
5 0 0

A Genetic Approach to Standard Cell Placement
Using Meta-Genetic Parameter Optimization

KHUSHRO SHAHOOKAR A N D PINAKI MAZUMDER, M E M B E R , IEEI:

Absfrucf-This paper describes the implementation of the Genetic
Algor i thm for Standard-cell Placement (GASP). Unl ike the other
placement algorithms that apply transformations on the physical lay-
out, the genetic algor i thm applies transformations on the chromosomal
representation of the physical layout. The algor i thm works on a set o f
configurations constituting a constant size population. The transfor-
mations are performed through crossover operators that generate a
new configuration assimilating the characteristics o f a pair o f config-
urations existing in the current population (similar to biological repro-
duction). Muta t ion and inversion operators are also used to increase
the diversity o f the population, and avoid premature convergence at
local optima. Due to the simultaneous optimization of a large popula-
t ion of configurations, there i s a logical concurrency in the search of
the solution space which makes the genetic algor i thm an extremely ef-
ficient optimizer. Three efficient crossover techniques have been com-
pared, and the algor i thm parameters, namely mutat ion rate, crossover
rate, and inversion rate have been optimized fo r the cell placement
problem by using a meta-genetic process. The resulting algor i thm was
tested against T i m b e r w o l f 3.3 on five industr ia l circuits consisting of
100-800 cells. The results indicate that a placement comparable in
quality can be obtained in about the same execution time as
T imberwo l f , but the genetic algor i thm needs to explore 20-50 times
less configurations compared to T imberwo l f , which illustrates the ef-
ficiency o f the search process.

I . INTRODUCTION
S VLSI device integration is doubling every two to A three years, layout complexity and chip turnaround

time are becoming important design considerations. Stan-
dard cell design techniques are commonly used because
they provide a semi-regular layout, which can be accom-
plished in a relatively short time. In such a layout, all
cells have the same height, and their width varies with
their functionality. The cells are placed in rows, and in-
terconnects run in channels between the rows. One of the
major objectives in standard cell layout is to minimize the
overall interconnect length by placing the cells optimally
with respect to each other.

Several deterministic algorithms have been proposed in
the past, based on recursive partitioning 111, [8], [23],
and physical laws which minimize the energy in the steady
state such as Hooke's law [1 I] and power distributions in
passive resistive networks [31, but the most successful
methods so far are the ones that use a good general-pur-

Manuscript received April 4. 1989. This work was supported by URI-
Program of' the U.S. Army undcr Grant DAAL 03-87-K-0007 and by the
Research Initiation Award of the National Science Foundation under Grent
MIP-8808978. Thi\ paper was recommended by Associate Editor R. H . J .
M . Otren.

The authors are with the Department 01 Electrical Engineering and
Computer Science, Univcrsity 01 Michigan. A n n Arbor, MI 48 109.

IEEE Log Number 8934103.

pose stochastic optimization algorithm, such as simulated
annealing [5] , [16], [IS] , [19], 1211.

This paper describes the implementation and optimi-
zation of the Genetic Algorithm for Standard-cell Place-
ment (GASP-I). As opposed to simulated annealing,
which normally uses pairwise interchange for trans-
forming the layout configuration, in a genetic algorithm,
the crossover operator is used to combine two current
configurations to generate a new configuration (similar to
reproduction in biology). The traditional genetic cross-
over operator, as proposed by Holland [141, cannot be
applied without modification to the cell placement prob-
lem, because it occasionally results in illegal placement.
We have, therefore, directed a great deal of effort towards
finding an efficient crossover operator for this problem
domain.

We have implemented three powerful crossover opera-
tors and compared their performance in reducing the in-
terconnect length. The results of this comparison were
conclusively in favor of Cycle crossover. We have also
analyzed the performance of these crossover operators,
and demonstrated that these operators allow us to examine
a large portion of the sample space. In this paper, the pa-
rameters of the genetic algorithm have been optimized
using the meta-genetic technique, which itself is a genetic
optimization process for tuning the parameters of the ge-
netic algorithm. In order to benchmark the performance
of GASP- 1 , we picked the best possible compromise be-
tween the parameters, and ran the algorithm to place five
industrial circuits (obtained from IBM) consisting of 100-
800 cells. The results were very encouraging. The total
number of configurations examined by GASP-1 was 19-
50 times less than that for Timberwolf 3 . 3 (211 and the
runtime was marginally better. The percentage iniprove-
ment in the wire length was better in three out of five
circuits. The overall conclusion from this preliminary re-
search is that adaptive search, similar to the one we used
in this paper, can be udrnissible (i .e. , i t converges to near-
global minimum) similar to the stochastic approaches (like
the simulated annealing), but because it examines a large
number of configurations concurrently, it searches far
more efficiently than algorithms using pairwise exchange.

11. THE ALGORITHM
The genetic algorithm has recently been applied to op-

timization problems in diverse fields, such as job sched-
uling 161, machine learning 191, the traveling salesman

0278-0070/90/0500-0500$0 1 .OO O 1990 IEEE

S H A H O O K A R ANI) M A / l l \ l l) t ; R G E N E T I C A P P K O A C H IO S T A N D A K I) Ck.l.1. l ’ I , ~ \ C ~ . ~ l l - K T 5 0 I

problem (121. and pattern recognition 1221. 1241. I t is a
powerful optimization algorithm. which starts with an ini-
tial set of random configurations and uses a process sim-
ilar to biological evolution to improve upon them. The set
of configurations the genetic algorithm operates upon is
called the population. Each individual in the population
is a string of symbols, usually but not necessarily. a bi-
nary bit string representing a solution to the optimization
problem. We have used ordered triples of integers as sym-
bols for the standard cell placement problem, as opposed
to the bit map representation for macro-cell placement in
[2] . The flowchart is given in Fig. I . During each itera-
tion. called a generariorz, the individuals in the current
population are evaluated. using some measure of fitness.
Based on this jirness value, individuals are selected from
the population two at a time as parents. The fitter individ-
uals have a higher probability of being selected. A num-
ber of genetic operators are applied to the parents to gen-
erate new individuals, called offspring, by combining the
features of both parents. The three genetic operators com-
monly used by the genetic algorithm are crossover, mu-
tation, and inversion, which are derived by analogy from
the biological process of evolution. These operators are
described in detail below. The offspring are next evalu-
ated, and a new generation is formed by selecting some
of the parents and offspring. and rejecting others so as to
keep the population size constant.

