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A Genetic Approach to Standard Cell Placement 
Using Meta-Genetic Parameter Optimization 

KHUSHRO SHAHOOKAR A N D  PINAKI MAZUMDER, M E M B E R ,  IEEI:  

Absfrucf-This paper describes the implementation of  the Genetic 
Algor i thm for  Standard-cell Placement (GASP). Unl ike the other 
placement algorithms that apply transformations on  the physical lay- 
out, the genetic algor i thm applies transformations on the chromosomal 
representation of the physical layout. The algor i thm works on a set o f  
configurations constituting a constant size population. The transfor- 
mations are performed through crossover operators that generate a 
new configuration assimilating the characteristics o f  a pair  o f  config- 
urations existing in the current population (similar to  biological repro- 
duction). Muta t ion  and inversion operators are also used to  increase 
the diversity o f  the population, and avoid premature convergence at 
local optima. Due to  the simultaneous optimization of  a large popula- 
t ion of  configurations, there i s  a logical concurrency in the search of  
the solution space which makes the genetic algor i thm an extremely ef- 
ficient optimizer. Three efficient crossover techniques have been com- 
pared, and the algor i thm parameters, namely mutat ion rate, crossover 
rate, and inversion rate have been optimized fo r  the cell placement 
problem by using a meta-genetic process. The resulting algor i thm was 
tested against T i m b e r w o l f  3.3 on  five industr ia l  circuits consisting of  
100-800 cells. The results indicate that a placement comparable in 
quality can be obtained in about the same execution time as 
T imberwo l f ,  but  the genetic algor i thm needs to  explore 20-50 times 
less configurations compared to T imberwo l f ,  which illustrates the ef- 
ficiency o f  the search process. 

I .  INTRODUCTION 
S VLSI device integration is doubling every two to A three years, layout complexity and chip turnaround 

time are becoming important design considerations. Stan- 
dard cell design techniques are commonly used because 
they provide a semi-regular layout, which can be accom- 
plished in a relatively short time. In such a layout, all 
cells have the same height, and their width varies with 
their functionality. The cells are placed in rows, and in- 
terconnects run in channels between the rows. One of the 
major objectives in standard cell layout is to minimize the 
overall interconnect length by placing the cells optimally 
with respect to each other. 

Several deterministic algorithms have been proposed in 
the past, based on recursive partitioning 111, [8], [23], 
and physical laws which minimize the energy in the steady 
state such as Hooke's law [ 1 I ]  and power distributions in 
passive resistive networks [ 31, but the most successful 
methods so far are the ones that use a good general-pur- 
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pose stochastic optimization algorithm, such as simulated 
annealing [ 5 ] ,  [16], [ IS ] ,  [19], 1211. 

This paper describes the implementation and optimi- 
zation of the Genetic Algorithm for Standard-cell Place- 
ment (GASP-I). As opposed to simulated annealing, 
which normally uses pairwise interchange for trans- 
forming the layout configuration, in a genetic algorithm, 
the crossover operator is used to combine two current 
configurations to generate a new configuration (similar to 
reproduction in biology). The traditional genetic cross- 
over operator, as proposed by Holland [ 141, cannot be 
applied without modification to the cell placement prob- 
lem, because it occasionally results in illegal placement. 
We have, therefore, directed a great deal of effort towards 
finding an efficient crossover operator for this problem 
domain. 

We have implemented three powerful crossover opera- 
tors and compared their performance in reducing the in- 
terconnect length. The results of this comparison were 
conclusively in favor of Cycle crossover. We have also 
analyzed the performance of these crossover operators, 
and demonstrated that these operators allow us to examine 
a large portion of the sample space. In this paper, the pa- 
rameters of the genetic algorithm have been optimized 
using the meta-genetic technique, which itself is a genetic 
optimization process for tuning the parameters of the ge- 
netic algorithm. In order to benchmark the performance 
of GASP- 1 ,  we picked the best possible compromise be- 
tween the parameters, and ran the algorithm to place five 
industrial circuits (obtained from IBM) consisting of 100- 
800 cells. The results were very encouraging. The total 
number of configurations examined by GASP-1 was 19- 
50 times less than that for Timberwolf 3 . 3  (211 and the 
runtime was marginally better. The percentage iniprove- 
ment in the wire length was better in three out of five 
circuits. The overall conclusion from this preliminary re- 
search is that adaptive search, similar to the one we used 
in this paper, can be udrnissible (i .e. ,  i t  converges to near- 
global minimum) similar to the stochastic approaches (like 
the simulated annealing), but because it examines a large 
number of configurations concurrently, it searches far 
more efficiently than algorithms using pairwise exchange. 

