

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S 395

register (MAR) and the memory data register (MDR) form the
bottleneck in speeding up the test algorithms. In this paper, a
new RAM organization with parallel testing technique has
been proposed, and two O(&) algorithms have been designed
to detect the pattern-sensitive faults. In the test mode, the
decoder makes multiple selection of bit lines allowing one to
write the same data simultaneously at many storage locations
on the same word line. In the read mode, a multibit
comparator concurrently detects the error. if any. The
additional hardware is minimal and has been designed such
that it can fit within the limits of 3X to 6X intercell pitch width,
where X is the technological feature width.

The technique of parallel testing was at first proposed by
You and Hayes [8], by reconfiguring the memory cells into an
n-bit shift register and using a built-in test generator to test
many bit lines concurrently. This test procedure has O (6)
complexity. It detects limited types of pattern-sensitive faults
where a write operation becomes faulty in the presence of a
few specific patterns in its adjacent cells. It does not detect the
faults caused by transitions in the neighborhood. Moreover, it
relies on comparing only two cells in memory arrays having
two partitions. Thus, if two cells are identically faulty, the test
fails to detect the faults. In contrast to their technique, a
multibit comparator which concurrently detects simultaneous
0’s and 1’s has been used in this paper. You and Hayes
reconfigured the memory subarray of size s bit into an s-bit
cyclic shift register, where the data recirculated whenever a
read operation was performed. The reconfiguration was
accomplished by introducing pass transistors on the bit lines
which deteriorated both the sensitivity of the sense amplifiers
by VT (threshold voltage in MOS devices) and the access time
of RAM in normal mode of operation.

Kinoshita and Saluja 191 analyzed the overhead involved in
microcoded, ROM-based built-in test generator for testing the
pattern-sensitive faults, using test algorithms of linear time
complexity. In a subsequent paper, Le and Saluja [lo] utilized
the concept of parallel access by modifying the bit lines, and
improved the complexity of their algorithms. A potential
problem in their technique was the reliability of parallel read
operation, particularly in multimegabit DRAM where hun-
dreds of cells are accessed simultaneously for reading and
writing.

Sridhar [l 11 proposed an alternate scheme that used the
parallel signature analyzer (PSA) to access many bit lines
simultaneously. The PSA operates in three distinct modes: in
the scan mode, it is loaded with a specific pattern from outside
the chip by sequentially scanning in the bits; in the write mode,
it writes its stored value to many bit lines in parallel; finally, in
the signature mode, it reads the content of the memory cells
written earlier, and generates an error-quotient bit if there is
any error. Even though signature analyzers are frequently used
for testing, the scheme using PSA has intrinsic problems in
memory testing. At first, the scan mode sometimes reduces the
parallelism in testing. Han and Malek [12] demonstrated that
by using PSA, the popular marching test algorithms [131 could
be speeded up at most by 1.2 times. Second, the‘PSA
introduces an aliasing error in testing. An error in output of the
j t h stage flip-flop at time t; followed by an error in output of

t he j + hth stage at time ti+,, has no effect on the signature, if
there is no feedback tap in the PSA between the j th and j +
hth stage flip-flops. Finally, the overhead in employing a PSA
can be fairly high. A b-bit PSA can be implemented by
approximately 15b transistors. As opposed to this, the
proposed technique uses only 2b + 2 log b + 12 extra
transistors that can be easily laid out even within the
constraints of 3X intercell pitch width in the high-density
DRAM.

II. RAM ORGANIZATION AND OPERATION
Generally, an n x 1-bit RAM, denoted by M,,, consists o f p

identical two-dimensional submatrices, each of size b x w
(= r, say) such that n = pbw. A submatrix, M,, consists of b
bit lines and w word lines. Since in two-layer VLSI technol-
ogy, either the bit line or the word line consists of diffusion/
polysilicon wire which has quadratic signal propagation delay
as opposed to the linear delay of the metal wire, it is
mandatory to partition the M,, into p submatrices so that the
access time does not deteriorate for large values of n. Also in
order to drive long bit lines, larger sense amplifiers are
required to maintain their sensitivity. The partitioning has the
intrinsic advantage, since all the submatrices can be tested
concurrently, and thereby a testing speedup of p is easily
achieved by incorporating built-in testing circuits, or by
modifying the addressing scheme in the test mode. But p
partitions are achieved at the expense of proliferating the sense
amplifiers by a factor of 6, and also physically redistributing
the decoder logic that introduces additional routing complexity
and delay. For practical large DRAM’S of size 64K bit or
more, the value of p is usually chosen between 2 and 16. The
ratio e = b / w is called the eccentricity of M, and is chosen
such that the access time is minimized. Usually, e 2 1 if the
word line is made of metal, and e I 1 if the bit line is made of
metal.

L e t B = { 0 , 1 , . * . , b - l)denotethesetofbitlinesinM,
and W = (0 , 1, * e , w - l} denote the set of word lines.
The ordered pair (i, j) described by the Cartesian product B
x W denotes the address of the storage cell that occurs at the
crosspoint of the ith bit line andjth word line. Such a cell is
denoted by Co. The state of the cell Co is denoted by so. An
operation $ on cell Cjj is denoted by $(CO) and its new state
by si. Valid operations are to write a 1, or a 0 on a cell, and to
read the content of the cell. These operations are denoted by
W,, WO, and R, respectively. In addition to the above
notations, the operation of writing a transition (i.e., comple-
ment of the present state) will be denoted by W,, and the
operation of writing y E (0 , l} will be denoted by W,.
Depending on the previous state of the cell sjj E { 0, 1 } , the
effect of the application of $ E { W , , WO, R} on Co can be
further classified by the ordered pair in the Cartesian product

1) Ordered pair (0, W ,) is to write 1 erasing a previous 0. It

2) Ordered pair (0, WO) is to write 0 over a previous 0, and

3) Ordered pair (1, W ,) is to write 1 over a previous 1, and

sjj x $.

is called transition write 1 , and is denoted by t .

is called nontransition write 0.

is called nontransition write 1 .

396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

MEMORY ARRAY

l

Fig. 1 . State diagram of a memory cell and its operations.

SENY
AMPLIFIERS

M I X

b - 1

1 2 I - l

W N E DECODER I

c

I I I

I
Fig. 2. Organization of a testable RAM.

4) Ordered pair (1, WO) is to write 0 over a previous 1. It is
called transition write 0, and is denoted by 1.

5) Ordered pairs (0, R) and (1, R) denote the operations of
reading a cell whose previous contents are 0 and 1, respec-
tively.

The operations WO, W,, and R can be represented by the
arcs in the state diagram shown in Fig. 1. Since a DRAM cell
stores a 0 or a 1, the state diagram consists of two states, So
and SI, corresponding to the storage value of 0 and 1,
respectively. In a fault-free DRAM, the action of a read
operation, denoted by R, is to output the content of the cell,
but the cell stays in its original state, as shown by the self-
loops marked R in Fig. 1. If the cell is in state So and a 0 is
written by the operation WO, it stays in the same state.
Similarly, if the cell is in state SI and a 1 is written by the
operation W , , it does not change the state. Hence, these two
writing operations are called the nontransition writes. As
opposed to these writes, an operation W, will result in a
change of state if the memory cell is at So before the write
operation. Similarly, an operation WO will result in a change
of state if the memory cell is at SI before the write operation.
These write operations are called the transition writes. In this
paper, it will be assumed that only the transition writes and
read operations may be faulty. The nontransition writes
generally do not result in fault and will not be tested by the
proposed test algorithms. In memories where nontransition
writes can be faulty, they can be easily tested by following up
every transition write in the test procedure by an additional
nontransition write. In memories with nondestructive read,
the operations (0, R) and (1, R) are such that s; = s,. But in
memories with destructive read, s; may be different from sij.

