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Abstract—Devices utilizing spoof surface plasmon polariton
(SSPP) effect in the terahertz (THz) domain has attracted in-
creasing attention because such devices can be potentially used
in fast signal processing and storages. In this paper, we present
a comprehensive mathematical model of the doubly corrugated
SSPP (DC-SSPP) structure derived from full-field analysis. Based
on the proposed model, a complete characterization of the struc-
ture is carried out and properties such as dispersion relationships
and S-parameters are obtained. The results show the existence of
slow light modes in the DC-SSPP structure. Discrete sub-wave-
length transmission bands, and sometimes sharp transmission
peaks with strong EM field localization can also be achieved under
certain device designs. They are compared with the simulation
results obtained from the CST software package developed by
Computer Simulation Technology AG. The validation as well as
limitations of the derived results is also discussed in detail.

Index Terms—Dispersion relationship, doubly corrugated spoof
surface plasmon polariton (DC-SSPP), full-field analysis, S-pa-
rameters.

I. INTRODUCTION

A S A RESULT of their potential applications in domains
like astronomical remote sensing, biomedical imaging,

harmful chemical detection, and ultrafast computer logic circuit
[1]–[3], there has been an increasing interest in developing ter-
ahertz (THz) devices and circuits in recent years. Unlike con-
ventional millimeter devices, THz devices utilize higher fre-
quency, typically 0.1–10 THz, to realize higher bit sampling rate
and broader bandwidth. On the other hand, by implementing
simple waveguide structures, THz devices have the potential of
eliminating the bulk and complexity of quantum cascade laser
(QCL) devices working in far-infrared spectrum. Using mature
nanofabrication techniques such as deep reactive ion etching
(DRIE) and lithography, electroplating, and molding (LIGA),
active THz devices, such as THz sources and amplifiers, have
been realized and studied by several researchers [4]–[6]. For
passive THz devices, design and fabrication of guiding struc-
tures, focusing elements and frequency selective filters have also
gained considerable attention [2], [7]–[9].
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Conventional index-guiding methods, such as plastic ribbons
and sapphire fibers, are not suitable for THz waveguiding given
its high signal power loss in the frequency range [7], [10], [11].
As a result, structures employing spoof surface plasmon po-
lariton (SSPP) modes are proposed as a low loss and low disper-
sion alternative. SSPP modes are bound electromagnetic waves
which propagate on the periodically corrugated metal surface
at frequencies outside the conventional plasmonic spectrum of
metals. The transverse mode profile of the SSPP modes mimics
those of the real plasmonic waves of metal in optical frequen-
cies, which gives rise to a strongly localized energy distribution
near the metal-dielectric interface. As a result, sub-wavelength
transmission, which is the low-loss transmission of EM sig-
nals through structural features (holes, slits, etc.) with smaller-
than-wavelength dimensions, can be realized. Wang, et al. have
first demonstrated the possibility of low-loss, dispersion-free
THz waveguiding using metal wires surrounded by dielectrics
[12]. Pendry et al. then proposed the structure with 2-D surface
modifications, namely by introducing periodic holes, grooves
and dimples into the metal-dielectric interface of the device,
to realize sub-wavelength transmission of THz electromagnetic
waves [13]. Transmission, guiding and focusing of THz waves
has then been demonstrated in numerous works that followed
[8], [9], [14]–[17].

By introducing 1-D periodic grooves into smooth waveguide
structure on opposing metal-dielectric interfaces, in this paper a
doubly corrugated SSPP (DC-SSPP) waveguide is realized. This
structure has strong confinement of THz waves inside the groove
region at resonance, and therefore is suitable for various appli-
cations such as narrow bandpass filters and active THz switches
[18], [19]. In our previous work, the DC-SSPP structure has
been studied by using various simulation packages. Elaborate
software, such as HFSS and MEEP, has been utilized to demon-
strate the structure’s great potential in frequency-selective, sub-
wavelength signal transmission in the THz domain.1, 2 Accurate
as they are, these CAD tools usually require long simulation
time and thus are better limited to the final stage of device de-
sign. In contrast, a full mathematical analysis of the SSPP struc-
ture is helpful as it is derived from the physics of the structure,
and is usually more time efficient. Although works of other re-
search groups have shown partial/full mathematic analysis of
periodic corrugated structures aimed at THz applications sim-
ilar to our design [15], [20]–[23], such analysis on a sub-wave-
length DC-SSPP THz waveguiding structure is yet to appear.