11. THE ALGORITHM 
The genetic algorithm has recently been applied to op- 

timization problems in diverse fields, such as job sched- 
uling 161, machine learning 191, the traveling salesman 
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problem (121. and pattern recognition 1221. 1241. I t  is a 
powerful optimization algorithm. which starts with an ini- 
tial set of random configurations and uses a process sim- 
ilar to biological evolution to improve upon them. The set 
of configurations the genetic algorithm operates upon is 
called the population. Each individual in the population 
is a string of symbols, usually but not necessarily. a bi- 
nary bit string representing a solution to the optimization 
problem. We have used ordered triples of integers as sym- 
bols for the standard cell placement problem, as opposed 
to the bit map representation for macro-cell placement in 
[ 2 ] .  The flowchart is given in Fig. I .  During each itera- 
tion. called a generariorz, the individuals in the current 
population are evaluated. using some measure of fitness. 
Based on this jirness value, individuals are selected from 
the population two at a time as parents. The fitter individ- 
uals have a higher probability of being selected. A num- 
ber of genetic operators are applied to the parents to gen- 
erate new individuals, called offspring, by combining the 
features of both parents. The three genetic operators com- 
monly used by the genetic algorithm are crossover, mu- 
tation, and inversion, which are derived by analogy from 
the biological process of evolution. These operators are 
described in detail below. The offspring are next evalu- 
ated, and a new generation is formed by selecting some 
of the parents and offspring. and rejecting others so as to 
keep the population size constant. 

2.1. Schemata 
This section explains why genetic algorithms are so 

successful in complex optimization problems in terms of 
schemata and the effect of genetic operators on them. In- 
formally, the symbols used in the solution strings are 
known as genes. They are the basic building blocks of a 
solution, and represent the properties which make one so- 
lution different from the other. For example, in the cell 
placement problem, the ordered triples consisting of the 
cells and their assigned coordinates can be considered as 
genes. A solution string, which is made up of genes, is 
called a chromosome. A schema is set of genes that make 
up a partial solution. An example would be a subplace- 
ment, consisting of any number of such triples, with 
“don’t cares” for the rest of the cells. A schema with m 
defining elements, and “don’t cares” in the rest of the 
n - m positions (such as an m-cell subplacement in an 
n-cell placement problem) can be considered as an ( n  - 
m)-dimensional hyperplane in the solution space. All 
points on that hyperplane (i .e. ,  all configurations that 
contain the given subplacement) are instances of the 
schema. Note here that the subplacement does not have 
to be physically contiguous, such as a rectangular patch 
of the chip area. For example, a good subplacement can 
consist of two densely connected cells in neighboring lo- 
cations. Similarly. a good subplacement can also consist 
of a cell at the input end of the network and a cell at the 
output end which are currently placed at opposite ends of 
the chip. Both these subplacements will contribute to the 
high performance of the individual that inherits them. 

inversion rate = RI, population size = Np. no. of generations = Ng, 
# Offspring Ns := Np ‘ Rc: 

FOR , = 1 TO Np DO 

I Evaluate confiauration I: I 

FOR J := 1 TO Np DO 
Invert config. J with probability = NI: 

Make two random trials and select two parents from 
the population, with probability of selection of each 

individual proportional to its fitness: 
Align serial Nos. of parent 2 with those of parent 1, 

Perform specified type of crossover operation. 
store result in offspring array; 

FOR k := 1 TO nNpRm12 DO 
Select a random configuration and 
make a random pair interchange. 