The read operations in this paper will be assumed to be
destructive like in a single-cell DRAM and they will be tested.

III. DESIGN FOR PARALLEL TESTING OF RAM’S
The organization of the testable RAM with augmented

hardware is shown in Fig. 2. The memory is organized as a b
x w matrix, where b is the number of bit lines and w is the
number of word lines. The normal 1-out-of-b, bit-line decoder
is modified to select multiple bit lines during testing. In
general, b bit lines can be divided into g groups such that the
bit line i belongs to group j , where j = i (mod 8) . In the test
mode, all the bit lines in a groupj are selected in parallel to
execute a read or a write operation. Thus, a write operation in
test mode results in writing the content of the data-in buffer on
all cells at the crosspoints of the selected word line and the
selected bit lines in groupj. In read mode, the content of the
cells located at the crosspoints of the selected word line, and
the selected bit lines group (sayj), are read in parallel. Thus,
if all the multiple-accessed cells contain 0 (l), a 0 (1) is read
out. If all the contents of multiple-accessed cells are not
identical, then whether a 0 or 1 is read out into the data-out
buffer cannot be predetermined. It may be noted that it is not
entirely correct to assume that the resulting operation will be
strictly a wired-OR or a wired-AND. The outcome depends on
the number of 0’s and 1’s in the multiple-accessed cells. Thus,
for example, if all the cells except one contain 1 and only one
cell contains 0, then most likely a 1 will be read out of the
data-out buffer. However, if the reverse situation existed, i.e.,
one 1 and the rest O’s, then a 0 is likely to be read. Thus, the
resulting effect is sometimes an OR operation and sometimes an
AND operation. Because of this anomaly, in read operation it is

MAZUMDER AND PATEL PARALLEL TESTING FOR FAULTS IN RAM’S 397

-
Fig. 3. Modified CMOS bit-line decoder.

not possible to determine by monitoring the data-out buffer
whether all the multiple-accessed cells have identical content.
This limitation has been circumvented by incorporating a
parallel comparator and an error detector in the RAM. The
parallel comparator determines whether the content of all the
multiple-accessed cells are either all 0 or all 1. If, due to some
fault, a write operation on a cell fails or the content of some
cells change, all the inputs to the comparator are not identical.
The comparator detects this anomalous input and triggers the
error latch to indicate the occurrence of a fault.

It should be stressed that only the bit-line decoder is
modified to allow multiple access of cells on the selected word
line. The word-line decoder is not modified, and word lines
are accessed only one at a time. The multiple cells accessed
through multiple word lines are also possible. But this needs
the sense amplifier to drive many cells at a time. For a
moderately large size RAM, this introduces a very high access
time delay. By increasing the physical size of the sense
amplifier driver, delay can be decreased to a certain extent.
But as the sense amplifier driver size is increased, it consumes
more power, and also because of its large gate capacitance, the
sense amplifier slew rate decreases.

A . Modified Decoder Circuit
A typical CMOS implementation of a decoder circuit is

shown in Fig. 3. Transistors Q1, - * , Q7 constitute a normal
decoder circuit. Transistors Qs and Q9 have been added so that
in the test mode the decoder output can be selected by applying
SELECT = 0 independent of the input address. In the normal
mode of operation, SELECT = 1 and the decoder output is
selected by the address input ao, * * e, ak- I . The modified
decoder has been simulated using SPICE and the degradation
in performance due to additional elements has been found to be
an additional 0.1 ns delay (which is 1 percent of the normal
decoding delay).

B. Parallel Comparator and Error Detector
The parallel comparator and error detector monitors the

output of sense amplifiers connected to bit lines which are

selected in parallel. The circuit detects the Occurrence of either
all 0’s or all 1’s. In case any selected bit line is different from
other bit lines in the same group, it triggers the error latch
indicating the Occurrence of a fault. Fig. 4 shows the parallel
comparator and error detector which compare the contents of
cells on the even (odd) bit lines together. Transistors Qo, * * e ,

Q b - l are connected to the sense amplifiers and they are
selected by L1 and Lz. In a normal mode of operation, L1 = LZ
= 1 and the p-type pass transistors isolate the comparator
from the sense amplifiers. In the test mode, if L1 = 1 and L2
= 0, all the p-type pass transistors connected to the set of odd
bit lines conduct and provide the input to the parallel
comparator while even bit lines remain disconnected. If L1 =
0 and L2 = 1, all the p-type transistors connected to the set of
even bit lines provide the input to the parallel comparator.
Transistors T I , , T,,, - I are connected in parallel and detect
a concurrent occurrence of 1 in bit lines set. Transistors P I ,
... , P,,,- I are connected in parallel and detect concurrent
Occurrence of 0 in bit lines set. Transistors To and PO are the
precharge transistors which are turned on by precharge clock
phase 41. Transistor P,,, is the discharge transistor which
remains cut off during the precharge phase and turns on during
the discharge clock phase 62. Transistors So, S I , and S2 form a
coincidence detector. If all the selected bit lines are not 0 or 1,
then both SI and S2 remain in cutoff and the output of the
detector is 1. The output of the detector is connected to an
error latch through the pass transistor S4 that isolates the error
latch during phase 41. It may be noted that during the
precharge phase, the transistor So will be directly shorted
through the error amplifier if S, does not isolate the coinci-
dence detector from the error amplifier. During phase 42, the
output of the coincidence detector is connected to the error
amplifier through S4. The error amplifier consists of transis-
tors Vo, e , V,. The error latch output is ERROR = 1, when
the selected bit lines are not identical. If the bit lines are all
l’s, then SI conducts and S2 remains cut off and the detector
output is 0. This holds the error latch output to ERROR = 0.
If the bit lines are all 0’s then S2 conducts and SI remains
cut off, setting the error latch output to ERROR = 0. During

398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

write phase and normal mode of operation, the error latch is
clamped to zero by V,. The error detector is inhibited by the
discharge transistor P,,, during the start of the read phase,
when the sense amplifiers' outputs are not identical because of
sluggish changes in some of the sense amplifiers.

IV. ALGORITHMS FOR TESTING PATTERN-SENSITIVE FAULTS
The test algorithms discussed in this paper have

O (& m complexity, and they can detect the restricted
pattern-sensitive fault (PSF) [141. An unrestricted PSF has
been shown by Hayes [15] to have (3n2 + 2n)2" test
complexity and is impractical in a large size DRAM. In a
restricted PSF, an operation $(C,) is faulty due to the
presence of a specific data pattern in a set of physically
adjacent cells (called its neighbors), or due to a specific
operation on one or more cells in the neighborhood. Fig. 5
shows the physically adjacent cells of Cij and their neighbors
are defined as follows.