1Ansoft HFSS, Ansys Inc., Pittsburg, PA.
2MEEP (MIT Electromagnetic Equation Propagation), Massachusetts Insti-

tute of Technology, Boston, MA.
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Fig. 1. Geometry of the structure under consideration: (a) front view and (b)
cross-section view at plane defined by C-C.

In this paper, we perform full-field analysis of the DC-SSPP
waveguiding structure and based on that, we derive the math-
ematical solutions to the dispersion relationships of different
SSPP modes. A scattering matrix method is then employed and
the transmission properties of the structure are obtained. Prop-
erties of such structure, such as the existence of the slow-light
SSPP mode and discrete transmission bands in the frequency
domain are demonstrated. To our best knowledge, it is the first
work of its kind to solve the full dispersion map as well as trans-
mission properties of the sub-wavelength DC-SSPP THz struc-
tures at once, using full physics analysis and calculations. In
addition, simulations using CST software are performed for the
purpose of comparison.3

This paper is organized as follows. In Section II, the ex-
pression for dispersion relationships of various modes of the
DC-SSPP structure is derived. The difference between sym-
metric and anti-symmetric SSPP modes in the derivation will
be demonstrated in detail. In Section III, the dispersion rela-
tionships are treated as inputs based on which a full scattering
matrix iterative methodology is employed to obtain the trans-
mission property of the structure. Results of both calculations
will be demonstrated and compared with results obtained using
CST simulation software in Sections IV and V. In Section VI,
detailed discussion regarding the interpretation, validity and
limitations of our calculation will be provided. In Section VII,
we will summarize the calculation and present our conclusion.

II. CALCULATION OF DISPERSION RELATIONSHIP

The DC-SSPP structure under investigation consists of
dielectric materials surrounded by metal, and is illustrated in
Fig. 1. The structure is in general divided into two regions:

3CST, Computer Simulation Technology AG, Framingham, MA.

Region I is the waveguiding dielectric section without corruga-
tions, and Region II represents the periodic groove areas. In our
convention, is the period of the grooves, and are the width
and depth of the grooves, respectively, is the height of the
smooth part of the structure, and represents the width of the
structure. The coordinate system is also shown in Fig. 1, with

positioned at the midpoint of the structure and at
the center of one of the grooves.

Based on Maxwell’s equations, mathematical expressions of
the EM fields are explicitly written out for both Regions I and
II. As is common in the treatment of structures with similar ge-
ometry, the -dependency of the EM field is best expressed by a
Floquet mode expansion due to the periodic nature of the struc-
ture [15], [20]–[24]. The mirror symmetry of the structure also
indicates that the field distribution along -axis must be either
symmetric or anti-symmetric. In other words, the -dependency
of mode distributions needs to be in the form of either cosine or
sine functions.

In our convention, we refer to the symmetry of our modes
using the -polarized field. Therefore for anti-symmetric
modes, the EM fields in both regions are expressed as follows.

In Region I

(1)

(2)

In Region II

(3)

(4)

In the above expressions, and denote the wavevec-
tors of the th-order Floquet mode along -axis and -axis in
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Region I, and signifies its amplitude coefficient. Correspond-
ingly, and denote the wavevectors along the two axis
in Region II. Other variables are defined as follows:

in Region I

in Region II, and

By expressing the EM field distributions using above expres-
sions, these modes automatically satisfy the boundary condi-
tions that the tangential field and normal field shall vanish
at all dielectric-metal interfaces. In addition, boundary condi-
tions at the interface between Region I and Region II requires
the transverse EM field to be continuous