FOR J := 1 TO Ns DO 

the population for the next generation, according to 
the specified selection criterion. and copy the pointers 

I Find the individual with the highest fitness I in the final population 

Fig, I .  The g e n e t i c  a l g o r i t h m  

Thus a schema is a logical rather than physical grouping 
of cell-coordinate triples which have a particular relative 
orientation. 

As mentioned above, the genetic operators create a new 
generation of configurations by combining the schemata 
(or subplacements) of parents selected from the current 
generation. Due to the stochastic selection process, the 
fitter parents, which are expected to contain some good 
subplacements are likely to produce more offspring, and 
the bad parents, which contain some bad subplacements 
are likely to produce less offspring. Thus in the next gen- 
eration, the number of good subplacements (or high fit- 
ness schemata) tends to increase, and the number of bad 
subplacements (low fitness schemata) tends to decrease. 
Thus the fitness of the entire population improves. This 
is the basic mechanism of optimization by the genetic al- 
gorithm. 

Each individual in the population is an instance of 2 ”  
schemata, where tz is the length of each individual string. 
Thus there are a very large number of schemata repre- 
sented in a relatively small population. By trying out one 
new offspring, we get a rough estimate of the fitness of 
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all of its schemata or subplacements. Thus with each new 
configuration examined, the number of each of its 2"  
schemata present in the population is adjusted according 
to its fitness. This effect is termed as the intrinsic paral- 
lelism of the genetic algorithm. As more configurations 
are tried out, the relative proportions of the various sche- 
mata in the population reflect their fitness more and more 
accurately. When a fitter schema is introduced in the pop- 
ulation through one offspring, it is inherited by others in 
the succeeding generation, and thus its proportion in the 
population increases. It starts driving out the less fit sche- 
mata, and the average fitness of the population keeps im- 
proving. 

2.2. Genetic Operators 
The genetic operators and their significance can now be 

explained. 
Crossover: Crossover is the main genetic operator. It 

operates on two individuals at a time, and generates an 
offspring by combining schemata from both parents. A 
simple way to achieve crossover would be to choose a 
random cut point, and generate the offspring by combin- 
ing the segment of one parent to the left of the cut point 
with the segment of the other parent to the right of the cut 
point. This method works well with the bit string repre- 
sentation. Fig. 2 gives an example of crossover. In some 
applications, where the symbols in the solution string can- 
not be repeated, this method is not applicable without 
modification. Placement is a typical problem domain 
where such conflicts can occur [4]. For example, as shown 
in Fig. 2, cells B and F are repeated, and cells H and I 
are left out. Thus we need either a new crossover operator 
that works well for these problem domains, or a method 
to resolve such conflicts without causing significant deg- 
radation in the efficiency of the search process. The per- 
formance of the GA depends, to a great extent, on the 
performance of the crossover operator used. Three cross- 
over operators are described in Section IV and their per- 
formance is evaluated for the cell placement problem. 

When the algorithm has been running for some time, 
the individuals in the population are expected to be mod- 
erately good. Thus when the schemata from two such in- 
dividuals come together, the resulting offspring can be 
even better, in which case they are accepted into the pop- 
ulation. Besides, the fitter parents have a higher proba- 
bility of generating offspring. This allows it to examine 
more configurations in a region of greater average fitness 
so that the optimum may be determined, and, at the same 
time, examine a few configurations in other regions of the 
configuration space so that other areas of high average 
performance may be discovered. 

The amount of crossover is controlled by the crossover 
rate, which is defined as the ratio of the number of off- 
spring produced in each generation to the population size. 
The crossover rate determines the ratio of the number of 
searches in regions of high average fitness to the number 
of searches in other regions. A higher crossover rate al- 
lows exploration of more of the solution space, and re- 
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Fig. 2 .  The traditional method of crossover. A segment of cells is taken 
from each parent. The coordinate array is taken from the tirst parent. 
With this method. cells B and F a r e  repeated, and cclls H and I are left 
out. 
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Fig. 3 .  Mutation. 

duces the chances of settling for a false optimum; but if 
this rate is too high, it results in the wastage of a lot of 
computation time in exploring unpromising regions of the 
solution space. 