Definition I : A base cell C, and its four rookwise adjacent
neighboring cells C;, I,j and Ci,j+ are called a von Neumann
neighborhood (or Type-1 neighborhood) of C,. If the base
cell is deleted, the set of remaining cells in the neighborhood is
denoted by NI. Cells Ci, I,, that share the same word line with
the base cell are denoted by N,, while the cells Cj , j+I that
share the same bit line with the base cell are denoted by Nb,
such that N I = Nb U N,.

Definition 2: A base cell C, and its eight adjacent
neighboring cells Ci, I , j + are called a Moore neighborhood
(or Type-2 neighborhood) of Co. If the Type- 1 neighborhood
is deleted from the Type-2 neighborhood, the set of remaining
cells in the neighborhood is denoted by N2.

Definition 3: A static pattern-sensitive fault (SPSF) is
said to occur if an operation $(Cii) is faulty in the presence of
a fixed pattern in a predefined neighborhood of cell C,.

Definition 4: A dynamic pattern-sensitive fault (DPSF) is

I i+2
j-1 j j + l j+2

Fig. 5 . Base cell C,, and its neighbors.

said to occur if the state of the cell C, changes because of an
operation $ on one cell in its predefined neighborhood in the
presence of a specific pattern.

The above definitions apply to all memory operations,
namely, read, transition writes, and nontransition writes.
Unless specifically stated in the following discussion, we will
assume that only the transition writes and reads are faulty.

Let the cells in the neighborhood be assigned the k distinct
positive number in the set (0, 1, * - , k - l } such that the
number i is assigned to the base cell. The content of the
neighborhood can be denoted by a state vector (sosl * * si
sk - where sj is the state of the cell which has been assigned
the number j E (0, 1, e , k - 1 } . Clearly, the state vector
space of a neighborhood of size k describes a k-dimensional
symmetric Boolean hypercube in which the nodes represent all
different possible patterns which can be stored in the neighbor-

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S 399

Fig. 6. State space graph for neighborhood with k = 3

hood. A node in the state vector space graph is numbered m,
where m = E,!:; sj2J and, evidently, 0 I m I 2k - 1. An
edge corresponds to the state transition due to a transition-
write operation W, on a cell in the neighborhood. Let $ (j)
denote an operation of $ E { Wl, WO, W,, R} on the cell
numbered j . Thus, W,(i) changes the state vector from (~ 0 ~ 1

operations on 2k nodes sensitize the transition-write SPSF, and
hence at least 2k transition-write operations are required to
detect all the SPSF’s in a neighborhood of k cells. All other
operations W,(j # i) sensitize the transition-write DPSF’s,
and the minimum number of transition writes is equal to (k -
1)2k (note that each undirected edge in the symmetric k-cube
corresponds to two transitions). In Fig. 6, a three-dimensional
symmetric Boolean cube represents the state vector space of a
hypothetical neighborhood of size k = 3. Assuming that i = 2
is the base cell, all the diagonal edges between the outer and
inner squares sensitize the SPSF’s while the rest of the edges
sensitize the DPSF’s. A naive approach to test these SPSF’s
and DPSF’s will be to perform both the transition writes (t
and 1) on each cell of the memory, and to follow each
transition write on a cell by read operations over all the cells in
its neighborhood. Since there are k2k transition writes per
cell, there will be altogether (k + 1)k2k operations per cell.
Thus, for an n-bit memory organized into a & x G a r r a y ,
the naive approach requires n(k + operations. This
complexity can be reduced by a factor of k if the write
operations are cleverly done so as to sensitize several PSF’s
simultaneously in the overlapping neighborhoods. Notions of
graph coloring and tessellations [16], [17] are useful in
deriving these test patterns.

A valid test is a tour on the directed Boolean cube that
traverses all edges. A tour, which traverses each edge once
and only once, is a minimum length test set. Such a tour is
called an Eulerian tour on the graph. An example of an
Eulerian tour in Fig. 6 is (0,2,3,1,0,4,6,7,5,4,5,7,6,4,
0,1,3,2,0) recalling the fact that each edge in the Fig. 6
represents two directed edges in opposite directions. Simi-
larly, an Eulerian tour on the Boolean 5-cube gives a minimum
length test set for the SPSF’s and DPSF’s in the Type-1
neighborhood of Fig. 5. Algorithms for deriving an Eulerian
tour over a symmetric n-cube are well-known [3], [4], [18].

A. Algorithm for Testing PSF over Type-I
Neighborhood

In order to obtain a test size having an optimal number of
transition writes, each memory cell C , in the RAM is assigned
a positive integer k = (2 j + i) (mod 5) such that k E
{0,1,2,3,4). The above assignment function ensures that each
base cell CO, which is assigned the value k, is surrounded by

-
S; Sk-1) to (SoSl * ’ . Si ‘ * . S k - 1) . ,411 such W,(i)

I \ ,

1 2 3 4 0 1 2 3

a 4 0 1 2 3 4 0

s 1 2 tttKtti 3 4 0 1 2

s o 1 2 3 4 0 1

Fig. 7. Cell number assignment.

four cells (NI) whose assigned values are distinct and not k.
Fig. 7 shows the cell assignment values from which it can be
seen that every cell that is assigned the value 1 has cells
numbered 2,3,4, and 0 in its Type-1 neighborhood. By
assigning the cell numbers in this manner, the average number
of transition writes per cell can be minimized to 32, when the
sequence of writes is derived from an Eulerian tour. This
assignment also ensures that the cell values form a periodic
pattern that repeats after five successive word lines. A number
of other neighborhoods consisting of five cells can be
described by the above cell numbering scheme [19]. These
neighborhoods, which are identified later on, can be shown to
tessellate the memory plane like the Type-1 neighborhood. By
superimposing these different neighborhoods, the actual effec-
tive physical size of the neighborhood spans over 25 cells.

Table II shows the successive bit patterns obtained from an
Eulerian cycle over a 5-cube. This constitutes the optimal
transition writes necessary to sensitize all the SPSF’s and
DPSF’s. It may be noted that the Hamming distance between
any two successive patterns in Table I1 is always 1. Thus, to
obtain a successive pattern, only a single transition write is
required on a cell in the neighborhood. The transition write
involved in obtaining the mth test pattern from the (m - 1)th
test pattern can be defined to be an operation #m. Thus, for
example, operation # I in Table 11 describes the operation of
writing a transition 1 (t) on the cell numbered 3 in the
neighborhood, and operation #6 implies writing transition 0
(1) on the cell number 4. Let the state of the neighborhood
S,-l change to S, (where 0 I S,, I 31) due to
operation #m in Table 11. Then, in general, the operation is t
on cell numberedp E {0,1,2,3,4} in the neighborhood if S,
= S,- + 2P or the operation is 1 on the cell numbered p if

The above set of operations can be applied to the memory
locations as described in Algorithm 1. All the memory cells
numbered p on a word line are written in parallel using the
proposed modified decoder. The word lines are written
sequentially so that in w writes (lines e-g of Algorithm 1) all
the cells numbered p are applied the operation m and all the
neighborhoods in the memory contain the pattern m in Table
II.

In one read operation, all bits on a word line are read and
compared simultaneously using the parallel comparators.
Thus, to read the whole memory in line i of Algorithm 1, w
operations are needed. It may be noted that the effects of
executing the lines e-k for a particular value of m, a

s, = S, - , -2p.