2.1. Schemata
This section explains why genetic algorithms are so

successful in complex optimization problems in terms of
schemata and the effect of genetic operators on them. In-
formally, the symbols used in the solution strings are
known as genes. They are the basic building blocks of a
solution, and represent the properties which make one so-
lution different from the other. For example, in the cell
placement problem, the ordered triples consisting of the
cells and their assigned coordinates can be considered as
genes. A solution string, which is made up of genes, is
called a chromosome. A schema is set of genes that make
up a partial solution. An example would be a subplace-
ment, consisting of any number of such triples, with
“don’t cares” for the rest of the cells. A schema with m
defining elements, and “don’t cares” in the rest of the
n - m positions (such as an m-cell subplacement in an
n-cell placement problem) can be considered as an (n -
m)-dimensional hyperplane in the solution space. All
points on that hyperplane (i .e. , all configurations that
contain the given subplacement) are instances of the
schema. Note here that the subplacement does not have
to be physically contiguous, such as a rectangular patch
of the chip area. For example, a good subplacement can
consist of two densely connected cells in neighboring lo-
cations. Similarly. a good subplacement can also consist
of a cell at the input end of the network and a cell at the
output end which are currently placed at opposite ends of
the chip. Both these subplacements will contribute to the
high performance of the individual that inherits them.

inversion rate = RI, population size = Np. no. of generations = Ng,
Offspring Ns := Np ‘ Rc:

FOR , = 1 TO Np DO

I Evaluate confiauration I: I

FOR J := 1 TO Np DO
Invert config. J with probability = NI:

Make two random trials and select two parents from
the population, with probability of selection of each

individual proportional to its fitness:
Align serial Nos. of parent 2 with those of parent 1,

Perform specified type of crossover operation.
store result in offspring array;

FOR k := 1 TO nNpRm12 DO
Select a random configuration and
make a random pair interchange.

FOR J := 1 TO Ns DO

the population for the next generation, according to
the specified selection criterion. and copy the pointers

I Find the individual with the highest fitness I in the final population

Fig, I . The g e n e t i c a l g o r i t h m

Thus a schema is a logical rather than physical grouping
of cell-coordinate triples which have a particular relative
orientation.

As mentioned above, the genetic operators create a new
generation of configurations by combining the schemata
(or subplacements) of parents selected from the current
generation. Due to the stochastic selection process, the
fitter parents, which are expected to contain some good
subplacements are likely to produce more offspring, and
the bad parents, which contain some bad subplacements
are likely to produce less offspring. Thus in the next gen-
eration, the number of good subplacements (or high fit-
ness schemata) tends to increase, and the number of bad
subplacements (low fitness schemata) tends to decrease.
Thus the fitness of the entire population improves. This
is the basic mechanism of optimization by the genetic al-
gorithm.

Each individual in the population is an instance of 2 ”
schemata, where tz is the length of each individual string.
Thus there are a very large number of schemata repre-
sented in a relatively small population. By trying out one
new offspring, we get a rough estimate of the fitness of

SO2 IEEt- TRANSACTIOKS ON COMPUTER-AIDED DESIGN. VOL. 9. N O . 5 . MAY I990

all of its schemata or subplacements. Thus with each new
configuration examined, the number of each of its 2"
schemata present in the population is adjusted according
to its fitness. This effect is termed as the intrinsic paral-
lelism of the genetic algorithm. As more configurations
are tried out, the relative proportions of the various sche-
mata in the population reflect their fitness more and more
accurately. When a fitter schema is introduced in the pop-
ulation through one offspring, it is inherited by others in
the succeeding generation, and thus its proportion in the
population increases. It starts driving out the less fit sche-
mata, and the average fitness of the population keeps im-
proving.

2.2. Genetic Operators
The genetic operators and their significance can now be

explained.
Crossover: Crossover is the main genetic operator. It

operates on two individuals at a time, and generates an
offspring by combining schemata from both parents. A
simple way to achieve crossover would be to choose a
random cut point, and generate the offspring by combin-
ing the segment of one parent to the left of the cut point
with the segment of the other parent to the right of the cut
point. This method works well with the bit string repre-
sentation. Fig. 2 gives an example of crossover. In some
applications, where the symbols in the solution string can-
not be repeated, this method is not applicable without
modification. Placement is a typical problem domain
where such conflicts can occur [4]. For example, as shown
in Fig. 2, cells B and F are repeated, and cells H and I
are left out. Thus we need either a new crossover operator
that works well for these problem domains, or a method
to resolve such conflicts without causing significant deg-
radation in the efficiency of the search process. The per-
formance of the GA depends, to a great extent, on the
performance of the crossover operator used. Three cross-
over operators are described in Section IV and their per-
formance is evaluated for the cell placement problem.

When the algorithm has been running for some time,
the individuals in the population are expected to be mod-
erately good. Thus when the schemata from two such in-
dividuals come together, the resulting offspring can be
even better, in which case they are accepted into the pop-
ulation. Besides, the fitter parents have a higher proba-
bility of generating offspring. This allows it to examine
more configurations in a region of greater average fitness
so that the optimum may be determined, and, at the same
time, examine a few configurations in other regions of the
configuration space so that other areas of high average
performance may be discovered.

The amount of crossover is controlled by the crossover
rate, which is defined as the ratio of the number of off-
spring produced in each generation to the population size.
The crossover rate determines the ratio of the number of
searches in regions of high average fitness to the number
of searches in other regions. A higher crossover rate al-
lows exploration of more of the solution space, and re-

CHRCMOYJMAL REPRESENTATW PHYSICAL LAYOUl

CU! P"",

E l

. .

S E n l l l m , 0 1 2 3 4 5 6 7 8 P

Fig. 2 . The traditional method of crossover. A segment of cells is taken
from each parent. The coordinate array is taken from the tirst parent.
With this method. cells B and F a r e repeated, and cclls H and I are left
out.

CHROMOSOMAL REPRESENTATION PHYSICAL LAYOUT

lJ
CELL A F C D E B G H I J

x o msn I I W o Y I S S ~ S S

Fig. 3 . Mutation.

duces the chances of settling for a false optimum; but if
this rate is too high, it results in the wastage of a lot of
computation time in exploring unpromising regions of the
solution space.

