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register (MAR) and the memory data register (MDR) form the 
bottleneck in speeding up the test algorithms. In this paper, a 
new RAM organization with parallel testing technique has 
been proposed, and two O(&) algorithms have been designed 
to detect the pattern-sensitive faults. In the test mode, the 
decoder makes multiple selection of bit lines allowing one to 
write the same data simultaneously at many storage locations 
on the same word line. In the read mode, a multibit 
comparator concurrently detects the error. if any. The 
additional hardware is minimal and has been designed such 
that it can fit within the limits of 3X to 6X intercell pitch width, 
where X is the technological feature width. 

The technique of parallel testing was at first proposed by 
You and Hayes [8], by reconfiguring the memory cells into an 
n-bit shift register and using a built-in test generator to test 
many bit lines concurrently. This test procedure has O ( 6 )  
complexity. It detects limited types of pattern-sensitive faults 
where a write operation becomes faulty in the presence of a 
few specific patterns in its adjacent cells. It does not detect the 
faults caused by transitions in the neighborhood. Moreover, it 
relies on comparing only two cells in memory arrays having 
two partitions. Thus, if two cells are identically faulty, the test 
fails to detect the faults. In contrast to their technique, a 
multibit comparator which concurrently detects simultaneous 
0’s and 1’s has been used in this paper. You and Hayes 
reconfigured the memory subarray of size s bit into an s-bit 
cyclic shift register, where the data recirculated whenever a 
read operation was performed. The reconfiguration was 
accomplished by introducing pass transistors on the bit lines 
which deteriorated both the sensitivity of the sense amplifiers 
by VT (threshold voltage in MOS devices) and the access time 
of RAM in normal mode of operation. 

Kinoshita and Saluja 191 analyzed the overhead involved in 
microcoded, ROM-based built-in test generator for testing the 
pattern-sensitive faults, using test algorithms of linear time 
complexity. In a subsequent paper, Le and Saluja [lo] utilized 
the concept of parallel access by modifying the bit lines, and 
improved the complexity of their algorithms. A potential 
problem in their technique was the reliability of parallel read 
operation, particularly in multimegabit DRAM where hun- 
dreds of cells are accessed simultaneously for reading and 
writing. 

Sridhar [ l  11 proposed an alternate scheme that used the 
parallel signature analyzer (PSA) to access many bit lines 
simultaneously. The PSA operates in three distinct modes: in 
the scan mode, it is loaded with a specific pattern from outside 
the chip by sequentially scanning in the bits; in the write mode, 
it writes its stored value to many bit lines in parallel; finally, in 
the signature mode, it reads the content of the memory cells 
written earlier, and generates an error-quotient bit if there is 
any error. Even though signature analyzers are frequently used 
for testing, the scheme using PSA has intrinsic problems in 
memory testing. At first, the scan mode sometimes reduces the 
parallelism in testing. Han and Malek [12] demonstrated that 
by using PSA, the popular marching test algorithms [ 131 could 
be speeded up at most by 1.2 times. Second, the‘PSA 
introduces an aliasing error in testing. An error in output of the 
j t h  stage flip-flop at time t; followed by an error in output of 

t he j  + hth stage at time ti+,, has no effect on the signature, if 
there is no feedback tap in the PSA between the j th  and j + 
hth stage flip-flops. Finally, the overhead in employing a PSA 
can be fairly high. A b-bit PSA can be implemented by 
approximately 15b transistors. As opposed to this, the 
proposed technique uses only 2b + 2 log b + 12 extra 
transistors that can be easily laid out even within the 
constraints of 3X intercell pitch width in the high-density 
DRAM. 

II. RAM ORGANIZATION AND OPERATION 
Generally, an n x 1-bit RAM, denoted by M,,, consists o f p  

identical two-dimensional submatrices, each of size b x w 
(= r, say) such that n = pbw. A submatrix, M,, consists of b 
bit lines and w word lines. Since in two-layer VLSI technol- 
ogy, either the bit line or the word line consists of diffusion/ 
polysilicon wire which has quadratic signal propagation delay 
as opposed to the linear delay of the metal wire, it is 
mandatory to partition the M,, into p submatrices so that the 
access time does not deteriorate for large values of n. Also in 
order to drive long bit lines, larger sense amplifiers are 
required to maintain their sensitivity. The partitioning has the 
intrinsic advantage, since all the submatrices can be tested 
concurrently, and thereby a testing speedup of p is easily 
achieved by incorporating built-in testing circuits, or by 
modifying the addressing scheme in the test mode. But p 
partitions are achieved at the expense of proliferating the sense 
amplifiers by a factor of 6, and also physically redistributing 
the decoder logic that introduces additional routing complexity 
and delay. For practical large DRAM’S of size 64K bit or 
more, the value of p is usually chosen between 2 and 16. The 
ratio e = b / w  is called the eccentricity of M, and is chosen 
such that the access time is minimized. Usually, e 2 1 if the 
word line is made of metal, and e I 1 if the bit line is made of 
metal. 

L e t B =  { 0 , 1 , . * . , b -  l)denotethesetofbitlinesinM, 
and W = (0 ,  1, * e ,  w - l}  denote the set of word lines. 
The ordered pair (i, j ) described by the Cartesian product B 
x W denotes the address of the storage cell that occurs at the 
crosspoint of the ith bit line andjth word line. Such a cell is 
denoted by Co. The state of the cell Co is denoted by so. An 
operation $ on cell Cjj is denoted by $(CO) and its new state 
by si. Valid operations are to write a 1, or a 0 on a cell, and to 
read the content of the cell. These operations are denoted by 
W,,  WO, and R,  respectively. In addition to the above 
notations, the operation of writing a transition (i.e., comple- 
ment of the present state) will be denoted by W,, and the 
operation of writing y E (0 ,  l}  will be denoted by W,. 
Depending on the previous state of the cell sjj E { 0, 1 } , the 
effect of the application of $ E { W , ,  WO, R} on Co can be 
further classified by the ordered pair in the Cartesian product 

1 )  Ordered pair (0, W , )  is to write 1 erasing a previous 0. It 

2) Ordered pair (0, WO) is to write 0 over a previous 0, and 

3) Ordered pair (1, W , )  is to write 1 over a previous 1, and 

sjj x $. 

is called transition write 1 ,  and is denoted by t . 

is called nontransition write 0. 

is called nontransition write 1 .  
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Fig. 1 .  State diagram of a memory cell and its operations. 
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Fig. 2. Organization of a testable RAM. 