400

- -
OP
I

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

- -

=

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

TABLE II

EULERIAN TOUR
BIT PATTERNS IN A TYPE-I NEIGHBORHOOD REPRESENTING AN

s, ’ ’ ‘ S O

00000
01o00
1 lo00
1oooO
lo001
11001
01001
oooO1
m11
01011
11011
1001 1
10010
11010
01010
o0010
001 10
01110
11110
10110
10111
111 1 1
01111
00111
00101
01101
11101
10101
10100
11100
01 100
00100
00101
00100
001 10
00111
o001 1
o0010
00000
OouOl

-
- -
OP
x
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

- -

- -

s, ‘ . ‘ sg

01001
01o00
01010
0101 1
01111
01110
01100
01101
11101
11100
11110
11111
1101 I
11010
1 1 0
11001
lo001
loo00
10010
1001 1
101 11
10110
10100
10101
lmol
10101
lIlOl
11001
01001
01101
00101
oooO1
00000
00100
01100
01o00
1 1 0
11100
10100
loo00

-
- -

OP
x
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
I14
115
116
117
118
119

- -

- -

r i l

Bas cell 0 Bas Cell 1 Bas Cell 2

I, ’ ’ ‘ so

10010
101 10
11110
11010
01010
01110
00110
oo010
o0011
00111
01111
01011
1101 1
11111
10111
1001 1
o0011
10011
10010
m 1 0
00000
loo00
lo001
oooO1
00101
10101
10100
00100
001 10
101 10
101 11
00111
01111
11111
11110
01 110
Oll00
11100
11101
01101

-
- -

OP
x
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

- -

- -

#,
Bas Cell 3

1,. ‘ ‘ S O

01001
11001
1 1 0
01o00
01010
11010
11011
01011
01001
01011
01111
01101
00101
00111
o0011
oo001
1 0 1
loo11
101 11
10101
11 101
1 1 1 1 1
11011
11001
1 loo0
11010
11110
11100
10100
10110
1010
loo00
00000
m 1 0
00110
00100
01100
01110
01010
01o00
00000

-

+,
Bas Cell 4

Fig. 8. Pattern written in different neighborhoods by operation 55.

transition write o n p sensitizes one SPSF for the pattern in line
m for all cells numbered p and it also sensitizes one DPSF for
all cells numbered other than p . Thus, for example, operation
55 of Table I1 in which a transition write (t) is made on cells
numbered 0, the lines e-k in Algorithm 1 will sensitize all
cells numbered 0 for the SPSF where a t cannot be made in the
presence of binary pattern 1100 in cells 4,3,2, and 1,
respectively. Simultaneously, it will sensitize four DPSF’s in
neighborhoods in which cells 4,3,2, and 1 are the base cells.
This is illustrated in Fig. 8. By executing the lines e-k 160
times for all the patterns in Table II, all the 32 SPSF’s and 128
DPSF’s associated with each memory cell are tested by
Algorithm 1.

Algorithm I . Parallel PSF Test in RAM:

a) Write 0 into every cell of RAM.
b) Set m = 1.
c) Find the cell number, p E {0,1,2,3,4}, in operation #m

from Table I1 on which the transition write is to be made.
d) Set j = 0.
e) Do in parallel the operation #m on C, for all bit lines if

f) S e t j = j + 1.
g) If j < w, go to e); else go to h).
h) Set j = 0.
i) Read in parallel all cells C, and see if ERROR = 0, (if
ERROR = 1, a fault is detected).

j) Set j = j + 1.
k) If j < w, go to i); else go to 1).
1) Set m = m + 1.
m) If m < 161, go to c); else exit success.

Since there are altogether 160 transition writes (plus 1 write
operation is for memory initialization) and the memory is read
160 times and each operation is performed on w word lines,
the overall complexity of the algorithm is 321 w. In an n-bit
RAM organized into p identical square submatrices, Al-
gorithm l will require 3 2 1 d m ’ o p e r a t i o n s to test all the
SPSF’s and DPSF’s. It may be noted that Algorithm 1 tests the
pattern-sensitive faults due to transition writes only. Usually,
for DRAM’S using three or more transistors in each memory
cell, a read operation does not result in destruction of the
content of the cell. Such a read fault that depends on the
pattern of stored data in the Type-1 neighborhood will be
detected by the parallel comparator. Pattern-sensitive faults
due to destructive-read operations in a single-cell, high-
density memory cannot be tested by Algorithm 1 and will be
discussed later on.

I) Computation of Effective Size of the Neighborhood:
The cell number assignment allows one to describe a number
of memory plane tessellations as shown in the Fig. 9.
Neighborhoods in these tessellations are the corresponding tile
shape. It can be seen below that by linear translations of these
tile geometries, the memory plane can be covered without
overlapping (i.e., tessellated). Pattern-sensitive fault proce-
dures described in Algorithm 1 will satisfy over each of the
neighborhood. The effective physical size of the neighborhood
can be estimated by superimposing these tile geometries. But it
is necessary to invoke a constraint that all cells numbered i (0
I i I 4) are mutually noninteractive and consistent in the
sense that a transition write on a cell numbered i neither affects
the content of another cell numbered i in the same neighbor-
hood, nor does it mask the coupling effect between any other
coupling cell i and a coupled cell j # i , both in the same
neighborhood.

B. Algorithm for Testing Symmetric PSF in Type-2
Neighborhood

In order to detect all the static pattern-sensitive faults over
the Moore’s neighborhood, every cell in the memory should
make both t and 1 transitions in the presence of all 2* = 256
patterns in the memory. Thus, overall 512 transition writes are

(2 j + i) (mod 5) = p .

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S

\i
j‘

\ i

i

__

40 1

Effective size of the Neighborhood
Base Cell is 3

Fig. 9. Neighborhood effective size.

necessary for each cell in the memory to detect the SPSF’s. In
order to detect all the DPSF’s, each base cell should be tested
by a reading operation whenever a transition write is made
over a cell in the neighborhood of a base cell. Since each cell
can make two types of transition writes for all the possible
binary patterns in the other eight cells and there are altogether
eight neighbors of a base cell, there are altogether 2 x 28 x 8
= 4096 transition writes in the neighborhood of a cell to test
all the DPSF’s. This requires a large amount of test time.

In this section, a new approach has been adopted in which
cells in the 9-neighborhood are categorized into four logical
groups, viz., the base cell, bit-line neighbors (Nb), word-line
neighbors (N,,,), and diagonal neighbors (N 2) as described in
the Definition 1. It may be noted that a pattern-sensitive fault
models the adjacency effect between a base cell and its
physically neighboring cells. It is typically due to leakage
effects between a memory cell and its adjoining cells in the
presence of a particular data pattern in the neighboring cells
[20]-[22]. It has been found that the leakage is maximum

when the symmetrically located cells contain the same bit
patterns [2 I]. By the above classification, many unnecessary
binary combinations are avoided. For example, let there be a
situation when a read operation is made to verify the transition
write t when its bit-line neighbors Ci,,+ and C;,j- 1 contain 0.
Clearly, at first, the bit line i will be precharged to some high
potential. Now, if any of the access transistors of the bit-line
neighbors is weak, then in the presence of 0’s in the bit-line
neighborhood, the precharge level in the bit line will be
degraded, and the sense amplifier on the ith bit line will fail to
detect a 1 in the base cell. Similarly, if there is a weak
transistor in cell Ci+ I,,, which does not allow the base cell to
make a t transition because CiCl,, is at state 0, then it is
enough to test the fault when the symmetrically located cell
C;- l , j is also at state 0, since then the leakage effect will be
predominant. Thus, if a fault does not occur when both the
cells Ci, I , , are at state 0, then it will not occur when Ci+],, and
C;- ,, have different states.