Mutation: Mutation is a background operator, which 
produces spontaneous random changes in  various individ- 
uals. The mechanism used in this implementation is pair- 
wise interchange as shown in Fig. 3.  This is not a mech- 
anism for randomly examining new configurations as in 
other iterative improvement algorithms. In GAS, mutation 
serves the crucial role of replacing the genes lost from the 
population during the selection process so that they can 
be tried in a new context, or providing the genes that were 
not present in the initial population. In terms of the place- 
ment problem, a gene consisting of an ordered triple of a 
cell and its associated ideaf coordinates may not be pre- 
sent in any of the individuals in the population. (That is, 
that particular cell may be associated with nonideal co- 
ordinates in all the individuals.) In that case crossover 
alone will not help, because it is only an inheritance 
mechanism for existing genes. The mutation operator 
generates new cell-coordinate triples. If the new triples 
perform well, the configurations containing them are re- 
tained, and these triples spread throughout the population 
by crossover. 

The mutation rate is defined as the percentage of the 
total number of genes in the population, which are mu- 
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Fig. 4. Inversion 

tated in each generation. Thus for an n-cell placement 
problem, with a population size NI, ,  the total number of 
genes is nN,, and nN,,R1,,/2 pairwise interchanges are per- 
formed for a mutation rate RI,,. The mutation rate controls 
the rate at which new genes are introduced into the pop- 
ulation for trial. If it is too low, many genes that would 
have been useful are never tried out. If it is too high, there 
will be much random perturbation, the offspring will start 
losing their resemblance to the parents, and the algorithm 
will lose the ability to learn from the history of the search. 

Inversion: This consists of taking a random segment in 
a solution string and flipping it (Fig. 4). This operation 
should be performed in a way such that it does not modify 
the solution represented by the string; instead, it only 
modifies the representation of the solution. Thus the sym- 
bols composing the string must have an interpretation in- 
dependent of their position. This can be achieved by as- 
sociating a serial number with each symbol in the string, 
and interpreting the string with respect to these serial 
numbers instead of the array index. When a symbol is 
moved in the array, its serial number is moved with it,  
and so the interpretation of the symbol remains un- 
changed. In the cell placement problem, the x- and y-CO- 
ordinates stored with each cell perform this function. Thus 
wherever the cell-coordinate triple is located in the pop- 
ulation array, it will have the same interpretation in terms 
of the physical layout. 

The advantage of the inversion operator is the follow- 
ing. There are some groups of properties, or genes which 
would be advantageous for the offspring to inherit to- 
gether from one parent. Such groups of genes, which in- 
teract to increase the fitness of the offspring that inherit 
them are said to be co-adapted. For example, if cells A 
and B are densely connected to each other, and parent 1 
has the genes ( A ,  xI, y l ) ,  and ( B ,  x2, y ? ) ,  where (x , ,  
y ,  ) ,  and ( x ? ,  pz)  are neighboring locations, then it would 
be advantageous for the offspring to inherit both these 
genes from one parent so that after crossover cells A and 
B remain in neighboring locations. If two genes are close 
to each other in the solution string, then they have a lesser 
probability of being split up when the crossover operator 
divides the string into two segments. Thus by shuffling 
the cells around in the solution string, inversion allows 
triples of cells which are already well-placed relative to 
each other, to be located close to each other in the string. 
This increases the probability that when the crossover op- 

erator splits parent configurations into segments to pass 
to the offspring, the subplacements consisting of such 
groups will be passed intact from one parent (or another). 
This process allows for the formation and survival of 
highly optimized subplacements long before the optimi- 
zation of any complete placement is finished. 