4) Ordered pair (1, WO) is to write 0 over a previous 1. It is 
called transition write 0, and is denoted by 1. 

5) Ordered pairs (0, R)  and (1, R )  denote the operations of 
reading a cell whose previous contents are 0 and 1, respec- 
tively. 

The operations WO, W,,  and R can be represented by the 
arcs in the state diagram shown in Fig. 1. Since a DRAM cell 
stores a 0 or a 1, the state diagram consists of two states, So 
and SI, corresponding to the storage value of 0 and 1, 
respectively. In a fault-free DRAM, the action of a read 
operation, denoted by R, is to output the content of the cell, 
but the cell stays in its original state, as shown by the self- 
loops marked R in Fig. 1. If the cell is in state So and a 0 is 
written by the operation WO, it stays in the same state. 
Similarly, if the cell is in state SI and a 1 is written by the 
operation W , ,  it does not change the state. Hence, these two 
writing operations are called the nontransition writes. As 
opposed to these writes, an operation W, will result in a 
change of state if the memory cell is at So before the write 
operation. Similarly, an operation WO will result in a change 
of state if the memory cell is at SI before the write operation. 
These write operations are called the transition writes. In this 
paper, it will be assumed that only the transition writes and 
read operations may be faulty. The nontransition writes 
generally do not result in fault and will not be tested by the 
proposed test algorithms. In memories where nontransition 
writes can be faulty, they can be easily tested by following up 
every transition write in the test procedure by an additional 
nontransition write. In memories with nondestructive read, 
the operations (0, R )  and (1, R )  are such that s; = s,. But in 
memories with destructive read, s; may be different from sij. 

The read operations in this paper will be assumed to be 
destructive like in a single-cell DRAM and they will be tested. 

III. DESIGN FOR PARALLEL TESTING OF RAM’S 
The organization of the testable RAM with augmented 

hardware is shown in Fig. 2. The memory is organized as a b 
x w matrix, where b is the number of bit lines and w is the 
number of word lines. The normal 1-out-of-b, bit-line decoder 
is modified to select multiple bit lines during testing. In 
general, b bit lines can be divided into g groups such that the 
bit line i belongs to group j ,  where j = i (mod 8 ) .  In the test 
mode, all the bit lines in a groupj  are selected in parallel to 
execute a read or a write operation. Thus, a write operation in 
test mode results in writing the content of the data-in buffer on 
all cells at the crosspoints of the selected word line and the 
selected bit lines in groupj. In read mode, the content of the 
cells located at the crosspoints of the selected word line, and 
the selected bit lines group (sayj), are read in parallel. Thus, 
if all the multiple-accessed cells contain 0 (l), a 0 (1) is read 
out. If all the contents of multiple-accessed cells are not 
identical, then whether a 0 or 1 is read out into the data-out 
buffer cannot be predetermined. It may be noted that it is not 
entirely correct to assume that the resulting operation will be 
strictly a wired-OR or a wired-AND. The outcome depends on 
the number of 0’s and 1’s in the multiple-accessed cells. Thus, 
for example, if all the cells except one contain 1 and only one 
cell contains 0, then most likely a 1 will be read out of the 
data-out buffer. However, if the reverse situation existed, i.e., 
one 1 and the rest O’s, then a 0 is likely to be read. Thus, the 
resulting effect is sometimes an OR operation and sometimes an 
AND operation. Because of this anomaly, in read operation it is 
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- 
Fig. 3. Modified CMOS bit-line decoder. 

not possible to determine by monitoring the data-out buffer 
whether all the multiple-accessed cells have identical content. 
This limitation has been circumvented by incorporating a 
parallel comparator and an error detector in the RAM. The 
parallel comparator determines whether the content of all the 
multiple-accessed cells are either all 0 or all 1. If, due to some 
fault, a write operation on a cell fails or the content of some 
cells change, all the inputs to the comparator are not identical. 
The comparator detects this anomalous input and triggers the 
error latch to indicate the occurrence of a fault. 

It should be stressed that only the bit-line decoder is 
modified to allow multiple access of cells on the selected word 
line. The word-line decoder is not modified, and word lines 
are accessed only one at a time. The multiple cells accessed 
through multiple word lines are also possible. But this needs 
the sense amplifier to drive many cells at a time. For a 
moderately large size RAM, this introduces a very high access 
time delay. By increasing the physical size of the sense 
amplifier driver, delay can be decreased to a certain extent. 
But as the sense amplifier driver size is increased, it consumes 
more power, and also because of its large gate capacitance, the 
sense amplifier slew rate decreases. 

A .  Modified Decoder Circuit 
A typical CMOS implementation of a decoder circuit is 

shown in Fig. 3. Transistors Q1, - * ,  Q7 constitute a normal 
decoder circuit. Transistors Qs and Q9 have been added so that 
in the test mode the decoder output can be selected by applying 
SELECT = 0 independent of the input address. In the normal 
mode of operation, SELECT = 1 and the decoder output is 
selected by the address input ao, * * e, ak- I .  The modified 
decoder has been simulated using SPICE and the degradation 
in performance due to additional elements has been found to be 
an additional 0.1 ns delay (which is 1 percent of the normal 
decoding delay). 

B. Parallel Comparator and Error Detector 
The parallel comparator and error detector monitors the 

output of sense amplifiers connected to bit lines which are 

selected in parallel. The circuit detects the Occurrence of either 
all 0’s or all 1’s. In case any selected bit line is different from 
other bit lines in the same group, it triggers the error latch 
indicating the Occurrence of a fault. Fig. 4 shows the parallel 
comparator and error detector which compare the contents of 
cells on the even (odd) bit lines together. Transistors Qo, * * e ,  