Definition 5: A symmetric static pattern-sensitive fault

402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

(SSPSF) is said to occur if an operation $(C,) is faulty in the
presence of a fixed symmetric pattern in Nb U N, U N2. The
pattern is defined to be symmetric if all cells of N, E {Nb,
N,, N2} have the same value. This fault is denoted by
($(cij)/s(Nb)s(N~)s(N2)), where s(Nb), ~ (N w) , and s(N2)
represent the states of all cells in Nb, N,, and N2, respec-
tively.

Definition 6: A symmetric dynamic pattern-sensitive
fault (SDPSF) is said to occur if the state of the cell Cu
changes because of an operation on one or more cells in Nb
U N , U N2 in the presence of a fixed symmetric pattern.
An SDPSF is denoted by su/$(Cji l,j)s(N,)s(N2), so/

on whether the operation made on cells in Nb, N,, or N2
changes so.

Clearly, s(N,) = 1 if all the cells in the neighborhood N,
E { Nb, N,, Nd} are 1 and s(N,) = 0 if all the cells in N, are
0. It will be assumed that during testing of a pattern-sensitive
fault, the contents of all the cells in N, are always identical.
Since all the cells in N, may not be written in parallel, a read
operation to test a fault is only made when all the cells in N,
are written identically. If all the cells in N, make a transition
write t , then $(Nx) will be denoted by t . On the contrary, if
all the transition mites in N, are 1, then $(N,) will be denoted
by 1. In order to detect the dynamic pattern-sensitive fault in
N,, it will be assumed that the fault will cause at most one
transition in the base cell, whether the operations on the cells
of N, are applied one cell at a time or two cells at a time.

Definition 7: If the base cell i is in state si E {0,1} and a
transition write $ is made on one cell or simultaneously over
two cells belonging to N,, then an SDPSF is said to be
consistent if the state of cell i does not change back from g t o si
after the successive $ operation on the remaining cells in N,.

Utilizing this notation, the SSPSF’s and SDPSF’s can be
represented by Table 111. The four-tuples are as described in
Definitions 5 and 6. Since, there are 16 SSPSF’s and 48
SDPSF’s associated with each cell in the memory, it can be
easily seen that at least 4 X 24 = 64 transition writes in the
neighborhood will be necessary to sensitize all the SSPSF’s
and SDPSF’s of a cell in a DRAM. A straightforward
extension to an n-cell memory will require 64n transition
writes. However, in this section, it will be shown that by
cleverly combining the transition write sequence in overlap-
ping neighborhoods, the total number of transition writes can
be reduced to 16n.

In order to accomplish the minimal transition writes per
memory cell, at first, each cell C, in the memory will be
assigned a positive number k E {0,1,2,3} such that k = 2 (i
mod 2) + j mod 2. Thus, the memory cells are divided into
four types of cells 0,1,2, and 3, as shown in Fig. 10. It will be
shown later that a transition write on a cell followed by a
suitable sequence of read operations on the adjoining cells will
simultaneously sensitize four pattern-sensitive faults and
thereby the number transition writes on each cell can be
reduced by a factor of 4.

In order to obtain a test procedure which needs only 16
transition write sequences per cell, a graph theoretic approach
similar to the earlier algorithm can be used. The 4-tuple,

s (N b) J / (ci,j i 1 1s (N2 or sij 1s (N b) s (N w) $ (NZ) 9 depending

TABLE III
ALL POSSIBLE SSPSF’S AND SDPSF’S

7/001, t/lOl, tm1, ?/Il l .
.l/OOo. kloo. .l./oro. kl10.
&I; Jj101; J./o11, .1/111.
ofloo. oflto. O f l O l , Oflll.

21-2 21-1 21 2i+l 2i+2

Fig. 10. Cell type assignment.

(s(Cij)s(Nb)s(N,)s(N2)) describes a state space of 16 nodes
(states) where each node represents the symmetric binary
pattern in the 9-neighborhood. These nodes are numbered 0-
15, depending on the binary pattern in the 4-tuple. The base
cell state is the MSB in the 4-tuple. By complementing thepth
bit in the 4-tuple, the memory state of the neighborhood will
change from k to k - 2 p , if the pth bit changes from 0 to 1,
and from k to k + 2 P , if the pth bit changes from 1 to 0. All
these transitions from one state to another state represent edges
in the state space graph, and the resulting graph describes a
symmetric four-dimensional cube as shown in Fig. 11.
Clearly, node 12 in the figure represents that the base cell and
its bit-line neighbors contain 1, and the word line and diagonal
neighbors of the base cell contain 0. By making T operation on
the word-line neighbors, N, the content of the Type-2
neighborhood, will change and it will be represented by the
node 14 in Fig. 11. A directed edge from node 12 to node 14
represents this transition-write operation. In general, each
directed edge corresponds to a transition write over all the
cells having the same number, k E {0,1,2,3} in a neighbor-
hood, and since there are always two anti-parallel directed
edges, these two edges are represented as a single undirected
edge in Fig. 11. The set of thick edges corresponds to
changing the state of the base cell and will pertain to
sensitizing the SSPSF’s. Other edges pertain to sensitizing the
SDPSF’s. Similar to Algorithm 1, an algorithm with optimal
transition writes can be obtained by deriving the write

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S 403

t“.’
L

0 = <oooo>
1 = <0001,
2 = <0010>
3 = <0011>

1 4 - <1110>

1 5 = dill>

.

1 3 1 5

Fig. 11. State space graph for neighborhood with k = 4.

sequences from an Eulerian tour over the symmetric 4-cube.
The resulting algorithm will have 97w complexity, involving
32w transition writes, 64w read, and w write operations
corresponding to memory initialization. It may be noted that
even though 64 transition writes over the symmetric 4-cube
are needed to sensitize all the SSPSF’s and SDPSF’s, only
32w transition writes are needed over the entire memory.

Even though the test algorithm derived from an Eulerian
tour has an optimal test length, for many applications like in
the embedded environments, it is desirable to make a tradeoff
between the test length and the built-in self-test (BIST)
hardware. It is shown in [23] and [24] that the test generator
circuit can be simplified considerably if the sequence of
transition writes is derived by decomposing an Eulerian tour
over the symmetric 4-cube into the following eight disjoint
Hamiltonian cyclic tours described over a subgraph of the
symmetric 4-cube:

H1 : (0,2,6,14,15,13,9,1,0)

H2: (0,1,9,13,15,14,6,2,0)

H3: (0,4,6,7,15,11,9,8,0)

H4 : (0,8,9,11,15,7,6,4,0)

N5: (12,4,5,7,3,11,10,8,12)

H6: (12,8,10,11,3,7,5,4,12)

H7 : (12,13,5,1,3,2,10,14,12),

and

H8: (12,14,10,2,3,1,5,13,12).