111. IMPLEMENTATION DETAILS 
The flowchart for GASP-I is given in Fig. 1 .  First, an 

initial population is constructed r-andotn/y. Each individ- 
ual is represented by a set of four integer arrays contain- 
ing the cell number, the x- and y-coordinates. and a serial 
number. Internally assigned cell numbers are used instead 
of cell names for compact storage and faster processing. 
The serial number is used to keep track of the approxi- 
mate slot in the physical layout area to which each cell is 
assigned. It is somewhat redundant when the x- and 
y-coordinates are given, but i t  greatly speeds up process- 
ing during crossover, and evaluation. For each configu- 
ration in  the initial population, the coordinates of the cells 
are determined by placing them end-to-end in rows. The 
population size is provided by the user, and determines 
the tradeoff between processing time and result quality. 
From a lot of experimental data, we have observed that a 
constant population size of 24 gives the best possible so- 
lution quality for most of the circuits. Each individual is 
evaluated to determine its fitness. The fitness is the recip- 
rocal of the bounded rectangle wire length. Since cell 
overlaps are removed before evaluation as described be- 
low, the traditional terms for row length control and over- 
lap are unnecessary: 

1 

wherefis the fitness, x (  i )  and y (  i )  are the horizontal and 
vertical spans of net i ,  and W H ( i )  and W , ( i )  are the 
horizontal and vertical weights. 

At the beginning of each generation, inversion is per- 
formed on each individual, with a probability equal to the 
inversion rate. For this purpose, two cut points are deter- 
mined randomly, and the segment between them in the 
cell array is flipped, along with the coordinates and the 
serial numbers (Fig. 3) .  This ensures that each cell is still 
associated with the same coordinates. The configuration 
is not changed; only its representation is changed in the 
population array. Then crossover takes place. Two indi- 
viduals are selected from the population at random, with 
a probability proportional to their fitness. Before cross- 
over, the serial numbers of the second parent are aligned 
in the same sequence as those of the first parent, so that 
cells in the same array locations correspond to approxi- 
mately the same locations on the chip. Then segments are 
exchanged between parents as described in Section IV,  so 
that for each location on the chip, the child inherits a cell 
from one parent or another. The coordinates and serial 
numbers are inherited entirely from one parent, which 
means that all the cells will not fit their slots and there 



will be some overlap. This process is repeated until the 
desired number of offspring have been generated. The 
number of offspring per generation, N ,  is determined by 
the crossover rate: 

N ,  = N,,R, 

where N,, is the population size, and R,. is the crossover 
rate. Since the number of configurations examined is kept 
constant in all runs for a particular circuit, the actual num- 
ber of generations is increased as the crossover rate is re- 
duced: 

where N,, is the population size, and N,?, is the number of 
generations specified by the user. After crossover, each 
offspring is mutated with a probability equal to the mu- 
tation rare. For this purpose, a configuration is picked at 
random nN,,Rlll/2 times as described above. Each time 
two cells are picked randomly and exchanged, leaving the 
coordinate arrays unchanged (Fig. 2 ) .  Thus mutation does 
result in a minor change in the physical configuration. 

After crossover and mutation, the fitness of each off- 
spring is evaluated. After a lot of experimenting, it  was 
found beneficial to realign the cells in the offspring to re- 
move cell overlap before evaluation. Unlike simulated an- 
nealing, where only two cells are moved at a time, and it  
is possible to calculate the wire length incrementally, in 
the genetic algorithm, as many as half the cells in the cir- 
cuit are moved simultaneously, so the wire length must be 
computed exhaustively. Thus it is not necessary to toler- 
ate overlap and preserve the coordinates of most of the 
cells as in simulated annealing. Besides, it  was observed 
that determining the overlap takes about as much com- 
putation time as removing it. Further it was also observed 
that using overlap penalty and removing overlap at the 
end of the run resulted in a significant increase in wire 
length, as much as 10% in some cases, with the genetic 
algorithm receiving no further chance to work on the cir- 
cuit. Removing the overlaps after every generation not 
only gives the algorithm a more accurate picture of the 
wire length, but also gives the algorithm repeated chances 
to optimize the circuit after it has been perturbed (from 
the state inherited from the parents) by overlap removal. 

After evaluation, the population for the next generation 
is selected from the combined set of parents and offspring. 
Three selection methods have been tried-deterministic 
selection, in which the fittest individuals are selected, 
random selection, and random selection with the retention 
of the best individual. This completes the processing of 
one generation. 