Q b - l  are connected to the sense amplifiers and they are 
selected by L1 and Lz. In a normal mode of operation, L1 = LZ 
= 1 and the p-type pass transistors isolate the comparator 
from the sense amplifiers. In the test mode, if L1 = 1 and L2 
= 0, all the p-type pass transistors connected to the set of odd 
bit lines conduct and provide the input to the parallel 
comparator while even bit lines remain disconnected. If L1 = 
0 and L2 = 1, all the p-type transistors connected to the set of 
even bit lines provide the input to the parallel comparator. 
Transistors T I ,  , T,,, - I are connected in parallel and detect 
a concurrent occurrence of 1 in bit lines set. Transistors P I ,  
... , P,,,- I are connected in parallel and detect concurrent 
Occurrence of 0 in bit lines set. Transistors To and PO are the 
precharge transistors which are turned on by precharge clock 
phase 41. Transistor P,,, is the discharge transistor which 
remains cut off during the precharge phase and turns on during 
the discharge clock phase 62. Transistors So, S I ,  and S2 form a 
coincidence detector. If all the selected bit lines are not 0 or 1, 
then both SI and S2 remain in cutoff and the output of the 
detector is 1. The output of the detector is connected to an 
error latch through the pass transistor S4 that isolates the error 
latch during phase 41. It may be noted that during the 
precharge phase, the transistor So will be directly shorted 
through the error amplifier if S, does not isolate the coinci- 
dence detector from the error amplifier. During phase 42, the 
output of the coincidence detector is connected to the error 
amplifier through S4. The error amplifier consists of transis- 
tors Vo, e ,  V,. The error latch output is ERROR = 1, when 
the selected bit lines are not identical. If the bit lines are all 
l’s, then SI conducts and S2 remains cut off and the detector 
output is 0. This holds the error latch output to ERROR = 0. 
If the bit lines are all 0’s then S2 conducts and SI remains 
cut off, setting the error latch output to ERROR = 0. During 
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write phase and normal mode of operation, the error latch is 
clamped to zero by V,. The error detector is inhibited by the 
discharge transistor P,,, during the start of the read phase, 
when the sense amplifiers' outputs are not identical because of 
sluggish changes in some of the sense amplifiers. 

IV. ALGORITHMS FOR TESTING PATTERN-SENSITIVE FAULTS 
The test algorithms discussed in this paper have 

O ( & m  complexity, and they can detect the restricted 
pattern-sensitive fault (PSF) [ 141. An unrestricted PSF has 
been shown by Hayes [15] to have (3n2  + 2n)2" test 
complexity and is impractical in a large size DRAM. In a 
restricted PSF, an operation $(C,)  is faulty due to the 
presence of a specific data pattern in a set of physically 
adjacent cells (called its neighbors), or due to a specific 
operation on one or more cells in the neighborhood. Fig. 5 
shows the physically adjacent cells of Cij and their neighbors 
are defined as follows. 

Definition I :  A base cell C, and its four rookwise adjacent 
neighboring cells C;, I,j and Ci,j+ are called a von Neumann 
neighborhood (or Type-1 neighborhood) of C,. If the base 
cell is deleted, the set of remaining cells in the neighborhood is 
denoted by NI. Cells Ci, I,, that share the same word line with 
the base cell are denoted by N,, while the cells Cj , j+I  that 
share the same bit line with the base cell are denoted by Nb, 
such that N I  = Nb U N,. 

Definition 2: A base cell C, and its eight adjacent 
neighboring cells Ci, I , j +  are called a Moore neighborhood 
(or Type-2 neighborhood) of Co. If the Type- 1 neighborhood 
is deleted from the Type-2 neighborhood, the set of remaining 
cells in the neighborhood is denoted by N2. 

Definition 3: A static pattern-sensitive fault (SPSF) is 
said to occur if an operation $(Cii)  is faulty in the presence of 
a fixed pattern in a predefined neighborhood of cell C,. 

Definition 4: A dynamic pattern-sensitive fault (DPSF) is 

I i+2 
j-1 j j + l  j+2 

Fig. 5 .  Base cell C,, and its neighbors. 

said to occur if the state of the cell C, changes because of an 
operation $ on one cell in its predefined neighborhood in the 
presence of a specific pattern. 

The above definitions apply to all memory operations, 
namely, read, transition writes, and nontransition writes. 
Unless specifically stated in the following discussion, we will 
assume that only the transition writes and reads are faulty. 

Let the cells in the neighborhood be assigned the k distinct 
positive number in the set (0, 1, * - , k - l }  such that the 
number i is assigned to the base cell. The content of the 
neighborhood can be denoted by a state vector (sosl * * si 
sk -  where sj is the state of the cell which has been assigned 
the number j E (0, 1, e ,  k - 1 } . Clearly, the state vector 
space of a neighborhood of size k describes a k-dimensional 
symmetric Boolean hypercube in which the nodes represent all 
different possible patterns which can be stored in the neighbor- 
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Fig. 6. State space graph for neighborhood with k = 3 

hood. A node in the state vector space graph is numbered m, 
where m = E,!:; sj2J and, evidently, 0 I m I 2k - 1. An 
edge corresponds to the state transition due to a transition- 
write operation W, on a cell in the neighborhood. Let $ ( j )  
denote an operation of $ E { Wl, WO, W,, R}  on the cell 
numbered j .  Thus, W,(i ) changes the state vector from ( ~ 0 ~ 1  

operations on 2k nodes sensitize the transition-write SPSF, and 
hence at least 2k transition-write operations are required to 
detect all the SPSF’s in a neighborhood of k cells. All other 
operations W,(j # i ) sensitize the transition-write DPSF’s, 
and the minimum number of transition writes is equal to (k - 
1)2k (note that each undirected edge in the symmetric k-cube 
corresponds to two transitions). In Fig. 6, a three-dimensional 
symmetric Boolean cube represents the state vector space of a 
hypothetical neighborhood of size k = 3. Assuming that i = 2 
is the base cell, all the diagonal edges between the outer and 
inner squares sensitize the SPSF’s while the rest of the edges 
sensitize the DPSF’s. A naive approach to test these SPSF’s 
and DPSF’s will be to perform both the transition writes (t  
and 1) on each cell of the memory, and to follow each 
transition write on a cell by read operations over all the cells in 
its neighborhood. Since there are k2k transition writes per 
cell, there will be altogether (k + 1)k2k operations per cell. 
Thus, for an n-bit memory organized into a & x G a r r a y ,  
the naive approach requires n(k + operations. This 
complexity can be reduced by a factor of k if the write 
operations are cleverly done so as to sensitize several PSF’s 
simultaneously in the overlapping neighborhoods. Notions of 
graph coloring and tessellations [16], [17] are useful in 
deriving these test patterns. 

A valid test is a tour on the directed Boolean cube that 
traverses all edges. A tour, which traverses each edge once 
and only once, is a minimum length test set. Such a tour is 
called an Eulerian tour on the graph. An example of an 
Eulerian tour in Fig. 6 is (0,2,3,1,0,4,6,7,5,4,5,7,6,4, 
0,1,3,2,0) recalling the fact that each edge in the Fig. 6 
represents two directed edges in opposite directions. Simi- 
larly, an Eulerian tour on the Boolean 5-cube gives a minimum 
length test set for the SPSF’s and DPSF’s in the Type-1 
neighborhood of Fig. 5. Algorithms for deriving an Eulerian 
tour over a symmetric n-cube are well-known [3], [4], [18]. 