Mutation: Mutation is a background operator, which
produces spontaneous random changes in various individ-
uals. The mechanism used in this implementation is pair-
wise interchange as shown in Fig. 3. This is not a mech-
anism for randomly examining new configurations as in
other iterative improvement algorithms. In GAS, mutation
serves the crucial role of replacing the genes lost from the
population during the selection process so that they can
be tried in a new context, or providing the genes that were
not present in the initial population. In terms of the place-
ment problem, a gene consisting of an ordered triple of a
cell and its associated ideaf coordinates may not be pre-
sent in any of the individuals in the population. (That is,
that particular cell may be associated with nonideal co-
ordinates in all the individuals.) In that case crossover
alone will not help, because it is only an inheritance
mechanism for existing genes. The mutation operator
generates new cell-coordinate triples. If the new triples
perform well, the configurations containing them are re-
tained, and these triples spread throughout the population
by crossover.

The mutation rate is defined as the percentage of the
total number of genes in the population, which are mu-

SHAHOOKAR A N D M A Z U M D E R GENETIC APPROACH TO S. IANDARD C t L L PLACI-.MEN I 50.3

CHROMOSOMAL REPRESENTATION PHYSICAL LAYOUT

II

Fig. 4. Inversion

tated in each generation. Thus for an n-cell placement
problem, with a population size NI, , the total number of
genes is nN,, and nN,,R1,,/2 pairwise interchanges are per-
formed for a mutation rate RI,,. The mutation rate controls
the rate at which new genes are introduced into the pop-
ulation for trial. If it is too low, many genes that would
have been useful are never tried out. If it is too high, there
will be much random perturbation, the offspring will start
losing their resemblance to the parents, and the algorithm
will lose the ability to learn from the history of the search.

Inversion: This consists of taking a random segment in
a solution string and flipping it (Fig. 4). This operation
should be performed in a way such that it does not modify
the solution represented by the string; instead, it only
modifies the representation of the solution. Thus the sym-
bols composing the string must have an interpretation in-
dependent of their position. This can be achieved by as-
sociating a serial number with each symbol in the string,
and interpreting the string with respect to these serial
numbers instead of the array index. When a symbol is
moved in the array, its serial number is moved with it,
and so the interpretation of the symbol remains un-
changed. In the cell placement problem, the x- and y-CO-
ordinates stored with each cell perform this function. Thus
wherever the cell-coordinate triple is located in the pop-
ulation array, it will have the same interpretation in terms
of the physical layout.

The advantage of the inversion operator is the follow-
ing. There are some groups of properties, or genes which
would be advantageous for the offspring to inherit to-
gether from one parent. Such groups of genes, which in-
teract to increase the fitness of the offspring that inherit
them are said to be co-adapted. For example, if cells A
and B are densely connected to each other, and parent 1
has the genes (A , xI, y l) , and (B , x2, y ?) , where (x , ,
y ,) , and (x ? , pz) are neighboring locations, then it would
be advantageous for the offspring to inherit both these
genes from one parent so that after crossover cells A and
B remain in neighboring locations. If two genes are close
to each other in the solution string, then they have a lesser
probability of being split up when the crossover operator
divides the string into two segments. Thus by shuffling
the cells around in the solution string, inversion allows
triples of cells which are already well-placed relative to
each other, to be located close to each other in the string.
This increases the probability that when the crossover op-

erator splits parent configurations into segments to pass
to the offspring, the subplacements consisting of such
groups will be passed intact from one parent (or another).
This process allows for the formation and survival of
highly optimized subplacements long before the optimi-
zation of any complete placement is finished.

111. IMPLEMENTATION DETAILS
The flowchart for GASP-I is given in Fig. 1 . First, an

initial population is constructed r-andotn/y. Each individ-
ual is represented by a set of four integer arrays contain-
ing the cell number, the x- and y-coordinates. and a serial
number. Internally assigned cell numbers are used instead
of cell names for compact storage and faster processing.
The serial number is used to keep track of the approxi-
mate slot in the physical layout area to which each cell is
assigned. It is somewhat redundant when the x- and
y-coordinates are given, but i t greatly speeds up process-
ing during crossover, and evaluation. For each configu-
ration in the initial population, the coordinates of the cells
are determined by placing them end-to-end in rows. The
population size is provided by the user, and determines
the tradeoff between processing time and result quality.
From a lot of experimental data, we have observed that a
constant population size of 24 gives the best possible so-
lution quality for most of the circuits. Each individual is
evaluated to determine its fitness. The fitness is the recip-
rocal of the bounded rectangle wire length. Since cell
overlaps are removed before evaluation as described be-
low, the traditional terms for row length control and over-
lap are unnecessary:

1

wherefis the fitness, x (i) and y (i) are the horizontal and
vertical spans of net i , and W H (i) and W , (i) are the
horizontal and vertical weights.

At the beginning of each generation, inversion is per-
formed on each individual, with a probability equal to the
inversion rate. For this purpose, two cut points are deter-
mined randomly, and the segment between them in the
cell array is flipped, along with the coordinates and the
serial numbers (Fig. 3) . This ensures that each cell is still
associated with the same coordinates. The configuration
is not changed; only its representation is changed in the
population array. Then crossover takes place. Two indi-
viduals are selected from the population at random, with
a probability proportional to their fitness. Before cross-
over, the serial numbers of the second parent are aligned
in the same sequence as those of the first parent, so that
cells in the same array locations correspond to approxi-
mately the same locations on the chip. Then segments are
exchanged between parents as described in Section IV, so
that for each location on the chip, the child inherits a cell
from one parent or another. The coordinates and serial
numbers are inherited entirely from one parent, which
means that all the cells will not fit their slots and there

will be some overlap. This process is repeated until the
desired number of offspring have been generated. The
number of offspring per generation, N , is determined by
the crossover rate:

N , = N,,R,

where N,, is the population size, and R,. is the crossover
rate. Since the number of configurations examined is kept
constant in all runs for a particular circuit, the actual num-
ber of generations is increased as the crossover rate is re-
duced:

where N,, is the population size, and N,?, is the number of
generations specified by the user. After crossover, each
offspring is mutated with a probability equal to the mu-
tation rare. For this purpose, a configuration is picked at
random nN,,Rlll/2 times as described above. Each time
two cells are picked randomly and exchanged, leaving the
coordinate arrays unchanged (Fig. 2) . Thus mutation does
result in a minor change in the physical configuration.