These tours are shown in Fig. 12, where the set of dark edges
constitutes two Hamiltonian cycles, one in clockwise and the
other in anti-clockwise direction. Thus, Fig. 12(a) represents
the Hamiltonian cycles H 1 and H2 , Fig. 12(b) represents the
cycles H 3 and H4 , Fig. 12(c) represents the cycles H 5 and
H6 , and finally, Fig. 12(d) represents the cycles H 7 and H8 .
The length of each Hamiltonian cycle is eight, and altogether
eight Hamiltonian cyclic tours are made. Thus, all the 64
edges of the symmetric 4-cube are traversed and thereby all
the 16 SSPSF’s and 48 SDPSF’s are sensitized. Initially, the
memory is initialized to zero and the first four Hamiltonian
cycles are performed as indicated above. Then the memory is

1 2 l A

1 5
j 3 C- H1

H2
(a)

1 2 1 4

1 2 1 4

1 5
j 3 t H3

H4 +
(b)

Fig. 12. Hamiltonian cycles on subcubes

reinitialized such that it contains a column bar pattern of 0’s
and 1 ’s, so that the content of the Type-2 neighborhoods in the
memory is represented by node 12. This needs an additional w
write operations which for a 256 Kbit square memory subarray
having a memory cycle time of 50 ns will take an extra 25 ps.
After memory reinitialization, the rest of the Hamiltonian
tours are performed. Thus, the overall tour can be represented
as (H l , H2, H3, H4, (0,12), H5, H6, H7, H8) , and it
consists of 65 transition-write operations. Initially all the cells
in the Type-2 neighborhood contain 0 and successively the
transition-write operations are made to change the state of the
neighborhood. Thus, after the first operation the state of the
neighborhood changes to 2, and after the second operation the
state of the neighborhood changes to 6, and so on. In general,
an operation m will change the state S,- to S,, where S, E
{0,15} denotes the state of the neighborhood after the mth
operation is applied. After each operation, the whole memory
is read to find out whether any SSPSF or SDPSF has occurred.
The above test procedure is described in Algorithm 2 which
uses these write sequences to test the SSPSF’s and SDPSF’s
for every cell in the memory over its 9-neighborhood.

In Algorithm 2, all cells numbered k E {0,1,2,3} make an
upward (t) and a downward (1) transition write in the presence
of all binary patterns in all other cells whose numbers are not
k. There are altogether eight upward transitions in cells
numbered k for eight distinct binary patterns. Also, there are
eight downward transitions in cells k for all eight distinct
binary patterns. Hence, all 16 operations to sensitize SSPSF’s
are performed in Algorithm 2. Since after each transition

404 E E E TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

CmDkxity Neiahbobcd Fault Coverage
Type-1 FI1 = PSF for transition writes + PIF for reads 321h
Type-2 ELI = PSF for transition writes + PIF for reads 9 8 6

Type-’ F12 = FII + PSF for nontransition writes 641‘1;;
Type-2 F22 = ELI + PSF for nmtransition writes 1 9 4 6

Type-1 F13 = F12 + SPSF for read 801G
Type-2 E13 = EL2 + SPSF for read 2 5 8 6

Type-1 F14 = F13 + DPSP for read 1441‘1;;
Type-2 FU = F23 + DPSF for read 4 5 6

1

0 1 0

I1 0 1

BasCCellO BasCCelll B&seCell2 Brpecell3
Fig. 13. Pattern written on different neighborhoods by eleventh operation.

write, all the cells are read, if any SSPSF occurs, it will be
detected by the parallel comparator and error latch. Also,
because of the neighborhood relationship in Fig. 10, every
transition write on cells numbered k will also sensitize the
SDPSF’s for the other three cells for which the number is not
k. For example, in the third operation in H1, the state of the
Type-2 neighborhood changes from 6 to 14 by writing t in the
cell numbered 0 while the contents of the cells numbered 1,2,
and 3 remain the same to 1,1, and 0, respectively. The
succeeding read operation in line 4 of Algorithm 2 detects an
SSPSF in all neighborhoods for which the base cell is 0, and
SDPSF’s in all other neighborhoods for which base cell is not
0 where the fault occurs due to transition in cell numbered 0.
The effect of third operation on different neighborhoods is
shown in Fig. 13. Thus, Algorithm 2 which makes all the 65
transition writes over the entire memory will sensitize both the
SSPSF’s and SDPSF’s for every cell in the memory.

Algorithm 2. Test of Pattern-Sensitive Faults over Type-
2 Neighborhood:

1) Initialize all the cells to 0.
2) Set rn = 1.
3) If the transition write in the mth operation is on cells

numberedp E {0,2}, write on all cells having numberp
and are on even word lines.

4) Read the memory in parallel. Check if ERROR = 0,
else error is detected.

5) If the transition write in the mth operation is on cells
numbered p E { 1,3}, write on all cells having number p
and are on odd word lines.

6) Read the memory in parallel. Check if ERROR = 0,
else error is detected.

7) Set rn = m + 1.
8) If m < 66, go to 7); else exit successfully.

V. TEST PROCEDURES FOR OTHER FAULTS
Nontransition Write Operations: Algorithms 1 and 2

detect the pattern-sensitive faults in the memory due to
transition writes. Since the nontransition write does not
change the state of a cell, it is unlikely to cause a failure. In
memories where nontransition writes are also faulty, the
algorithms in the preceeding section can be easily augmented
by following up each transition write with a nontransition
write. After each nontransition write, the entire neighborhood
is read to detect the occurrence of any pattern-sensitive faults.

Destructive Read Operations: In a switched-capacitor,
single-transistor DRAM which employs a destructive-read
operation, the failure may result during the precharge,
sensing, and restoration phases in a read operation. Since in
the proposed parallel testing scheme, multiple cells are read
and compared simultaneously, any failure in a cell that results
during the precharge and sensing by the sense amplifiers will

be automatically detected by the parallel comparator. A fault
that occurs during the restoration phase when the original data
in the cell are written back, will also be tested by Algorithms 1
and 2, provided the faulty read operation is a pattern-
independent fault (PIF). It can be shown that in these
algorithms every memory cell is read successively twice or
more, without any intervening write operations on it. There-
fore, a fault occurring in the restoration phase will be detected
by Algorithms 1 and 2. But in order to test the read faults
in the restoration phase which only depend on a specific stored
pattern in the neighborhood, every read operation in these
algorithms should be followed by an extra read operation.
Read operations, which may result in static and dynamic
pattern-sensitive faults similar to transition writes, can also be
tested by reading all the cells in the neighborhood after each
read operation on a cell is made. The complexity of these
pattern-sensitive faults over the Type- 1 and Type-2 neighbor-
hoods due to the different types of memory operations are
shown in Table IV. It may be emphasized that for a particular
processing technology, certain operations are more likely to
result in pattern-sensitive faults than others (e.g., a transition
write may cause more pattern-sensitive faults than a read
operation), and hence different test sizes are indicated here.