A. Algorithm for Testing PSF over Type-I 
Neighborhood 

In order to obtain a test size having an optimal number of 
transition writes, each memory cell C ,  in the RAM is assigned 
a positive integer k = (2 j  + i )  (mod 5) such that k E 
{0,1,2,3,4). The above assignment function ensures that each 
base cell CO, which is assigned the value k, is surrounded by 

- 
S; Sk-1) to (SoSl * ’ .  Si ‘ * .  S k - 1 ) .  ,411 such W,(i) 

I \ .  . . . . . , 

1 2  3 4 0  1 2  3 

a 4 0  1 2  3 4 0  

s 1 2  tttKtti 3 4 0  1 2  

s o 1 2 3 4 0 1  

Fig. 7. Cell number assignment. 

four cells (NI)  whose assigned values are distinct and not k. 
Fig. 7 shows the cell assignment values from which it can be 
seen that every cell that is assigned the value 1 has cells 
numbered 2,3,4, and 0 in its Type-1 neighborhood. By 
assigning the cell numbers in this manner, the average number 
of transition writes per cell can be minimized to 32, when the 
sequence of writes is derived from an Eulerian tour. This 
assignment also ensures that the cell values form a periodic 
pattern that repeats after five successive word lines. A number 
of other neighborhoods consisting of five cells can be 
described by the above cell numbering scheme [19]. These 
neighborhoods, which are identified later on, can be shown to 
tessellate the memory plane like the Type-1 neighborhood. By 
superimposing these different neighborhoods, the actual effec- 
tive physical size of the neighborhood spans over 25 cells. 

Table II shows the successive bit patterns obtained from an 
Eulerian cycle over a 5-cube. This constitutes the optimal 
transition writes necessary to sensitize all the SPSF’s and 
DPSF’s. It may be noted that the Hamming distance between 
any two successive patterns in Table I1 is always 1. Thus, to 
obtain a successive pattern, only a single transition write is 
required on a cell in the neighborhood. The transition write 
involved in obtaining the mth test pattern from the (m - 1)th 
test pattern can be defined to be an operation #m. Thus, for 
example, operation # I  in Table 11 describes the operation of 
writing a transition 1 (t) on the cell numbered 3 in the 
neighborhood, and operation #6 implies writing transition 0 
(1) on the cell number 4. Let the state of the neighborhood 
S,-l change to S, (where 0 I S,, I 31) due to 
operation #m in Table 11. Then, in general, the operation is t 
on cell numberedp E {0,1,2,3,4} in the neighborhood if S, 
= S,- + 2P or the operation is 1 on the cell numbered p if 

The above set of operations can be applied to the memory 
locations as described in Algorithm 1. All the memory cells 
numbered p on a word line are written in parallel using the 
proposed modified decoder. The word lines are written 
sequentially so that in w writes (lines e-g of Algorithm 1) all 
the cells numbered p are applied the operation m and all the 
neighborhoods in the memory contain the pattern m in Table 
II. 

In one read operation, all bits on a word line are read and 
compared simultaneously using the parallel comparators. 
Thus, to read the whole memory in line i of Algorithm 1, w 
operations are needed. It may be noted that the effects of 
executing the lines e-k for a particular value of m, a 

s, = S, - ,  -2p. 
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TABLE II 

EULERIAN TOUR 
BIT PATTERNS IN A TYPE-I NEIGHBORHOOD REPRESENTING AN 
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Fig. 8.  Pattern written in different neighborhoods by operation 55. 

transition write o n p  sensitizes one SPSF for the pattern in line 
m for all cells numbered p and it also sensitizes one DPSF for 
all cells numbered other than p .  Thus, for example, operation 
55 of Table I1 in which a transition write (t) is made on cells 
numbered 0, the lines e-k in Algorithm 1 will sensitize all 
cells numbered 0 for the SPSF where a t cannot be made in the 
presence of binary pattern 1100 in cells 4,3,2, and 1, 
respectively. Simultaneously, it will sensitize four DPSF’s in 
neighborhoods in which cells 4,3,2, and 1 are the base cells. 
This is illustrated in Fig. 8. By executing the lines e-k 160 
times for all the patterns in Table II, all the 32 SPSF’s and 128 
DPSF’s associated with each memory cell are tested by 
Algorithm 1. 

Algorithm I .  Parallel PSF Test in RAM: 

a) Write 0 into every cell of RAM. 
b) Set m = 1. 
c) Find the cell number, p E {0,1,2,3,4}, in operation #m 

from Table I1 on which the transition write is to be made. 
d) Set j = 0. 
e) Do in parallel the operation #m on C, for all bit lines if 

f) S e t j  = j + 1. 
g) If j < w, go to e); else go to h). 
h) Set j = 0. 
i) Read in parallel all cells C,  and see if ERROR = 0, (if 
ERROR = 1, a fault is detected). 

j) Set j = j + 1. 
k) If j < w, go to i); else go to 1). 
1) Set m = m + 1. 
m) If m < 161, go to c); else exit success. 

Since there are altogether 160 transition writes (plus 1 write 
operation is for memory initialization) and the memory is read 
160 times and each operation is performed on w word lines, 
the overall complexity of the algorithm is 321 w. In an n-bit 
RAM organized into p identical square submatrices, Al- 
gorithm l will require 3 2 1 d m ’ o p e r a t i o n s  to test all the 
SPSF’s and DPSF’s. It may be noted that Algorithm 1 tests the 
pattern-sensitive faults due to transition writes only. Usually, 
for DRAM’S using three or more transistors in each memory 
cell, a read operation does not result in destruction of the 
content of the cell. Such a read fault that depends on the 
pattern of stored data in the Type-1 neighborhood will be 
detected by the parallel comparator. Pattern-sensitive faults 
due to destructive-read operations in a single-cell, high- 
density memory cannot be tested by Algorithm 1 and will be 
discussed later on. 