(5)

(6)

In our structure is small compared to the wavelength of the
propagating field. As a result higher order modes in Region II as
denoted by the expression are
always evanescent in all other directions. It is therefore safe to
assume that only the lowest order of the modes is signif-
icant in our calculation. In that condition if we denote

and , for any given order of
, the above equations can be

simplified as

(7)

(8)

By integrating both sides of (7) and (8) for one period along
-axis, and by imposing boundary conditions such that tangen-

tial field must vanish at the horizontal surface at in
interval , the following equation can be obtained:

(9)

with

(10)

To solve for and , another equation is needed. Such
equation can be obtained when we consider another boundary
condition, which is that the tangential field must vanish at the
bottom of the groove

(11)

By combining (9) and (11), a matrix equation is obtained for
variables and . In this manner, the problem is formulated
into an eigenvalue equation problem. In order for the equation
to have non-trivial solutions, we need to force the determinant
of the matrix to be 0. As a result, the dispersion relationship for
the anti-symmetric modes of the DC-SSPP structure could be
finally obtained as

(12)

Equation (12) looks similar to the dispersion relationships
solved by other works as presented in [20], [22], [23], however
is intrinsically different. In fact, anti-symmetric modes can only
exist in DC-SSPP structures and therefore is a unique feature of
such geometry. They are best characterized by the degeneracy
of their dispersion curves, as will be shown and discussed in de-
tail in Section IV.

Other than the anti-symmetric modes, the doubly corrugated
SSPP structure can also support symmetric modes, as expressed
by following mode expressions.

In Region I

(13)

(14)

In Region II, see (15) and (16), shown at the bottom of the
next page.

Following the same procedure as in the case of anti-sym-
metric modes, the dispersion relationship of the symmetric
modes can be obtained by solving the following equation:

(17)
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Fig. 2. Break-down of a single “cell” of the DC-SSPP structure into four sections as explained in the .

Compared with (12), the solutions of (17) feature dispersion
curves that closely resemble those of other corrugated struc-
tures. For example, the dispersion relationships of single-sided
SSPP structure are very similar in general shape [20], [22], [23].
The detailed analysis of such modes and their significance in
real applications will also be discussed in Section IV.

III. CALCULATION OF TRANSMISSION PROPERTIES

As an important part in the complete characterization of the
DC-SSPP structure, the transmission properties contain the in-
formation of the frequency-dependent reflectance and transmit-
tance (conventionally denoted as and ) of the SSPP device.
We use scattering matrix method to study such properties and
an iterative algorithm is employed.

We first divide each of the single “cells” (meaning one pe-
riodic unit which repeats itself to form the whole structure) in

-direction into four sections, as shown in Fig. 2.
To be explicit, the four sections are: 1) the abrupt change from

the narrow part to the wide part of the structure which can be
understood as a step junction; 2) the straight wide part (con-
taining the groove), which is an analogy to a smooth transmis-
sion line; 3) the abrupt change from the wide part back to the
narrow part of the structure, which is another step junction; and
4) the smooth narrow part, which again, is an analogy to a ho-
mogeneous transmission line.

The treatment of periodic microwave structures using scat-
tering/transmission matrices (S/T-matrices) are studied in detail
by [25]. Here a similar approach is used to describe the S-ma-
trices of each section of the single cell as delineated above. Un-
like the classical waveguide modes used in [25], in our case the
mode profile inside the structure is described by SSPP modes
as solved in Section II. Accordingly, the mode coupling effi-
ciency across the abrupt structural changes needs significant
modifications.

By using the same notations as in [25], H is defined as the
mode matching efficiency across the boundary and is expressed
as

(18)

In the above expressions, and denotes the transverse mag-
netic fields on the two sides of the boundary and denotes an
inner product. In our case, the mode distributions are obtained
by combining (7), (8) and (11) for anti-symmetric modes, and
their equivalent for symmetric modes. If we assume only the
lowest order Floquet mode is significant, which is usually the
case since higher order modes are in most circumstances evanes-
cent waves, after some straightforward yet tedious mathematical
deductions, we can have

(19)

in Region I

(20)

in Region II for anti-symmetric modes, and

(21)

in Region I

(22)

(15)

(16)
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in Region II for symmetric modes. In the above expressions,
is the amplitude constant, and denotes the complex conjugate.