IV. CROSSOVER OPERATORS 
As mentioned earlier, crossover is the primary method 

of optimization in the genetic algorithm, and, in the case 
of placement, works by combining subplacements from 
two different parent configurations to generate a new 
placement. In order to deal with the conflicts that can oc- 

cur in traditional crossover, one must either find a way to 
combine two different configurations without conflicts, or 
use some method to resolve the conflicts that arise. We 
have compared the performance of three powerful cross- 
over operators. Two of them, Order and PMX, differ in 
their conflict resolution methods, while Cycle crossover 
is a conflictless operator. 

Order Crossover: The algorithm is as follows. Choose 
a cut point at random. Copy the array segment to the left 
of the cut point from one parent to the offspring. Fill the 
remaining (right) portion of the offspring array by going 
through the second parent, from the beginning to the end 
and taking those elements which were left out, in order. 
An example is shown in Fig. 5(a). This operator conveys 
a subplacernent from the first parent without any changes, 
and then, to resolve conflicts, compresses the second par- 
ent by eliminating the cells conveyed by the first parent, 
and shifting the rest of the cells to the left, without chang- 
ing their order [7]. It then copies this compressed second 
parent into the remaining part of the offspring array. 

PMX: PMX [ I O ]  stands for “partially mapped cross- 
over.” It is implemented as follows. Choose a random 
cut point and consider the segments following the cut point 
in both parents as a partial mapping of the cells to be ex- 
changed in the first parent to generate the offspring. Take 
corresponding cells from the segments of both parents, 
locate both these cells in the first parent and exchange 
them. Repeat this process for all cells in the segment. Thus 
a cell in the segment of the first parent and a cell in the 
same location in the second parent will define which cells 
in the first parent have to be exchanged to generate the 
offspring. An example is shown in Fig. 5(b). 

Cycle Crossover: Cycle crossover [20] is an attempt to 
eliminate the cell conflicts that normally arise in crossover 
operators. In the offspring generated by Cycle crossover, 
every cell is in the same location as in one parent or the 
other. For Cycle crossover, we start with the cell in lo- 
cation 1 of parent 1 (or any other reference point), and 
copy it to location 1 of the offspring. Now consider what 
will happen to the cell in location 1 of parent 2 .  The off- 
spring cannot inherit this cell from parent 2 ,  since loca- 
tion l in the offspring has been filled. So this cell must be 
searched in parent 1 and passed on to the offspring from 
there. Supposing this cell is located in parent 1 at location 
x. Then it is passed to the offspring at location x. How- 
ever, then the cell at location x in parent 2 cannot be 
passed to the offspring, so that cell is also passed from 
parent 1 .  This process continues until we complete a cycle 
and reach a cell that has already been passed. Then we 
choose a cell from parent 2 to pass to the offspring, and 
go through another cycle, passing cells from parent 2 to 
the offspring. Thus in  alternate cycles, the offspring in- 
herits cells from alternate parents, and the cells are placed 
in the same locations as they were in the parents from 
which they were inherited. An example is given in Fig. 
5(c). One disadvantage of the Cycle operator is that the 
subsections passed from each parent are not contiguous in 
the cell array. 
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Fig. 5.  Crossover operators. (a )  0 d c . r  c~ro.\.w~wr: Pass the lctt segment 
from parent I ,  Construct the right segment by tahing the reinaining cell\ 
from parent 2 in  the same order. (b )  P M X  c ~ r o . ~ . \ o ~ ' c r :  The right segment\ 
of both parents act as a partial mapping of pairwise exchanges to be 
performed o n  parent I. Since the pair\ ( G. J ) . ( H .  B ) .  and ( 1. F ) ;ire 
situated at the same locations in  both parents. exchange these cells in 
parent I to generate the otl'spring. ( c )  C~c./e ~ ~ r m \ o w r :  Start by passing 
A from parent I to the offspring. Since E i s  located at the same position 
in  parent 2. i t  cannot be passed from there. D i s  located in the same 
position in  parent 2. as E in parent I .  So proceed similarly with D .  Nov. 
A i s  in the same Incatinn. but i t  has already been processed. This c o n -  
pletes a cycle. Start another cycle from parent 2. by pn\sing C to the 
offspring. and cnntinue by passing B. H .  F,  and I from parent 2 .  The 
third cycle w i l l  again be from parent I .  and wi l l  pass G and J .  