After crossover and mutation, the fitness of each off-
spring is evaluated. After a lot of experimenting, it was
found beneficial to realign the cells in the offspring to re-
move cell overlap before evaluation. Unlike simulated an-
nealing, where only two cells are moved at a time, and it
is possible to calculate the wire length incrementally, in
the genetic algorithm, as many as half the cells in the cir-
cuit are moved simultaneously, so the wire length must be
computed exhaustively. Thus it is not necessary to toler-
ate overlap and preserve the coordinates of most of the
cells as in simulated annealing. Besides, it was observed
that determining the overlap takes about as much com-
putation time as removing it. Further it was also observed
that using overlap penalty and removing overlap at the
end of the run resulted in a significant increase in wire
length, as much as 10% in some cases, with the genetic
algorithm receiving no further chance to work on the cir-
cuit. Removing the overlaps after every generation not
only gives the algorithm a more accurate picture of the
wire length, but also gives the algorithm repeated chances
to optimize the circuit after it has been perturbed (from
the state inherited from the parents) by overlap removal.

After evaluation, the population for the next generation
is selected from the combined set of parents and offspring.
Three selection methods have been tried-deterministic
selection, in which the fittest individuals are selected,
random selection, and random selection with the retention
of the best individual. This completes the processing of
one generation.

IV. CROSSOVER OPERATORS
As mentioned earlier, crossover is the primary method

of optimization in the genetic algorithm, and, in the case
of placement, works by combining subplacements from
two different parent configurations to generate a new
placement. In order to deal with the conflicts that can oc-

cur in traditional crossover, one must either find a way to
combine two different configurations without conflicts, or
use some method to resolve the conflicts that arise. We
have compared the performance of three powerful cross-
over operators. Two of them, Order and PMX, differ in
their conflict resolution methods, while Cycle crossover
is a conflictless operator.

Order Crossover: The algorithm is as follows. Choose
a cut point at random. Copy the array segment to the left
of the cut point from one parent to the offspring. Fill the
remaining (right) portion of the offspring array by going
through the second parent, from the beginning to the end
and taking those elements which were left out, in order.
An example is shown in Fig. 5(a). This operator conveys
a subplacernent from the first parent without any changes,
and then, to resolve conflicts, compresses the second par-
ent by eliminating the cells conveyed by the first parent,
and shifting the rest of the cells to the left, without chang-
ing their order [7]. It then copies this compressed second
parent into the remaining part of the offspring array.

PMX: PMX [I O] stands for “partially mapped cross-
over.” It is implemented as follows. Choose a random
cut point and consider the segments following the cut point
in both parents as a partial mapping of the cells to be ex-
changed in the first parent to generate the offspring. Take
corresponding cells from the segments of both parents,
locate both these cells in the first parent and exchange
them. Repeat this process for all cells in the segment. Thus
a cell in the segment of the first parent and a cell in the
same location in the second parent will define which cells
in the first parent have to be exchanged to generate the
offspring. An example is shown in Fig. 5(b).

Cycle Crossover: Cycle crossover [20] is an attempt to
eliminate the cell conflicts that normally arise in crossover
operators. In the offspring generated by Cycle crossover,
every cell is in the same location as in one parent or the
other. For Cycle crossover, we start with the cell in lo-
cation 1 of parent 1 (or any other reference point), and
copy it to location 1 of the offspring. Now consider what
will happen to the cell in location 1 of parent 2 . The off-
spring cannot inherit this cell from parent 2 , since loca-
tion l in the offspring has been filled. So this cell must be
searched in parent 1 and passed on to the offspring from
there. Supposing this cell is located in parent 1 at location
x. Then it is passed to the offspring at location x. How-
ever, then the cell at location x in parent 2 cannot be
passed to the offspring, so that cell is also passed from
parent 1 . This process continues until we complete a cycle
and reach a cell that has already been passed. Then we
choose a cell from parent 2 to pass to the offspring, and
go through another cycle, passing cells from parent 2 to
the offspring. Thus in alternate cycles, the offspring in-
herits cells from alternate parents, and the cells are placed
in the same locations as they were in the parents from
which they were inherited. An example is given in Fig.
5(c). One disadvantage of the Cycle operator is that the
subsections passed from each parent are not contiguous in
the cell array.

(C)

Fig. 5. Crossover operators. (a) 0 d c . r c~ro.\.w~wr: Pass the lctt segment
from parent I , Construct the right segment by tahing the reinaining cell\
from parent 2 in the same order. (b) P M X c ~ r o . ~ . \ o ~ ' c r : The right segment\
of both parents act as a partial mapping of pairwise exchanges to be
performed o n parent I. Since the pair\ (G. J) . (H . B) . and (1. F) ;ire
situated at the same locations in both parents. exchange these cells in
parent I to generate the otl'spring. (c) C~c./e ~ ~ r m \ o w r : Start by passing
A from parent I to the offspring. Since E i s located at the same position
in parent 2. i t cannot be passed from there. D i s located in the same
position in parent 2. as E in parent I . So proceed similarly with D . Nov.
A i s in the same Incatinn. but i t has already been processed. This c o n -
pletes a cycle. Start another cycle from parent 2. by pn\sing C to the
offspring. and cnntinue by passing B. H . F, and I from parent 2 . The
third cycle w i l l again be from parent I . and wi l l pass G and J .

The survival probability for the schemata for each
crossover operator is given in Appendix I , which indi-
cates which operator is expected to be better under var-
ious situations.

V . OPTIMIZING THE GENETIC ALGORITHM
We have used the meta-genetic algorithm [131 to optim-

ize our genetic algorithm for cell placement. The three
parameters optimized are the crossover rate, inversion
rate, and mutation rate. The meta-genetic algorithm is it-
self a genetic optimization process, which runs the ge-
netic algorithm to solve a placement problem, and manip-
ulates its parameters to optimize its fitness (Fig. 6) . The
individuals in the population of the meta-genetic algo-
rithm consist of three integers in the range [0, 201, rep-
resenting the mutation rate, inversion rate. and crossover
rate for the genetic algorithm. The mutation rate as given
by this parameter can vary from 0 to 10% in steps of
0.5%. the inversion rate can vary from 0 to 100% in steps
of 5 % . and the crossover rate can vary from 20% to loo%,
in steps of 4 % . The fitness of an individual (a genetic
algorithm with a certain parameter combination) is taken
to be the fitness of the best placement that the genetic

I ., I

1 1 I I

Use history 01 previous
exploration to generate *
better se1 01 parameters

Fig. 6. The meta-genetic optimization procc\s

Population size := 20;
No. of generations := 100;

Generate initial population randomly. each individual

For i := 1 to population size,
evaluate each individual i by running the genetic

algorilhm with the crossover, inversion and
mutation rates as specified by the three integers.
and determining the fitness of the best placement

found with these Darameter seninas;

Make two random trials and select two parents
from the population. with the probability of

selection of each individual proportional to its
filness;

Perform crossover by selecting each parameler
randomly from either parent, with equal

probability;

Mutate offspring with 80% probability, by
seleaing a parameter at random and adding
to it a random number in the range (-2,2];

4
For j := 1 to population size,
Evaluate offspring j as above:

From the mmbined set of parents and
offspring. choose the individuals with

the largest fitness and copy their pointers
to the population array, so that the
population size remains constant.