I )  Computation of Effective Size of the Neighborhood: 
The cell number assignment allows one to describe a number 
of memory plane tessellations as shown in the Fig. 9. 
Neighborhoods in these tessellations are the corresponding tile 
shape. It can be seen below that by linear translations of these 
tile geometries, the memory plane can be covered without 
overlapping (i.e., tessellated). Pattern-sensitive fault proce- 
dures described in Algorithm 1 will satisfy over each of the 
neighborhood. The effective physical size of the neighborhood 
can be estimated by superimposing these tile geometries. But it 
is necessary to invoke a constraint that all cells numbered i (0 
I i I 4) are mutually noninteractive and consistent in the 
sense that a transition write on a cell numbered i neither affects 
the content of another cell numbered i in the same neighbor- 
hood, nor does it mask the coupling effect between any other 
coupling cell i and a coupled cell j # i ,  both in the same 
neighborhood. 

B. Algorithm for Testing Symmetric PSF in Type-2 
Neighborhood 

In order to detect all the static pattern-sensitive faults over 
the Moore’s neighborhood, every cell in the memory should 
make both t and 1 transitions in the presence of all 2* = 256 
patterns in the memory. Thus, overall 512 transition writes are 

(2 j  + i )  (mod 5) = p .  
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necessary for each cell in the memory to detect the SPSF’s. In 
order to detect all the DPSF’s, each base cell should be tested 
by a reading operation whenever a transition write is made 
over a cell in the neighborhood of a base cell. Since each cell 
can make two types of transition writes for all the possible 
binary patterns in the other eight cells and there are altogether 
eight neighbors of a base cell, there are altogether 2 x 28 x 8 
= 4096 transition writes in the neighborhood of a cell to test 
all the DPSF’s. This requires a large amount of test time. 

In this section, a new approach has been adopted in which 
cells in the 9-neighborhood are categorized into four logical 
groups, viz., the base cell, bit-line neighbors (Nb),  word-line 
neighbors (N,,,), and diagonal neighbors ( N 2 )  as described in 
the Definition 1. It may be noted that a pattern-sensitive fault 
models the adjacency effect between a base cell and its 
physically neighboring cells. It is typically due to leakage 
effects between a memory cell and its adjoining cells in the 
presence of a particular data pattern in the neighboring cells 
[20]-[22]. It has been found that the leakage is maximum 

when the symmetrically located cells contain the same bit 
patterns [2 I]. By the above classification, many unnecessary 
binary combinations are avoided. For example, let there be a 
situation when a read operation is made to verify the transition 
write t when its bit-line neighbors Ci,,+ and C;,j- 1 contain 0. 
Clearly, at first, the bit line i will be precharged to some high 
potential. Now, if any of the access transistors of the bit-line 
neighbors is weak, then in the presence of 0’s in the bit-line 
neighborhood, the precharge level in the bit line will be 
degraded, and the sense amplifier on the ith bit line will fail to 
detect a 1 in the base cell. Similarly, if there is a weak 
transistor in cell Ci+ I,,, which does not allow the base cell to 
make a t transition because CiCl,, is at state 0, then it is 
enough to test the fault when the symmetrically located cell 
C;- l , j  is also at state 0, since then the leakage effect will be 
predominant. Thus, if a fault does not occur when both the 
cells Ci, I , ,  are at state 0, then it will not occur when Ci+ ],, and 
C;- ,, have different states. 

Definition 5: A symmetric static pattern-sensitive fault 
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(SSPSF) is said to occur if an operation $(C, )  is faulty in the 
presence of a fixed symmetric pattern in Nb U N, U N2. The 
pattern is defined to be symmetric if all cells of N, E {Nb, 
N,, N2} have the same value. This fault is denoted by 
($(cij)/s(Nb)s(N~)s(N2)), where s(Nb), ~ ( N w ) ,  and s(N2) 
represent the states of all cells in Nb, N,, and N2, respec- 
tively. 

Definition 6: A symmetric dynamic pattern-sensitive 
fault (SDPSF) is said to occur if the state of the cell Cu 
changes because of an operation on one or more cells in Nb 
U N ,  U N2 in the presence of a fixed symmetric pattern. 
An SDPSF is denoted by su/$(Cji  l,j)s(N,)s(N2), so/ 

on whether the operation made on cells in Nb, N,, or N2 
changes so. 

Clearly, s(N,) = 1 if all the cells in the neighborhood N, 
E { Nb, N,, Nd} are 1 and s(N,) = 0 if all the cells in N, are 
0. It will be assumed that during testing of a pattern-sensitive 
fault, the contents of all the cells in N, are always identical. 
Since all the cells in N, may not be written in parallel, a read 
operation to test a fault is only made when all the cells in N, 
are written identically. If all the cells in N, make a transition 
write t ,  then $(Nx) will be denoted by t .  On the contrary, if 
all the transition mites in N, are 1, then $(N,) will be denoted 
by 1. In order to detect the dynamic pattern-sensitive fault in 
N,, it will be assumed that the fault will cause at most one 
transition in the base cell, whether the operations on the cells 
of N, are applied one cell at a time or two cells at a time. 

Definition 7: If the base cell i is in state si E {0,1} and a 
transition write $ is made on one cell or simultaneously over 
two cells belonging to N,, then an SDPSF is said to be 
consistent if the state of cell i does not change back from g t o  si 
after the successive $ operation on the remaining cells in N,. 

Utilizing this notation, the SSPSF’s and SDPSF’s can be 
represented by Table 111. The four-tuples are as described in 
Definitions 5 and 6. Since, there are 16 SSPSF’s and 48 
SDPSF’s associated with each cell in the memory, it can be 
easily seen that at least 4 X 24 = 64 transition writes in the 
neighborhood will be necessary to sensitize all the SSPSF’s 
and SDPSF’s of a cell in a DRAM. A straightforward 
extension to an n-cell memory will require 64n transition 
writes. However, in this section, it will be shown that by 
cleverly combining the transition write sequence in overlap- 
ping neighborhoods, the total number of transition writes can 
be reduced to 16n. 

In order to accomplish the minimal transition writes per 
memory cell, at first, each cell C, in the memory will be 
assigned a positive number k E {0,1,2,3} such that k = 2 (i 
mod 2) + j mod 2. Thus, the memory cells are divided into 
four types of cells 0,1,2, and 3, as shown in Fig. 10. It will be 
shown later that a transition write on a cell followed by a 
suitable sequence of read operations on the adjoining cells will 
simultaneously sensitize four pattern-sensitive faults and 
thereby the number transition writes on each cell can be 
reduced by a factor of 4. 