Take Section I as an example. Using (18), can be calcu-
lated for anti-symmetric mode and for symmetric modes, re-
spectively, as shown in (23) and (24) at the bottom of the page.

The S-matrix of Section I can then be written out using
the following formulas. Here we use the same notations as in
the [25]. is calculated as the effective admittance and is a
function of the mode matching efficiency and the admittance
value . and on the other hand, are the characteristic
admittance of the waveguide on both sides of the interface,
respectively

(25)

For further information regarding definitions of different no-
tations and the calculation of the above expressions, one can
refer to [25]. Following the same approach, the S-matrices of
all the other sections can be as well calculated.

In order to combine S-matrices of four sections together, as
well as to obtain the S-matrix of the whole structure from that
of the single cell, there are in general two approaches. One is to
transform the S-matrices into transmission or transfer matrices
(T-matrices), which can be simply multiplied together to get
the overall T-matrix (and henceforth the S-matrix of the whole
structure). This approach is conceptually straightforward; how-
ever it could introduce significant numerical errors to the end
result when there are evanescent wave terms in the unit T-ma-
trices.

An alternative approach is to use the S-matrices themselves in
the entire calculation. Unlike the T-matrices, since mathemati-
cally the S-matrices are not directly stackable, there is no closed-
form solution to the end result. Instead, an iterative algorithm is
needed to solve the problem. This approach is well explained
and the mathematical form of the algorithm is explicitly given
in several literatures [26], [27]. It is proved to be effective in
terms of eliminating the numerical instabilities as stated above.
Therefore, this iterative approach is used throughout our work
reported here to obtain the overall S-matrix of the DC-SSPP
structures.

IV. DISPERSION RELATIONSHIP: RESULT AND COMPARISON

A DC-SSPP THz structure with dimensions m,
m, m, m, and m (from

now on referred to as DC-SSPP-1 structure) is considered in
our calculation. For meanings of different notations, please refer
to Fig. 1. We use MATLAB as the software environment for
our entire analytical calculation4. The dispersion curves of the
first and second symmetric mode, as well as the first anti-sym-
metric mode of the structure are shown in Fig. 3. Due to the
nonzero width of the structure in -direction, a cut-off frequency
of 0.5 THz is presented. One must note that such cut-off wave-
length should not be used as a benchmark in the description of
sub-wavelength transmission, since in the THz domain the con-
ventional index-guiding mechanism of a waveguide does not
apply.

Fig. 3(a) shows our calculation result, while in Fig. 3(b) simu-
lation result obtained by CST simulation software are included
for comparison. As can be observed, the general shape of the
dispersion curves of both approaches coincides with each other
very well. Quantitatively, there are small yet observable differ-
ences in the two curves. The reason behind such discrepancies
will be discussed in detail in Section VI.

In Fig. 3(a), the dispersion curve of the 1st symmetric mode
resembles closely the shape of the surface plasmon mode on a
smooth metal-dielectric interface. It is therefore an SSPP mode,
and its resonance frequency is by principle determined by the
dimensions of the periodic structure. By examining (12) and
(17), the plasmonic resonance frequency of the first modes can
be estimated to the first order by the following expression:

(26)

In (26), stands for the cut-off frequency due to the nonzero
-dimension of the structure, is the refractive index of the di-

electric material ( with air filling in this case), and is
the speed of light. For the DC-SSPP-1 structure, is calcu-
lated to be 1.06 THz. In our analytical model, the same res-
onance frequency at 1.025 THz can be observed in Fig. 3(a),
which is a close agreement with the estimation. This resonance
frequency corresponds to a wavelength of m, which
is much larger than the height of the waveguide ( m).

4Matlab, Mathworks Inc., Natick, MA.