Fig. 7. The iiieta-genetic algorithin-Howchart.

algorithm can find in the entire run, using these parame-
ters.

The flowchart is given in Fig. 7. For the meta-genetic
algorithm, the population size was 20, and the algorithm
was run for 100 generations. The crossover probability
was 100%. Crossover consists of selecting each of the
three parameters randomly from one parent or the other.

with equal probability of a parameter value being selected
from either parent. Inversion is not used. This is because
the length of each individual (three elements) is so small
that there is little scope for group formation. After cross-
over, the offspring are mutated. Mutation consists of add-
ing a random number in the range 1-2. 21 to any one
parameter in the offspring. The probability of mutation is
20%. The high mutation rate and large number of gener-
ations are used so that the performance of the meta-ge-
netic algorithm does not become a bottleneck in the search
for the optimum parameters for the genetic algorithm.

The different crossover mechanisms were not included
in the optimization. Instead, the optimization was per-
formed separately for each crossover mechanism, and the
best results for each were compared to determine an over-
all winner. This was done because of the following rea-
son. Each crossover mechanism was expected to perform
best with a slightly different combination of parameters.
If the crossover type was included in the meta-genetic
search, then the meta-genetic population would consist of
individuals with different crossover types, each with its
own optimized set of parameters. Unless the meta-genetic
crossover operator was constrained to perform crossover
between individuals of the same crossover type, it would
tend to couple the wrong set of parameters with the wrong
crossover type to generate offspring of poor quality. Thus
we included only the three rate parameters in the meta-
genetic optimization process and let them be optimized
for a particular crossover type in each run.

VI. COMPARISON WITH OTHER ALGORITHMS

6. I . Simulated Antieding
Both simulated annealing and the genetic algorithm are
computation intensive. However, the genetic algorithm
has some built-in features, which, if exploited properly,
can result in significant improvement in runtime. One dif-
ference is that the simulated annealing algorithm operates
on only one configuration at a time, while the genetic al-
gorithm maintains a large population of configurations,
which are optimized simultaneously. The population
serves as a memory for experience gained in the search of
the solution space. The genetic algorithm takes full ad-
vantage of this memory, and directs a more extensive
search to areas of lower average cost, as determined by
the search done so far. Since simulated annealing operates
on only one configuration at a time, it has very little his-
tory to utilize, in order to be able to learn from past trials.

Both simulated annealing and the genetic algorithm
have mechanisms for avoiding preconvergence to local
optima. In simulated annealing, this is done by occasion-
ally discarding a superior configuration and accepting an
inferior one. The genetic algorithm also relies on inferior
configurations as a means of avoiding false optima, but,
since it has a whole population of configurations, it can
keep and process inferior configurations without compro-
mising the best ones. Besides, in the genetic algorithm,
each new configuration is constructed from two previous

configurations, which means that in a few iterations, all
the configurations in the population have a chance of con-
tributing their good features to form one super-configu-
ration. In simulated annealing. each new configuration is
formed from only one old configuration. which means that
only incremental improvement is possible. and the good
features of more than one radically different configura-
tions never mix. A configuration is either accepted or
thrown away as a whole, depending on its total cost.

On the negative side, the genetic algorithm requires
more memory space compared to simulated annealing. For
example, a 1000 cell placement problem would require
up to 500 Kbytes to store a population of 24 configura-
tions and 8 offspring (which includes the cell. coordinate
and serial number arrays, but excludes the netlist and cell
library information). For moderate size layout problems,
this memory requirement may not pose any significant
problem, because commercial workstations have 4M bytes
or more of primary memory. For circuits of the order of
I O 000 cells, the genetic algorithm is expected to have a
small amount of extra paging overhead compared to sim-
ulated annealing, but it is still expected to speedup the
optimization due to the efficiency of the search process.

6.2. Genie
Genie [4] is a genetic algorithm for standard cell place-

ment, and follows the same fundamental techniques, al-
though there are some important differences. Genie uses
crossover and mutation operators which are different from
those in GASP- 1 . Besides. the crossover operators in Ge-
nie pass on average only four to nine cells from one parent
to the offspring, and the rest of the cells are passed from
the other parent. Thus in placement problems of the order
of 1000 cells, the crossover operators are unable to prop-
erly convey the features of both the parents to the off-
spring. In GASP-1. there is an equal probability of split-
ting the parents at any point along their length, which
means that on average, both parents will contribute
equally to the offspring.

Genie does not use the inversion operator, which is a
very useful operator in genetic algorithms, as discussed
in Section 11. The scoring function in Genie considers the
wire length, and wiring density. For the latter. a scheme
is used, by which all channels with wiring density more
than one standard deviation above the average are penal-
ized. This is a very useful feature and would lead to higher
quality layouts. However, we did not implement such a
scheme because we believed it would be too expensive,
computationally, and the benefits would not justify the
added overhead. This issue is still open for further re-
search.

6.3. ESP
Kling [171 has devised a novel evolution-based algo-

rithm for placement. His approach is completely different
from the traditional genetic algorithm as proposed by Hol-
land [14]. ESP operates on only one configuration, like
simulated annealing, and, naturally. generates offspring

~

SHAHOOKAR AND M A Z U M D L R GENETIC APPROACH I O S T A h D A R D CELL PLACI-Mth I

from only one parent. There is some concurrency in the
ESP search process, since several badly placed cells are
removed from the current configuration and reallocated
simultaneously. A number of heuristic measures used to
determine the goodness value of placement of each cell.
ESP has achieved impressive results compared to
TimberW ol f .