In order to obtain a test procedure which needs only 16 
transition write sequences per cell, a graph theoretic approach 
similar to the earlier algorithm can be used. The 4-tuple, 

s ( N b )  J /  ( ci,j i 1 1s (N2 or sij 1s ( N b )  s ( N w )  $ (NZ ) 9 depending 

TABLE III 
ALL POSSIBLE SSPSF’S AND SDPSF’S 

7/001, t/lOl, tm1, ?/Il l .  
.l/OOo. kloo. .l./oro. kl10. 
&I; Jj101; J./o11, .1/111. 
ofloo. oflto. O f l O l ,  Oflll. 

21-2 21-1 21 2i+l 2i+2 

Fig. 10. Cell type assignment. 

(s( Cij)s(Nb)s(N,)s(N2)) describes a state space of 16 nodes 
(states) where each node represents the symmetric binary 
pattern in the 9-neighborhood. These nodes are numbered 0- 
15, depending on the binary pattern in the 4-tuple. The base 
cell state is the MSB in the 4-tuple. By complementing thepth 
bit in the 4-tuple, the memory state of the neighborhood will 
change from k to k - 2 p ,  if the pth bit changes from 0 to 1, 
and from k to k + 2 P ,  if the pth bit changes from 1 to 0. All 
these transitions from one state to another state represent edges 
in the state space graph, and the resulting graph describes a 
symmetric four-dimensional cube as shown in Fig. 11. 
Clearly, node 12 in the figure represents that the base cell and 
its bit-line neighbors contain 1, and the word line and diagonal 
neighbors of the base cell contain 0. By making T operation on 
the word-line neighbors, N, the content of the Type-2 
neighborhood, will change and it will be represented by the 
node 14 in Fig. 11. A directed edge from node 12 to node 14 
represents this transition-write operation. In general, each 
directed edge corresponds to a transition write over all the 
cells having the same number, k E {0,1,2,3} in a neighbor- 
hood, and since there are always two anti-parallel directed 
edges, these two edges are represented as a single undirected 
edge in Fig. 11. The set of thick edges corresponds to 
changing the state of the base cell and will pertain to 
sensitizing the SSPSF’s. Other edges pertain to sensitizing the 
SDPSF’s. Similar to Algorithm 1, an algorithm with optimal 
transition writes can be obtained by deriving the write 



MAZUMDER AND PATEL: PARALLEL TESTING FOR FAULTS IN RAM’S 403 

t“.’ 
L 

0 = <oooo> 
1 = <0001, 
2 = <0010> 
3 = <0011> 

1 4 -  <1110> 

1 5 =  dill> 

. . . . . . . . . 

1 3  1 5  

Fig. 11. State space graph for neighborhood with k = 4. 

sequences from an Eulerian tour over the symmetric 4-cube. 
The resulting algorithm will have 97w complexity, involving 
32w transition writes, 64w read, and w write operations 
corresponding to memory initialization. It may be noted that 
even though 64 transition writes over the symmetric 4-cube 
are needed to sensitize all the SSPSF’s and SDPSF’s, only 
32w transition writes are needed over the entire memory. 

Even though the test algorithm derived from an Eulerian 
tour has an optimal test length, for many applications like in 
the embedded environments, it is desirable to make a tradeoff 
between the test length and the built-in self-test (BIST) 
hardware. It is shown in [23] and [24] that the test generator 
circuit can be simplified considerably if the sequence of 
transition writes is derived by decomposing an Eulerian tour 
over the symmetric 4-cube into the following eight disjoint 
Hamiltonian cyclic tours described over a subgraph of the 
symmetric 4-cube: 

H1 :  (0,2,6,14,15,13,9,1,0) 

H2:  (0,1,9,13,15,14,6,2,0) 

H3:  (0,4,6,7,15,11,9,8,0) 

H4 :  (0,8,9,11,15,7,6,4,0) 

N5: (12,4,5,7,3,11,10,8,12) 

H6:  (12,8,10,11,3,7,5,4,12) 

H7 :  (12,13,5,1,3,2,10,14,12), 

and 

H8:  (12,14,10,2,3,1,5,13,12). 

These tours are shown in Fig. 12, where the set of dark edges 
constitutes two Hamiltonian cycles, one in clockwise and the 
other in anti-clockwise direction. Thus, Fig. 12(a) represents 
the Hamiltonian cycles H 1  and H2 ,  Fig. 12(b) represents the 
cycles H 3  and H4 ,  Fig. 12(c) represents the cycles H 5  and 
H6 ,  and finally, Fig. 12(d) represents the cycles H 7  and H8 .  
The length of each Hamiltonian cycle is eight, and altogether 
eight Hamiltonian cyclic tours are made. Thus, all the 64 
edges of the symmetric 4-cube are traversed and thereby all 
the 16 SSPSF’s and 48 SDPSF’s are sensitized. Initially, the 
memory is initialized to zero and the first four Hamiltonian 
cycles are performed as indicated above. Then the memory is 

1 2  l A  

1 5  
j 3  C- H1 

H2 
(a) 

1 2  1 4  

1 2  1 4  

1 5  
j 3  t H3 

H4 + 
(b) 

Fig. 12. Hamiltonian cycles on subcubes 

reinitialized such that it contains a column bar pattern of 0’s 
and 1 ’s, so that the content of the Type-2 neighborhoods in the 
memory is represented by node 12. This needs an additional w 
write operations which for a 256 Kbit square memory subarray 
having a memory cycle time of 50 ns will take an extra 25 ps. 
After memory reinitialization, the rest of the Hamiltonian 
tours are performed. Thus, the overall tour can be represented 
as ( H l ,  H2,  H3,  H4,  (0,12), H5,  H6,  H7,  H8) ,  and it 
consists of 65 transition-write operations. Initially all the cells 
in the Type-2 neighborhood contain 0 and successively the 
transition-write operations are made to change the state of the 
neighborhood. Thus, after the first operation the state of the 
neighborhood changes to 2, and after the second operation the 
state of the neighborhood changes to 6, and so on. In general, 
an operation m will change the state S,- to S,, where S,  E 
{0,15} denotes the state of the neighborhood after the mth 
operation is applied. After each operation, the whole memory 
is read to find out whether any SSPSF or SDPSF has occurred. 
The above test procedure is described in Algorithm 2 which 
uses these write sequences to test the SSPSF’s and SDPSF’s 
for every cell in the memory over its 9-neighborhood. 