For anti-symmetric mode

(23)

For anti-symmetric mode

(24)
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Fig. 3. Dispersion relationship of the DC-SSPP-1 structure using the stated
dimensions: (a) as simulated using our analytical model and (b) as obtained
using CST software package. In both figures, the red line with square data
markers denotes the first symmetric mode, the blue line with triangle data
markers represents the first anti-symmetric mode, and the black line the second
symmetric mode.

Therefore this mode represents a sub-wavelength resonance of
the structure.

From Fig. 3(a) a slow-light mode can also be observed, which
is the 1st anti-symmetric mode (as represented by the blue line).
This mode has a nearly flat dispersion curve, which suggests the
existence of a pass-band very sharp and narrow. However, on
the downside, this flatness also indicates a mode group velocity
of almost 0, which will severely lower the energy coupling effi-
ciency into and out of the structure.

This mode has a great potential to be used in applications such
as passive frequency filters and active switches. Nonetheless, to
really take advantage of it, we need its dispersion relationship
to have a reasonable slope and curvature. This is realized by
adjusting the dimensions of the DC-SSPP structure. To illustrate
our point, we use an example with the following dimensions:

m, m, m, m, and
m (from now on referred to as DC-SSPP-2 structure). The

new dispersion relationships of the same three SSPP modes are
shown in Fig. 4. Compared to the DC-SSPP-1 structure, the only
change here is to replace m with m.

From Fig. 4, an increase in the slope of the first anti-sym-
metric mode can be observed. Furthermore, in this case, even
the second symmetric mode becomes reasonably narrow band,
which is a good demonstration of the influence of geometrical
dimensions on the spectral responses of DC-SSPP structures.
Again, comparison between the curves obtained by MATLAB
and CST shows small yet discernible differences, especially
when it comes close to the resonance frequencies. The reason

Fig. 4. Dispersion relationship of the DC-SSPP-2 structure using the stated
dimensions: (a) as simulated using our analytical model and (b) as obtained
using CST software package. In both figures, the red line with square data
markers denotes the first symmetric mode, the blue line with triangle data
markers represents the first anti-symmetric mode, and the black line the second
symmetric mode.

why our MATLAB calculation is slightly more error-prone
when near resonance will be discussed later in Section VI.

From both Figs. 3 and 4, it is observed that frequency selec-
tive modes are the higher order modes above the first band-gap.
The fundamental mode (1st symmetric mode in our context) on
the other hand, is always occupying a broad pass-band directly
above cut-off and hence is less useful in any frequency sensi-
tive designs. In that sense, knowledge of the higher order SSPP
modes is of more significance than that of the fundamental one.

Regarding this demand, our simulation is able to draw the
dispersion map of all the higher order modes of the DC-SSPP
structure, which is included here in Fig. 5. It shows the disper-
sion curves of the first 5 modes of the DC-SSPP-1 structure from
which the complex nature of those modes can be clearly seen. In
general, those higher order SSPP modes can be categorized into
two kinds. One kind consists of modes that are separated by the
band-gaps, as a natural solution to (12) and (17). They are also
the same higher order modes as we referred to in all previous
figures and analysis. The other kind, on the other hand, consists
of modes that are merely pushed up from lower orders as higher

-direction orders are used in calculation (represented by larger
values in the expression ).

Therefore they are almost clones in shape to the lower order
modes and can be easily recognized.

Since the mode solutions with different -dimension orders
are themselves independent, modes from different -orders can
intersect with each other without affect the accuracy of our cal-
culations. However, if one is to use any of those modes in real
applications, cares must be taken such that the EM field can be
selectively coupled into the specific mode as one desires.
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Fig. 5. Dispersion map of the first 5 modes of the DC-SSPP-1 structure: (a) as
simulated using our analytical model and (b) as obtained using CST software
package.