VII. EXPERIMENTAL RESULTS

7. I. Meta-Genetic Parameter Optiinizatioil
Table I shows the statistics of the circuits used for the

experiment. These circuits were obtained from IBM, and
have been used by other researchers to evaluate their al-
gorithms [151, [171. A comprehensive experiment was
performed to optimize the parameters of GASP- 1 , and de-
termine which crossover and selection method performs
the best. The experimental method was as follows. At first
we ran the meta-genetic optimization algorithm on four
test circuits consisting of 72, 100. and 183 cells, respec-
tively. The results of this experiment are reported in Ta-
ble II(a). This table shows the final optimized values of
crossover rate, inversion rate, and mutation rate, the ini-
tial and final fitness of the corresponding genetic algo-
rithm, and the convergence characteristics of the meta-
genetic algorithm. Table II(b) shows the ranking of the
various crossover and selection strategies according to the
final fitness values. The overall winner in this comparison
was Cycle crossover, with deterministic selection of the
best configurations.

The optimum values of the genetic parameters given in
Table I1 shows a large variation. However, these results
provide a valuable insight into the acceptable range of pa-
rameter values. In all cases, the crossover rate was in the
range 20-40%. The final population of the meta-genetic
algorithm consisted of individuals with several different
crossover rates, all with equal fitness. This indicated that
the genetic algorithm is not very sensitive to slight vari-
ations in crossover rate, as long as a rate in the above
range is used. For the mutation rate, in most cases, a very
low value of 0.5-1.5% proved optimum, 1.5% being pre-
ferred only for the smallest circuit. The inversion rate
fluctuated the most, but a value of 0-30% performed the
best. We have adopted a compromise set of values that
perform reasonably well with most of the circuits tested.
These values are: crossover rate 33 % , inversion rate 15 % ,
and mutation rate 0.5 % .

Table I1 also shows that the meta-genetic optimization
runs converged in 20-30 generations in most cases. This
is because of the small search space. There were only 8000
possible combinations of the three parameters to be
searched.

Crossover: In most cases, either PMX or Cycle cross-
overs performed the best, and Order crossover performed
the worst. Cycle crossover was found to be slightly better
than PMX. As mentioned above, Cycle crossover does
not suffer from any conflicts, and all the cells in the child
are in the same locations as in one parent or another. This

507

2189

800 293.5

TABLE 11
(a) RESLLTS 0 1 - 'THE M F T A - G l . Y F T I C OPrIMI/ATIOV PROCtSS (b) R A Y K I W

might be a factor in its better performance. Besides, PMX
crossover results in less disruption of the placement con-
veyed from the parents as compared to Order crossover.

Selecrion: In all cases, deterministic selection of the
best of the parents and offspring to be included in the next
generation proved to be better than all other strategies.
Fig. 8(a)-(e) show the plots of the lowest and average
wiring cost in each generation as the optimization pro-
ceeds. Fig. 8(a)-(c) is a comparison of the crossover op-
erators with deterministic selection, and Fig. 8(c)-(e) is
a comparison of the selection methods used. The reason
for the poor performance of the random selection methods
can be clearly seen. Just as it is possible to combine the
good features of two parents to form a better offspring, it
is also possible to combine the bad features to form a far
worse offspring. If these offspring are accepted on a ran-
dom basis, the best and average cost in the population will
oscillate as seen in Fig. 8(d). The losses involved in the
random process far outweigh any advantage gained, and
the algorithm takes a much longer time to converge. When
we allow for the retention of the best solution along with
random selection, the cost of the best solution is seen to
decrease monotonically.

SOX IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 5. MAY 1990

L o w e s t
- _ - - Average

c . > 5 I

c

C

U
m

-
a,
-
I
a, m m

W > m
V

m

u
VI a,

2

CPU-sec
(b)

CPU-sec
(e)

Fig. 8. The optimization characteristics of various crossover operators and
selection functions. (a) Order crossover, deterministic selection. (b) PMX
crossover, deterministic selection. (c) Cycle crossover. deterministic se-
lection. (d) Cycle crossover. random selection. (e) Cycle crossover, ran-
dom and best selection

7.2. Performance of GASP-I
The performance of the algorithm was compared with

Timberwolf 3 . 3 for five circuits ranging from 100 to 800
cells. The algorithm used for this purpose was Cycle
crossover, with deterministic selection of the best config-
urations in each generation, and the crossover, mutation,
and inversion rates given previously. Timberwolf was run
with the attempts per cell parameter set to zero, which
allows the algorithm to look up a table for the optimum
number of iterations to perform. The genetic algorithm
was run until no significant improvement was obtained.
The results of this comparison are shown in Table 111. The
performance measure of the algorithm is taken as the per-
centage improvement in the wire length starting from a
random initial configuration. For determining the per-

TABLE 111
COMPARISON OF GASP-I A N D TIMBERWOLF 3 . 3

6 1 446K 1 14i00 1 I 1 i K 1 2921

800 I 2808M 1 49405 I 64 2 I 833K I 64400 I 515K 144930

A = Percentage improvement ui w i r e length,
hi, = Estimated nremory r~qr i i red to store th r population md offspring

centage improvement in the genetic algorithm, the best
individuals in the initial (random) and the final population
are considered.

It can be observed from this table that GASP-1 exam-
ines 9-50 times less configurations compared to

SHAHOOKAR A N D M A 7 U M D E R GENETIC APPROACH T O S T A N D A R D CEL .L PLACEMENT 5O'J

Iterations (Timberwolf)

0 2 0 40 60 8 0 100 120
360000

$ 240000

200000

r . ? f. !,
v ;, ,

1'

*

240000

200000

I
160000 . 1 160000

120000

80000

120000

80000
0 1000 2000 3000

CPU sec (GASP)

Fig. 9 . The optimization characterlatics of GASP compared to Timber-
Wolf.

TABLE 1V
DISTRIBUTION OF T I M E IN CPU-SECONDS F O R GASP-]

Timberwolf for achieving the same or better percentage
improvement of wire length. This illustrates the search
efficiency of the genetic algorithm. The runtime, how-
ever, is only marginally less than Timberwolf in all cases.
This is due to the increased overhead of wire length eval-
uation.

The result quality, is better in GASP-I for three cir-
cuits, and in Timberwolf for two circuits. Thus we can
conclude that the performance of this algorithm is com-
parable to Timberwolf 3 .3 both in runtime as well as
quality of placement. The memory requirements are also
comparable, but this comparison is unfair for Timber-
Wolf, which is a more well-developed package, and stores
much more data on the physical structure of the layout.
The column M,, of Table I11 gives the amount of memory
required in GASP-1 to store the population and the off-
spring of one generation, or in other words, the overhead
that the genetic algorithm has over simulated annealing.