The survival probability for the schemata for each 
crossover operator is given in Appendix I ,  which indi- 
cates which operator is expected to be better under var- 
ious situations. 

V .  OPTIMIZING THE GENETIC ALGORITHM 
We have used the meta-genetic algorithm [ 131 to optim- 

ize our genetic algorithm for cell placement. The three 
parameters optimized are the crossover rate, inversion 
rate, and mutation rate. The meta-genetic algorithm is it- 
self a genetic optimization process, which runs the ge- 
netic algorithm to solve a placement problem, and manip- 
ulates its parameters to optimize its fitness (Fig. 6) .  The 
individuals in the population of the meta-genetic algo- 
rithm consist of three integers in the range [0, 201, rep- 
resenting the mutation rate, inversion rate. and crossover 
rate for the genetic algorithm. The mutation rate as given 
by this parameter can vary from 0 to 10% in steps of 
0.5%. the inversion rate can vary from 0 to 100% in steps 
of 5 % .  and the crossover rate can vary from 20% to loo%, 
in steps of 4 % .  The fitness of an individual (a genetic 
algorithm with a certain parameter combination) is taken 
to be the fitness of the best placement that the genetic 

I ., I 

1 1 I I 

Use history 01 previous 
exploration to generate * 
better se1 01 parameters 

Fig. 6. The meta-genetic optimization procc\s 

Population size := 20; 
No. of generations := 100; 

Generate initial population randomly. each individual 

For i := 1 to population size, 
evaluate each individual i by running the genetic 

algorilhm with the crossover, inversion and 
mutation rates as specified by the three integers. 
and determining the fitness of the best placement 

found with these Darameter seninas; 

Make two random trials and select two parents 
from the population. with the probability of 

selection of each individual proportional to its 
filness; 

Perform crossover by selecting each parameler 
randomly from either parent, with equal 

probability; 

Mutate offspring with 80% probability, by 
seleaing a parameter at random and adding 
to it a random number in the range (-2,2]; 

4 
For j := 1 to population size, 
Evaluate offspring j as above: 

From the mmbined set of parents and 
offspring. choose the individuals with 

the largest fitness and copy their pointers 
to the population array, so that the 
population size remains constant. 

Fig. 7.  The iiieta-genetic algorithin-Howchart. 

algorithm can find in the entire run,  using these parame- 
ters. 

The flowchart is given in Fig. 7. For the meta-genetic 
algorithm, the population size was 20, and the algorithm 
was run for 100 generations. The crossover probability 
was 100%. Crossover consists of selecting each of the 
three parameters randomly from one parent or the other. 



with equal probability of a parameter value being selected 
from either parent. Inversion is not used. This is because 
the length of each individual (three elements) is so small 
that there is little scope for group formation. After cross- 
over, the offspring are mutated. Mutation consists of add- 
ing a random number in the range 1-2. 21 to any one 
parameter in the offspring. The probability of mutation is 
20%. The high mutation rate and large number of gener- 
ations are used so that the performance of the meta-ge- 
netic algorithm does not become a bottleneck in the search 
for the optimum parameters for the genetic algorithm. 

The different crossover mechanisms were not included 
in the optimization. Instead, the optimization was per- 
formed separately for each crossover mechanism, and the 
best results for each were compared to determine an over- 
all winner. This was done because of the following rea- 
son. Each crossover mechanism was expected to perform 
best with a slightly different combination of parameters. 
If the crossover type was included in the meta-genetic 
search, then the meta-genetic population would consist of 
individuals with different crossover types, each with its 
own optimized set of parameters. Unless the meta-genetic 
crossover operator was constrained to perform crossover 
between individuals of the same crossover type, it  would 
tend to couple the wrong set of parameters with the wrong 
crossover type to generate offspring of poor quality. Thus 
we included only the three rate parameters in the meta- 
genetic optimization process and let them be optimized 
for a particular crossover type in each run. 