In Algorithm 2, all cells numbered k E {0,1,2,3} make an 
upward (t) and a downward (1) transition write in the presence 
of all binary patterns in all other cells whose numbers are not 
k. There are altogether eight upward transitions in cells 
numbered k for eight distinct binary patterns. Also, there are 
eight downward transitions in cells k for all eight distinct 
binary patterns. Hence, all 16 operations to sensitize SSPSF’s 
are performed in Algorithm 2. Since after each transition 
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CmDkxity Neiahbobcd Fault Coverage 
Type-1 FI1 = PSF for transition writes + PIF for reads 321h 
Type-2 ELI = PSF for transition writes + PIF for reads 9 8 6  

Type-’ F12 = FII + PSF for nontransition writes 641‘1;; 
Type-2 F22 = ELI + PSF for nmtransition writes 1 9 4 6  

Type-1 F13 = F12 + SPSF for read 801G 
Type-2 E13 = EL2 + SPSF for read 2 5 8 6  
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Type-2 FU = F23 + DPSF for read 4 5 6  
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Fig. 13. Pattern written on different neighborhoods by eleventh operation. 

write, all the cells are read, if any SSPSF occurs, it will be 
detected by the parallel comparator and error latch. Also, 
because of the neighborhood relationship in Fig. 10, every 
transition write on cells numbered k will also sensitize the 
SDPSF’s for the other three cells for which the number is not 
k. For example, in the third operation in H1, the state of the 
Type-2 neighborhood changes from 6 to 14 by writing t in the 
cell numbered 0 while the contents of the cells numbered 1,2, 
and 3 remain the same to 1,1, and 0, respectively. The 
succeeding read operation in line 4 of Algorithm 2 detects an 
SSPSF in all neighborhoods for which the base cell is 0, and 
SDPSF’s in all other neighborhoods for which base cell is not 
0 where the fault occurs due to transition in cell numbered 0. 
The effect of third operation on different neighborhoods is 
shown in Fig. 13. Thus, Algorithm 2 which makes all the 65 
transition writes over the entire memory will sensitize both the 
SSPSF’s and SDPSF’s for every cell in the memory. 

Algorithm 2. Test of Pattern-Sensitive Faults over Type- 
2 Neighborhood: 

1) Initialize all the cells to 0. 
2) Set rn = 1. 
3) If the transition write in the mth operation is on cells 

numberedp E {0,2}, write on all cells having numberp 
and are on even word lines. 

4) Read the memory in parallel. Check if ERROR = 0, 
else error is detected. 

5) If the transition write in the mth operation is on cells 
numbered p E { 1,3}, write on all cells having number p 
and are on odd word lines. 

6) Read the memory in parallel. Check if ERROR = 0, 
else error is detected. 

7) Set rn = m + 1. 
8) If m < 66, go to 7); else exit successfully. 

V. TEST PROCEDURES FOR OTHER FAULTS 
Nontransition Write Operations: Algorithms 1 and 2 

detect the pattern-sensitive faults in the memory due to 
transition writes. Since the nontransition write does not 
change the state of a cell, it is unlikely to cause a failure. In 
memories where nontransition writes are also faulty, the 
algorithms in the preceeding section can be easily augmented 
by following up each transition write with a nontransition 
write. After each nontransition write, the entire neighborhood 
is read to detect the occurrence of any pattern-sensitive faults. 

Destructive Read Operations: In a switched-capacitor, 
single-transistor DRAM which employs a destructive-read 
operation, the failure may result during the precharge, 
sensing, and restoration phases in a read operation. Since in 
the proposed parallel testing scheme, multiple cells are read 
and compared simultaneously, any failure in a cell that results 
during the precharge and sensing by the sense amplifiers will 

be automatically detected by the parallel comparator. A fault 
that occurs during the restoration phase when the original data 
in the cell are written back, will also be tested by Algorithms 1 
and 2, provided the faulty read operation is a pattern- 
independent fault (PIF). It can be shown that in these 
algorithms every memory cell is read successively twice or 
more, without any intervening write operations on it. There- 
fore, a fault occurring in the restoration phase will be detected 
by Algorithms 1 and 2. But in order to test the read faults 
in the restoration phase which only depend on a specific stored 
pattern in the neighborhood, every read operation in these 
algorithms should be followed by an extra read operation. 
Read operations, which may result in static and dynamic 
pattern-sensitive faults similar to transition writes, can also be 
tested by reading all the cells in the neighborhood after each 
read operation on a cell is made. The complexity of these 
pattern-sensitive faults over the Type- 1 and Type-2 neighbor- 
hoods due to the different types of memory operations are 
shown in Table IV. It may be emphasized that for a particular 
processing technology, certain operations are more likely to 
result in pattern-sensitive faults than others (e.g., a transition 
write may cause more pattern-sensitive faults than a read 
operation), and hence different test sizes are indicated here. 

Decoder Faults: A fault-free decoder makes a bijective 
mapping of the input addresses onto the memory cells. A 
faulty decoder may cause three types of fault syndromes. 
First, an input address may not map onto any memory cell, 
and the resulting failure is known as a no-access fault. 
Second, an input address may select multiple cells for reading 
or writing, and the resulting failure is commonly known as 
multiple-cells access fault. Third, a memory cell may be 
accessed by multiple addresses, and the resulting failure is 
called multiple-address access fault. The different decoder 
mappings are shown in Fig. 14. A no-access fault usually 
results in a stuck-at fault and will be detected by the pattern- 
sensitive algorithms discussed here. It may be noted that in the 
event of a stuck-at fault in a cell, it manifests static pattern- 
sensitive faults for all the possible patterns in the neighbor- 
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Fig. 14. Fault-free and faulty decoding. 

hood. Multiple-cells access and multiple-address access faults 
cannot be detected by Algorithms 1 and 2. It may be noted that 
the bit-line decoders are grouped into g classes in the test 
mode, and the multiple-access faults in the bit-line decoder 
will be masked if the fault results in accessing bit lines within 
the same class. Also, it may be noted that even though the 
word-line decoder is not modified, these faults in the word- 
line decoder will not be detected by Algorithms 1 and 2. This 
is because in these algorithms cells having identical number 
are at first written in all word lines before verifying individual 
word-line-write operations. 

In order to test these faults, a marching-type test procedure 
as shown in Algorithm 3 is needed. Steps 1-4 in the al- 
gorithm detect the multiple-access faults in a bit-line decoder 
by using 2 + 4& operations. Steps 5-8 involve 6& 
operations and are used to detect multiple-access faults in a 
word-line decoder. In the fault model, it is assumed that 
multiple access may occur asymmetrically in the sense that a 
line r may be accessed with a line s while the line r is selected, 
but the line r is not necessarily accessed along with the line s 
when the line s is selected. 