Table IV shows the distribution of CPU time between
the various functions of GASP- 1 . From this distribution
it is seen that wire length evaluation is the bottleneck in
the execution time of the algorithm, and takes 62-67 % of
the total time. In comparison, crossover takes only 17-
24% of the total time. Thus by reducing the evaluation
time, we will obtain a greater speedup. Overlap removal
takes a very small amount of time as predicted in Section
111.

Fig. 9 shows a comparison between the rate of opti-
mization of GASP and Timberwolf. The 183 cell circuit,
for which we obtained almost identical performance and
runtime for both algorithms was used for the comparison.
It was noted that in the first few high temperature itera-
tions of Timberwolf, the wire length (and the penalties)

irzcreased significantly over the initial placement. This in-
crease causes a greatly increased runtime, but is necessary
for avoiding local optima. Besides, in almost the first half
of the runtime, there is no significant improvement in wire
length. In GASP- 1, the wire length decreases monotoni-
cally, and the greatest reduction is at the beginning. Thus
a moderate quality placement can be obtained very
quickly. The same run can then be continued for a higher
quality placement.

VIII. CONCLUSIONS
The genetic algorithm that was originally invented by

Holland for adaptive searching in AI [141, has been em-
ployed in this research for the placement of standard cells.
Unlike simulated annealing that uses pairwise exchange
for evolving a new configuration from the current one, the
genetic algorithm uses three powerful operators to guide
its search through the solution space concurrently, by
considering a set of configurations at a time. The place-
ment problem is represented in the form of a genetic code,
which is progressively refined, and improved by the op-
erators. This is a major deviation from the conventional
placement algorithms that directly apply the transforma-
tions to the physical layout. However, this feature of the
genetic algorithm is also a potential problem, and unless
clever representation is devised, the algorithm may prove
inefficient. In this research, the standard cell placement
problem has been represented as an effective genetic code,
and three powerful crossover operators have been applied
to generate new configurations. Two other genetic oper-
ators-inversion and mutation-have also been applied to
obtain a highly efficient placement algorithm which re-
quires fewer iterations to converge to a high quality place-
ment. This has been made possible by applying a meta-
genetic process which optimizes the controlling parame-
ters of the genetic algorithm. The algorithm has been
compared with Timberwolf 3.3 for five different circuits
with 100 to 800 cells, and it was observed that for similar
quality of final placement the genetic algorithm described
here needs to examine about 19-50 times less configura-
tions as compared to Timberwolf 3.3. The runtimes of
both algorithms are also comparable.

We are further optimizing the C code of GASP-1 to
improve the runtime. We are also experimenting on ways
to reduce the time required for the evaluation of new con-
figurations, which is the bottleneck in GASP-1. At the
same time we are also experimenting with ways to further
improve the search efficiency of the genetic algorithm by
improving the algorithm used for crossover, and by vary-
ing crossover and mutation rates during the optimization.
With these improvements we expect to speedup the al-
gorithm considerably.

We are also developing an efficient genetic representa-
tion of the standard cell routing problem. The overall ob-
jective will be to develop theoretical understanding of ge-
netic algorithms for CAD applications and specifically to
design a highly efficient tool for standard cell placement
and routing.

APPENDIX I
SCHEMA S U R V I V A L PROBABILITIES FOR CROSSOVER

OPERATORS
The following analysis gives the survival probability of

the schemata under the various crossover operators [20].
A higher survival probability implies a better transfer of
desirable features from the parents to the offspring, and
hence, a more efficient search process. Let:

0 be the order of the schema (the number of defining

D be the length of the schema (the sum of the number

K be the length of the cut (for Order and PMX cross-

L be the length of the string (the number of cells in the

N be the number of elements taken from parent 1 (for

elements),

of defining elements and the don't cares),

over),

placement problem),

Cycle crossover).

These parameters are illustrated in Fig. IO.
Order Crossover: The probability of the schema sur-

viving from parent 1 (from which an entire segment is
taken) to the offspring is

PI =
K - D f l

L

The probability of the schema surviving from parent 2
(from which the rest of the elements are taken in order) is
the probability that none of the elements of the schema
have been taken from parent I . If the length of the schema
is small compared to the length of the string, then

Cut for

I - .

String Representation

A ? C B ? ? ? ? ?
- D + I
- K -

-L-

Fig. I O . The parameter5 used in thc analysis ot the crosso\'cr operators.

Thus the net probability of the schemata surviving in PMX
is

K - D + l
L

PPMX(S) = P , + P , P , =

L - K - K + l
+ (I -2)" x L

P , = (e)".
Cycle Crossover: For large L and small 0, the proba-

bility of the schemata surviving from parent 1 is

The probability of the schema surviving from parent 2 is
similarly

Thus the probability of survival of the schema from either
parent is

Thus the overall probability of survival is

PMX: The probability of the schema surviving from
parent 1 (from which all elements in the cut segment are
taken) is

K - D + 1
L

P , =

The probability of the schema surviving from outside the
cut segment is

if the length of the schema is small compared to the length
of the string. The probability of the schema being com-
pletely outside the cut segment is

L - K - D + l
L p3 =

These results indicate that the survival probability for
schemata from parent 1 is the same for Order crossover
and PMX. The survival probability of very small sche-
mata from parent 2 is larger in Order crossover than in
PMX, but it decreases exponentially in Order crossover
as the length D of the schema increases, while in PMX
the dependence on the length of the schema is linear, as
shown in Fig. 1 1 . Thus the overall survival probability is
greater for order crossover in case of problems where
compact schemata are important. Similarly the survival
probability is greater for the PMX operator in problems
where compact schemata are less important. In the case
of Cycle crossover. the probability of survival of sche-
mata is independent of the length of the schemata, and
depends only on the order as shown in Fig. 12.

SHAHOOKAR AND MAZUMDER: GENETIC APPROACH T O STANDARD CELL PLACEMENT 51 1

1 \ -Order Crossover I
0.8 -

0.6 -

0.4 -

0.2 -

PMX Crossover

~

0.0 ! I
0.0 0.1 0.2 0.3

Normalized Schema length, DIL

Survival probability of schemata for Order and PMX crossover.