V. TRANSMISSION PROPERTIES: RESULT AND COMPARISON

Using DC-SSPP-1 structure, the S-parameters for the 1st
symmetric mode of the structure as obtained using our an-
alytical model is presented in Fig. 6(a). The structure under
consideration has 5 sets of grooves. The curve can be divided
in general into two parts, namely the pass-band on the left half
and the stop-band on the right half of the graph. When the
frequency is in the pass band, Fabry–Perot effect caused by
multiple reflections from different groove edges gives rise to
the multiple ripple features that can be observed on both
and curves. For comparison, the same S parameter curves
are obtained using CST simulation packages and the result is
included here in Fig. 6(b). As we can see, the two curves are
almost identical. There is a small yet discernible difference be-
tween frequency values where total reflection begins to appear.
The detail of this discrepancy shall be included in discussion in
Section VI.

In Fig. 6(c) details of the S-parameters near the start of the
second transmission band near THz is shown. This
transmission band corresponds to the second symmetric mode
as is shown in the dispersion relationship curves in Fig. 3(a).
On the other hand, the first pass band in Fig. 6(a) and (b) cor-
responds to the first symmetric mode of the structure, as can be
clearly observed.

We did the same simulation on the DC-SSPP-2 structure.
Similarly, five sets of grooves are considered in the calculation.
The simulations result is shown in Fig. 7.

Similarly, the S curves in Fig. 7 can be divided into sections.
From 0.5 THz to about 1.4 THz we observe the first pass-band,
where the ripple features on the curve suggests multiple reflec-
tions. The broad peak in the parameter is a sign of the first
band-gap, which is centered at 1.5 THz. The second band-gap
starts at around 2.0 THz, as represented by the sudden growth of

Fig. 6. S-parameters of the DC-SSPP-1 structure: (a) as simulated using our
analytical model, (b) as obtained using CST software package, and (c) details at
the start of the second transmission band around � � ���� THz. In these figures,
the red line with square data markers denotes the � parameter, and the blue
line with triangle data markers represents the � parameter.

to 1 and the abrupt drop of to 0. When compared with
the CST simulation result, it is also quite obvious that the two
curves agree with each other with reasonable accuracy. There
is a very narrow transmission peak at around 2.28 THz, corre-
sponding to the flat 2nd symmetric mode. In Fig. 7(c) a blow-up
of this narrow peak in transmission band is shown. It can be
seen that this peak in fact consists of multiple small transmis-
sion lines, which is again caused by the Fabry-Perot effect of
multiple reflections. The multiple features of the transmission
curve match perfectly with the dispersion relationship we have
calculated for the same structure, which is shown in Fig. 4(a).

In both structures, discrete transmission bands are observed
in sub-wavelength frequencies. Those transmission bands/peaks
near SSPP resonance are at 1.10 THz ( m) and 2.28
THz ( m) for DC-SSPP-1 and DC-SSPP-2 struc-
tures, respectively, both of which are multiples of the waveguide
height. One can also observe from (26) that the width of the
waveguide determines the cut-off frequency of the DC-SSPP
structure by affecting . When increases, the cut-off wave-
length decreases and so will the SSPP resonance frequency,
resulting in even larger passable wavelength for the same height
of the waveguide.
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Fig. 7. S-parameters of the DC-SSPP-2 structure: (a) as simulated using our
analytical model, (b) as obtained using CST software package, and (c) details
around the narrow transmission peak near � � ���� THz. In these figures, the
red line with square data markers denotes the � parameter, and the blue line
with triangle data markers represents the � parameter.

The existence of sub-wavelength transmission band, and
sharp transmission peaks under certain device designs enables
us to employ the DC-SSPP structure in various applications
such as frequency filters and active switches. Such property is
a unique feature of the DC-SSPP structure.

VI. DISCUSSION

From the simulation results demonstrated in the previous two
sections, it is fair to conclude that our calculation of both dis-
persion relationship and S-parameters show a very close match
to the result obtained from elaborate simulation software pack-
ages (here we use CST). In this section, discussions regarding
the small quantitative difference between the numerical results
from two approaches will be given out in detail.