Algorithm 3. Bit-Line and Word-Line Decoder Test: 

1) Write in parallel ZERO in all cells on the arbitrarily 
selected word line Wj.  

2) Read and compare in parallel all the cells on Wj.  
/* multiple access where decoder selects the correct bit 
line r along with one or more bit lines s > r */ 

3) Starting from the cell at the crosspoint of Bo and W,, for 
each cell on Wj,  at first write ONE and read the cell (one 
cell at a time in ascending order of the bit line). 
/* multiple access where decoder selects the correct bit 
line r along with one or more bit lines s < r */ 

4) Starting from the cell at the crosspoint of BJ;; - and W j ,  
for each cell on W j ,  at first write ZERO and read the cell 
(one cell at a time in descending order of the bit line). 
/* Word-Line Decoder Multiple Access Test */ 

line Bi. 

/* multiple access where decoder selects the correct 
word line r along with one or more word lines s > r */ 

5) Write ZERO in all cells on the arbitrarily selected bit 

6) Read all the cells on B;. 

7) Starting from the cell at the crosspoint of WO and B;, for 
each cell on B;, at first write ONE and read the cell (one 
cell at a time in ascending order of the word line). 
/* multiple access where decoder selects the correct 
word line r along with one or more word lines s < r */ 

8) Starting from the cell at the crosspoint of WA- Bi, for 
each cell on B;, at first write ZERO and read the cell 
(one cell at a time in descending order of the word line). 

Faults in Parallel Comparator: It may be noted that 
the testable hardware in Fig. 4 is only tested partially by 
Algorithm 2. When all the even or the odd lines contain 0, the 
n-type transistors Po, * a ,  Pm- I will be tested for stuck-at 1 
faults. When all the even or the odd lines contain 1, all the p- 
type transistors To, a * a ,  Tm- will be tested for stuck-at 0 
faults. The rest of the stuck-at faults in the testable hardware 
can be tested by Algorithm 4. Lines 1 and 2 are used to 
initialize the memory, and to verify this initialization, lines 3 
and 4 redundantly detect the stuck-at 1 faults in n-type 
transistors and stuck-at 0 faults in p-type transistors. Line 5 
verifies the stuck-at 0 fault in p-type transistors, and line 6 
verifies the stuck-at 1 fault in n-type transistors. The overall 
complexity of Algorithm 4 is 4& + 4. 

It may be noted that the parallel comparator does not 
distinguish between all the 0’s and all 1’s data, and the error 
detector may fail to indicate the Occurrence of a reversal of 
data. Such a fault can be detected by comparing the value of 
data-out buffer to the expected data. 

Algorithm 4. Procedure to Test the Parallel Compara- 
tor: 

1) Initialize the odd cells on the first word line to 0. 
2) Initialize the even cells on the first word line to 1. 
3) Parallel compare the odd bit lines and check if ERROR 

4) Parallel compare the even bit lines and check if ERROR 

5) FOR each odd cell in the selected word line, DO 

Write a 0, and test if ERROR = 0.) 

= 0. 

= 0. 

{Write a 1, and test if ERROR = 1 ; 

6) FOR each even cell in the selected word line, DO 
{Write a 0, and test if ERROR = 1; 
Write a 1, and test if ERROR = 0.) 
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VI. CONCLUSIONS 
This paper has discussed an efficient technique to speed up 

the RAM test algorithms. Specifically, it has proposed two test 
algorithms to test the pattern-sensitive faults in a RAM. 
Algorithm 1, requiring 32 1 -operations, detects all the 
static and dynamic pattern-sensitive faults in the memory over 
a localized neighborhood of five cells, called here the Type-1 
neighborhood. By identifying other neighborhood geometries 
similar to pentomino tiles [25], [26], the algorithm has been 
identified to actually cover a restricted type of pattern- 
sensitive fault over 25 cells. The basic algorithms test the 
pattern-sensitive faults which occur due to transition writes. 
The algorithms have been extended to test the pattern-sensitive 
faults due to transition writes and read operations, both in a 
DRAM with destructive and nondestructive read. The al- 
gorithm derives its transition writes sequence from an Eulerian 
tour over a symmetric 5-cube, and it employs an optimal 
number of transition writes. As opposed to this technique, 
Algorithm 2, which tests symmetric pattern-sensitive faults 
over the Type-2 neighborhood consisting of nine cells, derives 
its transition writes sequence from the knowledge of eight 
disjoint Hamiltonian cycles over the subgraphs of the symmet- 
ric 4-cube. For an n-bit RAM organized into p submatrices, 
the resulting algorithm has a complexity of 98- 
operations, using an extra -transition writes. For a 4 
Mbit memory organized into 16 squares subarrays and with 50 
ns access time, this needs an extra 25 ps compared to a similar 
test procedure where the transition writes are derived from an 
Eulerian walk as in Algorithm 1. However, this simplifies the 
test generator circuit considerably, and the scheme is useful 
for built-in self-test applications. 

Even though in this paper only the testing of pattern- 
sensitive faults has been discussed, the proposed design-for- 
testability technique can be readily used to speed up the 
conventional algorithms to test the stuck-at and 2-coupling 
faults. Classical tests like the column bar and the checker 
board detect the stuck-at faults in memory arrays using 4n 
operations. Marching tests detect coupling faults between two 
arbitrary cells in the memory. Several versions of the 
marching tests can be found in the literature. Nair, Thatte, and 
Abraham [27] originally proposed a linear marching test 
algorithm which has complexity of 30n operations. Suk and 
Reddy [13] improved the complexity to 14n operations by 
slightly modifying the fault model, and Marinescu [28] 
improved the complexity to n operations for a more restricted 
coupling fault model. All these algorithms can be speeded up 
by a factor of O ( m ,  but due to the parallel operations 
some of the coupling faults will be masked. However, the 
parallel algorithms for stuck-at and pattern-sensitive faults do 
not mask any fault. 

The proposed implementation scheme for the parallel 
testing uses minimal extra hardware. The parallel comparator 
consists of 2b  + 12 transistors and the extra hardware in the 
modified decoder is 2 log2 b transistors. Thus, the overall 
extra hardware is only 2b  + 2 log2 b + 11 transistors, and the 
overall chip area expansion is only 0.4 percent for a 256 Kbit 
DRAM. The proposed technique needs only one transistor to 
fit within the pitch width and easily fits even for the vertically 

integrated, single-cell DRAM design with trench-type capaci- 
tor having intercell pitch width of 3A [29]. 
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