0.4

0.2

k NIL = 0.2

”.” I

0.0 0.1 0.2 0.3
Normalized Order of Schema OIL

Fig. 12. Survival probability of schemata for cycle crossover

ACKNOWLEDGMENT
The authors would like to thank Prof. Carl Sechen of

Yale University for providing Timberwolf, Prof. B. Ban-
nerjee of the University of Illinois, for providing the net-
lists of industrial circuits used in the evaluation of GASP-
1, and Mr. Lorenzetti of MCNC for providing the bench-
mark netlists.

REFERENCES
[I] M. A. Breuer “Min-cut placement” J . Design Automat. Fault Tol-

erant Comput., vol. l , pp. 343-382, Oct. 1977.
[2] H. Chang and P. Mazumder “Bit-map crossover based genetic algo-

rithm for macro-cell placement” Tech. Rep., CRL-TR-10-89, Dep.
Elect. Eng. Comput. Sci., Univ. of Michigan, 1989.

[3] C. Cheng and E. Kuh “Module placement based on resistive network
optimization,” IEEE Trans. Computer-Aided Design, vol. CAD-3,
pp. 218-225, July 1984.

[4] J. P. Cohoon, W. D. Paris “Genie technical report,’’ Dep. Comput.
Sci., Univ. of Virginia, 1986.

[SI F. Darema, S . Kirkpatrick, and V. A. Norton “Parallel techniques
for chip placement by simulated annealing on shared memory sys-
tems,” in Proc. IEEE Int. Conf. on Computer Design, pp. 87-90,
1987.

[6] L. Davis “Job shop scheduling with genetic algorithms,” in Proc.
Int. Conf. on Genetic Algorithms and Their Applications, pp. 136-
140, 1985.

[7] - “Applying adaptive algorithms to epistatic domains,” in Proc.
Int. Joint Conf. on Artificial Intelligence, 1985.

[8] A. E. Dunlop and B. W. Kernighan “A procedure for placement of
standard-cell VLSI circuits,” IEEE Trans. Computer-Aided Design,
vol. CAD-4, pp. 92-98, Jan. 1985.

[9] A. C. Englander “Machine learning of visual recognition using ge-
netic algorithms.” in Proc. Int. Conf. on Genetic Algorithms and
Their Applications, pp. 197-201, 1985.

[IO] D. E. Goldberg and R. Lingle “Alleles, loci, and the traveling sales-

man problem,” in Proc. Int. Con$ on Genetic Algorithms and Their
Applications, 1985.
S . Goto “An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout,” IEEE Trans. Circuits Syst., vol.
CAS-28, pp. 12-18, Jan. 1981.
J . J . Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht “Ge-
netic algorithms for the traveling salesman problem.” in Proc. Inr.
Con$ on Genetic Algorithms and Their Applications, pp. 160-168.
1985.
1. J. Grefenstette “Optimization of control parameters for genetic al-
gorithms,” IEEE Trans. Systems, Man, Cybernet., vol. SMC-16,
Jan./Feb. 1986.
J. H. Holland Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan, 1972.
M. Jones and P. Bannerjee “Performance of a parallel algorithm for
standard cell placement on the intel hypercube,” in Proc. Design Au-
tomation Con$, 1987.
S . Kirkpatrick, C . D. Gelatt and M. P. Vecchi “Optimization by sim-
ulated annealing,’’ Sci., vol. 220, no. 4598, pp. 671-680, May 13,
1983.
R. M. Kling “Placement by simulated evolution,” M.S. thesis, Co-
ordinated Science Lab, College of Engr., Univ. of Illinois at Urbana-
Champaign, June 1987.
S . A. Kravitz and R. A. Rutenbar “Placement by simulated annealing
on a multiprocessor,” IEEE Trans. Computer-Aided Design, vol.
CAD-6, pp. 534-549, June 1987.
S . Nahar, S. Sahni and E. Shragowitz “Experiments with simulated
annealing,” in Proc. 22nd Design Automation Conf., pp. 748-752,
1985.
I . M. Oliver, D. J. Smith, and J. R. C. Holland “A study of per-
mutation crossover operators on the traveling salesman problem.” in
Proc. Int. Con$ on Genetic Algorithms and Their Applications, pp.
224-230, 1985.
C. Sechen and A. Sangiovanni-Vincentelli “The Timberwolf place-
ment and routing package,” IEEE J . Solid-State Circuirs, vol. SC-
20, pp. 510-522, Apr. 1985.
I. Stadnyk “Schema recombination in pattern recognition problems,”
in Proc. Int. Conf. on Genetic Algorithms and Their Applications,
pp. 27-35, 1987.
P. Suaris and G. Kedem “Quadrisection: A new approach to standard
cell layout,” in Proc. IEEE Int. Con5 on Computer-Aided Design,
pp. 474-477, 1987.
S . W. Wilson “Adaptive ‘cortical’ pattern recognition,” in Proc. Int.
Conf. on Genetic Algorithms and Their Applications, pp. 188-196,
1985 *

Khushro Shahookar received the B.Sc. degree in
electrical engineering from the University of En-
gineering and Technology, Lahore, Pakistan in
1986, and the M.S. degree in electrical engineer-
ing from the University of Michigan, Ann Arbor
in 1989, where he is currently working towards
the Ph.D. degree.

His main interests are VLSI fabrication tech-
nology and automated VLSI layout algorithms.

*
Pinaki Mazumder (S’84-M’87) received the
B.S.E.E. degree from the Indian Institute of Sci-
ence in 1976, the M.Sc. degree in computer sci-
ence from the University of Alberta, Canada, in
1985, and the Ph.D. degree in electrical and com-
puter engineering from the University of Illinois
in 1987.

Presently he is working as an Assistant Profes-
sor at the Department of Electrical Engineering
and Computer Science of the University of Mich-
igan, Ann Arbor. Prior to this he worked two years

as a research assistant at the Coordinated Science Laboratory, University
of Illinois, and over six years at the Bharat Electronics Ltd. (a collaborator
of RCA) in the area of integrated circuit design and applications. During
the summers of 1985 and 1986, he worked as a Member of Technical Staff
at the AT&T Bell Laboratories, Indian Hill, Naperville, in the area of hard-
ware synthesis from system level behavioral description. His research in-
terests include VLSI testing, computer-aided design, parallel architecture.
and neural networks.

Dr. Mazumder is a member of Phi Kappa Phi and SIGDA. He is the
recipient of the Bell Northern Laboratory Faculty Award.