Decoder Faults: A fault-free decoder makes a bijective
mapping of the input addresses onto the memory cells. A
faulty decoder may cause three types of fault syndromes.
First, an input address may not map onto any memory cell,
and the resulting failure is known as a no-access fault.
Second, an input address may select multiple cells for reading
or writing, and the resulting failure is commonly known as
multiple-cells access fault. Third, a memory cell may be
accessed by multiple addresses, and the resulting failure is
called multiple-address access fault. The different decoder
mappings are shown in Fig. 14. A no-access fault usually
results in a stuck-at fault and will be detected by the pattern-
sensitive algorithms discussed here. It may be noted that in the
event of a stuck-at fault in a cell, it manifests static pattern-
sensitive faults for all the possible patterns in the neighbor-

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S 405

A M A M

M - A M

-0

NOACCESS MULTIPLE-CELLS MULTIPLE-ADDRESS
ACCESS ACCESS

FAULT - FREE

BMECTIVE

Fig. 14. Fault-free and faulty decoding.

hood. Multiple-cells access and multiple-address access faults
cannot be detected by Algorithms 1 and 2. It may be noted that
the bit-line decoders are grouped into g classes in the test
mode, and the multiple-access faults in the bit-line decoder
will be masked if the fault results in accessing bit lines within
the same class. Also, it may be noted that even though the
word-line decoder is not modified, these faults in the word-
line decoder will not be detected by Algorithms 1 and 2. This
is because in these algorithms cells having identical number
are at first written in all word lines before verifying individual
word-line-write operations.

In order to test these faults, a marching-type test procedure
as shown in Algorithm 3 is needed. Steps 1-4 in the al-
gorithm detect the multiple-access faults in a bit-line decoder
by using 2 + 4& operations. Steps 5-8 involve 6&
operations and are used to detect multiple-access faults in a
word-line decoder. In the fault model, it is assumed that
multiple access may occur asymmetrically in the sense that a
line r may be accessed with a line s while the line r is selected,
but the line r is not necessarily accessed along with the line s
when the line s is selected.

Algorithm 3. Bit-Line and Word-Line Decoder Test:

1) Write in parallel ZERO in all cells on the arbitrarily
selected word line Wj.

2) Read and compare in parallel all the cells on Wj.
/* multiple access where decoder selects the correct bit
line r along with one or more bit lines s > r */

3) Starting from the cell at the crosspoint of Bo and W,, for
each cell on Wj, at first write ONE and read the cell (one
cell at a time in ascending order of the bit line).
/* multiple access where decoder selects the correct bit
line r along with one or more bit lines s < r */

4) Starting from the cell at the crosspoint of BJ;; - and W j ,
for each cell on W j , at first write ZERO and read the cell
(one cell at a time in descending order of the bit line).
/* Word-Line Decoder Multiple Access Test */

line Bi.

/* multiple access where decoder selects the correct
word line r along with one or more word lines s > r */

5) Write ZERO in all cells on the arbitrarily selected bit

6) Read all the cells on B;.

7) Starting from the cell at the crosspoint of WO and B;, for
each cell on B;, at first write ONE and read the cell (one
cell at a time in ascending order of the word line).
/* multiple access where decoder selects the correct
word line r along with one or more word lines s < r */

8) Starting from the cell at the crosspoint of WA- Bi, for
each cell on B;, at first write ZERO and read the cell
(one cell at a time in descending order of the word line).

Faults in Parallel Comparator: It may be noted that
the testable hardware in Fig. 4 is only tested partially by
Algorithm 2. When all the even or the odd lines contain 0, the
n-type transistors Po, * a , Pm- I will be tested for stuck-at 1
faults. When all the even or the odd lines contain 1, all the p-
type transistors To, a * a , Tm- will be tested for stuck-at 0
faults. The rest of the stuck-at faults in the testable hardware
can be tested by Algorithm 4. Lines 1 and 2 are used to
initialize the memory, and to verify this initialization, lines 3
and 4 redundantly detect the stuck-at 1 faults in n-type
transistors and stuck-at 0 faults in p-type transistors. Line 5
verifies the stuck-at 0 fault in p-type transistors, and line 6
verifies the stuck-at 1 fault in n-type transistors. The overall
complexity of Algorithm 4 is 4& + 4.

It may be noted that the parallel comparator does not
distinguish between all the 0’s and all 1’s data, and the error
detector may fail to indicate the Occurrence of a reversal of
data. Such a fault can be detected by comparing the value of
data-out buffer to the expected data.

Algorithm 4. Procedure to Test the Parallel Compara-
tor:

1) Initialize the odd cells on the first word line to 0.
2) Initialize the even cells on the first word line to 1.
3) Parallel compare the odd bit lines and check if ERROR

4) Parallel compare the even bit lines and check if ERROR

5) FOR each odd cell in the selected word line, DO

Write a 0, and test if ERROR = 0.)

= 0.

= 0.

{Write a 1, and test if ERROR = 1 ;

6) FOR each even cell in the selected word line, DO
{Write a 0, and test if ERROR = 1;
Write a 1, and test if ERROR = 0.)

406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 3, MARCH 1989

VI. CONCLUSIONS
This paper has discussed an efficient technique to speed up

the RAM test algorithms. Specifically, it has proposed two test
algorithms to test the pattern-sensitive faults in a RAM.
Algorithm 1, requiring 32 1 -operations, detects all the
static and dynamic pattern-sensitive faults in the memory over
a localized neighborhood of five cells, called here the Type-1
neighborhood. By identifying other neighborhood geometries
similar to pentomino tiles [25], [26], the algorithm has been
identified to actually cover a restricted type of pattern-
sensitive fault over 25 cells. The basic algorithms test the
pattern-sensitive faults which occur due to transition writes.
The algorithms have been extended to test the pattern-sensitive
faults due to transition writes and read operations, both in a
DRAM with destructive and nondestructive read. The al-
gorithm derives its transition writes sequence from an Eulerian
tour over a symmetric 5-cube, and it employs an optimal
number of transition writes. As opposed to this technique,
Algorithm 2, which tests symmetric pattern-sensitive faults
over the Type-2 neighborhood consisting of nine cells, derives
its transition writes sequence from the knowledge of eight
disjoint Hamiltonian cycles over the subgraphs of the symmet-
ric 4-cube. For an n-bit RAM organized into p submatrices,
the resulting algorithm has a complexity of 98-
operations, using an extra -transition writes. For a 4
Mbit memory organized into 16 squares subarrays and with 50
ns access time, this needs an extra 25 ps compared to a similar
test procedure where the transition writes are derived from an
Eulerian walk as in Algorithm 1. However, this simplifies the
test generator circuit considerably, and the scheme is useful
for built-in self-test applications.

Even though in this paper only the testing of pattern-
sensitive faults has been discussed, the proposed design-for-
testability technique can be readily used to speed up the
conventional algorithms to test the stuck-at and 2-coupling
faults. Classical tests like the column bar and the checker
board detect the stuck-at faults in memory arrays using 4n
operations. Marching tests detect coupling faults between two
arbitrary cells in the memory. Several versions of the
marching tests can be found in the literature. Nair, Thatte, and
Abraham [27] originally proposed a linear marching test
algorithm which has complexity of 30n operations. Suk and
Reddy [13] improved the complexity to 14n operations by
slightly modifying the fault model, and Marinescu [28]
improved the complexity to n operations for a more restricted
coupling fault model. All these algorithms can be speeded up
by a factor of O (m , but due to the parallel operations
some of the coupling faults will be masked. However, the
parallel algorithms for stuck-at and pattern-sensitive faults do
not mask any fault.

