Small changes in the population size do 
not change the resources consumed by the program by the 
same factor; for example, the resources consumed may 
double when the population is doubled, but an increase in 
the population by a factor of 1.5 may not change the load 
by a factor of 1.5. Hence the second scheme was adopted 
and found to work well in practice. 

G. Fault Tolerance 
A degree of fault tolerance has been built into the dis- 

tributed algorithm. Whenever a processor dies, any at- 
tempt to communicate with it results in an error message 
from the operating system. The program can detect these 
errors and stop communicating with the failed processor. 
The total population is thus reduced and the result quality 
is also affected to some extent as it is a function of the 
population size. This defect can be corrected by assigning 
a more active role to the master controller in dynamic load 
balancing and error detection and correction. 

V.  CONCLUSIONS 

This paper described a new distributed placement al- 
gorithm for standard cells. The algorithm runs concur- 
rently on a network of workstations to achieve speedup 
linear in the number of processors used. The low com- 
munication overhead for this algorithm, as compared with 
the synchronization and communication overhead for 
conventional placement algorithms, makes this speedup 
possible. The parallel algorithm preserves the result qual- 
ity of the serial version while achieving this speedup. 
Analysis of several hundred runs of the parallel algorithm 
with different values of K (the number of processors) has 
shown that, if a particular solution can be obtained in time 
7 ,  using a single processor, the same solution can be ob- 
tained in time 7 ,  / K  * C by running the algorithm on K 
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processors, where C is a constant whose value is close 
to 1. 

The parallel algorithm has been observed to be robust 
in the sense that it can run in a heterogeneous computing 
environment where different processors on the network 
have different speed ratings and load factors. The speedup 
and result quality are maintained even in this uneven en- 
vironment, which is a true representative of practical dis- 
tributed computing networks, by means of static and dy- 
namic load balancing. 

Whereas the typical workstation network is just a bus 
with many different machines connected to the bus, the 
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ogy when the number of processors is low, but when the 
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number of processors is increased, a regular virtual net- 
work topology with low diameter, such as the hypercube 
topology, helps to improve the performance of the paral- 
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lel algorithm- An important feature of the current imple- 
mentation of the placement algorithm is that it allows the 
communication pattern to be chosen to obtain the best re- 
sult quality. 

Finally, this work can be readily applied to a large class 
of other CAD problems and also to a host of large opti- 
mization problems in other domains, where adaptive 
search capabilities of the genetic algorithm have been 
found to yield high-quality solutions. 
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