In both the result for dispersion curves and that of S-param-
eters, there are discrepancies in the frequency number where
certain curve features lie. For example, when we consider the
frequency where the first anti-symmetric mode starts for the
DC-SSPP-1 structure, our result shows 1.025 THz while the

Fig. 8. Percentage of energy stored inside the groove regions as compared with
the total EM field energy, plotted against frequencies.

CST simulation suggests 0.963 THz, which demonstrates a dif-
ference of 6%.

We conclude such discrepancy to be caused largely by the
fact that edge effect is not included in our analysis of the struc-
ture. In real situations, EM field inside the grooves (namely in
Region II in our convention) and outside them (in Region I) are
coupled with each other near the boundaries. In other words,
the field lines are not strictly horizontal or perpendicular to the
boundary when they are crossing it, instead they are bended to
ensure a smooth transition between mode profiles in two dif-
ferent regions. This physics phenomenon is called the edge ef-
fect since they tend to happen at the edge of transitions, and usu-
ally become more significant when the wavelength of the EM
field becomes smaller, especially when it is comparable with
the periodic structural dimensions.

For the DC-SSPP-1 structure, the SSPP resonance frequency
at 1.025 THz corresponds to a wavelength of m. Al-
though this wavelength is larger than the longitudinal dimen-
sion of the structure ( m), their magnitude are still
somewhat comparable. In this case the edge effect can intro-
duce small yet visible errors into our analysis, as the division of
mode profiles strictly into two separate regions is not an accu-
rate description of the mode distribution anymore.

The influence is even more significant when the frequency is
near the plasmonic resonance frequency, as at resonance most of
the energy is localized inside the groove region and the bending
of EM field is therefore more emphasized. Fig. 8 illustrates the
ratio of energy stored inside the groove as compared with total
energy in the DC-SSPP-1 structure. A maximum of the curve
can be clearly seen when the frequency is near resonance.

On contrary, if the resonance frequency of the structure
is much larger than its periodic dimensions, edge effect will
become negligible and the accuracy of our calculation will
be improved. As an example, we simulated the structure with

m, and with all other dimensions staying the same
as DC-SSPP-1 structure. In this case, the SSPP resonance
frequency of the structure as calculated by (10) has become
0.625 THz, which corresponds to a wavelength m.
In Fig. 9 the dispersion relationship of the first five modes
of such structure is shown, along with the results from the
CST simulations. As can be seen, here the results from both
approaches are almost identical to each other. For example,
the frequency where the first anti-symmetric mode resides is at
0.620 THz in our simulation, while the same frequency point in
the CST result is located at 0.613 THz (both in close agreement
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Fig. 9. Dispersion map of the first 5 modes of the DC-SSPP structure using
all the other dimensions of the DC-SSPP-1 structure but � � ��� �m, (a) as
simulated using our analytical model, and (b) as obtained using CST software
package.

with our estimation using (26)), indicating a diminished error
down to 1.1%.

VII. CONCLUSION

In this paper a full analytical model of the doubly corrugated
SSPP (DC-SSPP) structure working at THz frequency is estab-
lished. Simulations based on such model on the dispersion re-
lationships as well as S-parameters of the structure has been
carried out, and the results are compared with those obtained
by simulations using elaborate industrial level software pack-
ages, in this case the CST. It is demonstrated that although we
implemented a far less complicated mathematical model to the
problem, the result is in general accurate. The shape of different
curves coincides with each other very well. A small quantitative
error still exists, albeit it is not by any means significant.

Our simulation can be used to calculate dispersion relation-
ships of arbitrary number of SSPP modes in the DC-SSPP struc-
ture, therefore providing a full dispersion map of the structure.
Discrete transmission bands in sub-wavelength scales have been
observed. If the structure is designed properly, a sharp transmis-
sion peak in frequency domain is also demonstrated, which can
be extremely useful in the design of devices such as passive fre-
quency filters and active THz switches.

Considering the simplicity of our algorithm and fast com-
puting time as a result, the analysis as presented in this paper
is an effective method in the initial design stages of any device
based on DC-SSPP structures.
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