The proposed implementation scheme for the parallel
testing uses minimal extra hardware. The parallel comparator
consists of 2b + 12 transistors and the extra hardware in the
modified decoder is 2 log2 b transistors. Thus, the overall
extra hardware is only 2b + 2 log2 b + 11 transistors, and the
overall chip area expansion is only 0.4 percent for a 256 Kbit
DRAM. The proposed technique needs only one transistor to
fit within the pitch width and easily fits even for the vertically

integrated, single-cell DRAM design with trench-type capaci-
tor having intercell pitch width of 3A [29].

REFERENCES
[I] L. L. Lewyn and J. D. Meindl, “Physical limits of VLSI DRAM’S,”

IEEE J. Solid-state Circuits. vol. SC-20, pp. 231-241, Feb. 1985.
[2] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of

Digital Systems, Woodland Hills, Los Angeles, CA, 1976.
[3] J. P. Hayes, “Testing memories for single-cell pattern-sensitive

faults,” IEEE Trans. Comput., vol. C-29, pp. 249-254, Mar. 1980.
[4] D. S. Suk and S. M. Reddy, “Test procedures for a class of pattern-

sensitive faults in semiconductor random-access memories,” IEEE
Trans. Comput., vol. C-29, pp. 4 1 9 4 2 9 , June 1980.
A. Fuentes et al., “Random testing versus deterministic testing of
RAM’s,” in Proc. 16th Fault-Tolerant Comput. Symp., July 1986,

P. Mazumder, “An efficient design of embedded memories and their
testability analysis using Markov chains,” in Proc. Int. Conf. Wafer
Scale Integration, Jan. 1989, pp. 389-400.
M. A. Rich and D. E. Gentry, “The economics of parallel testing,” in
Proc. Int. Test Conf., 1983, pp. 656-661.
Y. You and J. P. Hayes, “A self-testing dynamic RAM chip,” IEEE
J. SoMSlate Circuits, vol. SC-20, pp. 4 2 8 4 3 5 . Feb. 1985.
K. Kinoshita and K. K. Saluja, “Built-in testing of memory using on-
chip compact testing scheme,” in Proc. Int. Test Conf., 1984, pp.

K. T. Le and K. K. Saluja, “A novel approach for testing memories
using built-in self testing technique,” in Proc. Int. Test Conf.. 1986,

T. Sridhar, “A new parallel test approach for large memories,” in
Proc. Int. Test. Conf.. 1985, pp. 4 6 2 4 7 0 .
S. H. Han and M. Malek, “Two-dimensional multiple-access testing
technique for random-access memories,” in Proc. Int. Conf. Com-
put. Design, Oct. 1986.
D. S. Suk and S. M. Reddy, “A march test for functional faults in
semiconductor random-access memories,” IEEE Trans. Comput.,
vol. C-30, pp. 982-985, Dec. 1981.
J. R. Brown, “Pattern sensitivity in MOS memories,” in Dig. Symp.
Testing Integrated Semiconductor Memories Comput. Main-
frames, Oct. 1972, pp. 33-46.
J. P. Hayes, “Detection of pattern-sensitive faults in random-access
memories,” IEEE Trans. Comput., vol. C-24, pp. 150-157, Feb.
1975.
P. Mazumder, J. H. Patel, and W. K. Fuchs, “Design and algorithms
for parallel testing of random-access and content-addressable memo-
ries,” in Proc. Design Automar. Conf.. vol. 24, July 1987, pp. 688-
694.
P. Mazumder, “Planar decomposition for quadtree data structure,”
Comput. Vision, Graph. Image Processing, vol. 38, pp. 258-274,
June 1987.
C. L. Liu, Introduction to Combinatorial Mathematics. New
York: McGraw-Hill, 1968.
P. Mazumder, “A new strategy for octtree representation of three-
dimensional objects,” Proc. Comput. Vision Pattern Recognition,
June 1988, pp. 270-275.
-~ , “Parallel algorithms for parametric faults testing in three-
dimensional DRAM,” IEEE J. Solid-State Circuits, vol. 23, pp. 933-
941, Aug. 1988.
T. C. Lo and M. R. Guidry, “An integrated test concept for switched-
capacitor dynamic MOS RAM’s,” IEEE J. Solid-State Circuits, vol.
SC-12, pp. 693-703, Dec. 1977.
P. K. Chatterjee et al., “Highdensity dynamic MOS memory
devices,” IEEE J. Solid-state Circuits, vol. SC-14, pp. 4 8 6 4 9 7 ,
Apr. 1979.
P. Mazumder, “Testing and fault-tolerant aspects of high-density VLSI
memory,’’ Ph.D. dissertation, Univ. of Illinois, Dept. Elec. Comput.
Eng., Aug. 1987.
P. Mazumder and J. H. Patel, Design and Algorithms for Parallel
Testing of High-Density VLSI Memories. Boston, MA: Kluwer
Academic.
S. W. Golomb, Polyominoes.
-, “Tiling with polyominoes,” J. Combinatorial Theory, vol. 2,

R. Nair, S. M. Thatte, and J. Abraham, “Efficient algorithms for
testing semiconductor random-access memories,” IEEE Trans. Com-
pur., vol. C-27, pp. 572-576, June 1978.

pp. 266-271.

271-281.

pp. 830-838.

New York: Scribner, 1965.

pp. 280-296, 1966.

MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM'S 407

1281

[29]

M. Marinescu, "Simple and efficient algorithms for functional RAM
testing," in Proc. Ini. Test Conf., Nov. 1982. pp. 236-239.
A. H. Shah et al.. "A 4-Mbit DRAM with trench-transistor cell,"
IEEE J . Solid-State Circuits, vol. SC-21. pp. 618-627, Oct. 1986.

Ann Arbor. His research interests include VLSI testing, computer-aided
design. parallel architecture, and image processing.

Dr. Mazumder is a member of Phi Kappa Phi.

Pinaki Mazumder (5'84-M'87) received the B Sc
degree in physics from the Gauhati University,
Indid, the B S E E degree from the Indidn Institute
of Science, Bangdlore. the M Sc degree i n com-
puter mence from the University of Alberta,
Cdndda. i n 1985. dnd the Ph D degree in electrical
and computer engineering from the University of
Illinois. Urband-Charnpdign. in 1987

He worked for over FIX years as a Senior Design
Engineer dt the Bharat Electronics Ltd (a colldbora-
tor of RCA-GE) in it? integrated circuit5 design-

and-applications laboratory During the summers of 1985 and 1986, he
worked as a member of the Technical Stdff at the AT&T Bell Labordtories in
the area of hardware synthesic from syjtem-level behavioral description
Currently. he is -orking d\ an Assistant Profeswr in the Department of
Electrical Engineering dnd Computer Science of the University of Michigan,

Janak H. Patel (S'73~M'76-SM'87-F'88) was
born in Bhavnagar, India He received the B Sc
degree in physics from Gujarat University, India,
the B Tech degree from Indian Institute of Tech-
nology, Madras, and the M S and Ph D degrees
from Stanford University. Stanford, CA, all three in
electrical engineering

From 1976 to 1979 he was on the Faculty of
Electrical Engineering. Purdue University, West
Lafayette, IN Since 1980 he has been with the
University of Illinois, Urbana-Champaign, where

he 15 currently a Professor of Electrical and Computer Engineering, and
Computer Science, and a Research Professor with the Coordinated Science
Laboratory He is currently engaged in research, teaching, and consulting in
the areds of computer architecture. testing, and fault tolerance of VLSI
systems

Dr Patel is a member of the Association of Computing Machinery