VI. COMPARISON WITH OTHER ALGORITHMS 

6. I .  Simulated Antieding 
Both simulated annealing and the genetic algorithm are 
computation intensive. However, the genetic algorithm 
has some built-in features, which, if exploited properly, 
can result in significant improvement in runtime. One dif- 
ference is that the simulated annealing algorithm operates 
on only one configuration at a time, while the genetic al- 
gorithm maintains a large population of configurations, 
which are optimized simultaneously. The population 
serves as a memory for experience gained in the search of 
the solution space. The genetic algorithm takes full ad- 
vantage of this memory, and directs a more extensive 
search to areas of lower average cost, as determined by 
the search done so far. Since simulated annealing operates 
on only one configuration at a time, it has very little his- 
tory to utilize, in order to be able to learn from past trials. 

Both simulated annealing and the genetic algorithm 
have mechanisms for avoiding preconvergence to local 
optima. In simulated annealing, this is done by occasion- 
ally discarding a superior configuration and accepting an 
inferior one. The genetic algorithm also relies on inferior 
configurations as a means of avoiding false optima, but, 
since it has a whole population of configurations, it  can 
keep and process inferior configurations without compro- 
mising the best ones. Besides, in the genetic algorithm, 
each new configuration is constructed from two previous 

configurations, which means that in a few iterations, all 
the configurations in the population have a chance of con- 
tributing their good features to form one super-configu- 
ration. In simulated annealing. each new configuration is 
formed from only one old configuration. which means that 
only incremental improvement is possible. and the good 
features of more than one radically different configura- 
tions never mix. A configuration is either accepted or 
thrown away as a whole, depending on its total cost. 

On the negative side, the genetic algorithm requires 
more memory space compared to simulated annealing. For 
example, a 1000 cell placement problem would require 
up to 500 Kbytes to store a population of 24 configura- 
tions and 8 offspring (which includes the cell. coordinate 
and serial number arrays, but excludes the netlist and cell 
library information). For moderate size layout problems, 
this memory requirement may not pose any significant 
problem, because commercial workstations have 4M bytes 
or more of primary memory. For circuits of the order of 
I O  000 cells, the genetic algorithm is expected to have a 
small amount of extra paging overhead compared to sim- 
ulated annealing, but it is still expected to speedup the 
optimization due to the efficiency of the search process. 

6.2. Genie 
Genie [4] is a genetic algorithm for standard cell place- 

ment, and follows the same fundamental techniques, al- 
though there are some important differences. Genie uses 
crossover and mutation operators which are different from 
those in GASP- 1 .  Besides. the crossover operators in Ge- 
nie pass on average only four to nine cells from one parent 
to the offspring, and the rest of the cells are passed from 
the other parent. Thus in placement problems of the order 
of 1000 cells, the crossover operators are unable to prop- 
erly convey the features of both the parents to the off- 
spring. In GASP-1. there is an equal probability of split- 
ting the parents at any point along their length, which 
means that on average, both parents will contribute 
equally to the offspring. 

Genie does not use the inversion operator, which is a 
very useful operator in genetic algorithms, as discussed 
in Section 11. The scoring function in  Genie considers the 
wire length, and wiring density. For the latter. a scheme 
is used, by which all channels with wiring density more 
than one standard deviation above the average are penal- 
ized. This is a very useful feature and would lead to higher 
quality layouts. However, we did not implement such a 
scheme because we believed it  would be too expensive, 
computationally, and the benefits would not justify the 
added overhead. This issue is still open for further re- 
search. 

6.3. ESP 
Kling [ 171 has devised a novel evolution-based algo- 

rithm for placement. His approach is completely different 
from the traditional genetic algorithm as proposed by Hol- 
land [14]. ESP operates on only one configuration, like 
simulated annealing, and, naturally. generates offspring 
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from only one parent. There is some concurrency in the 
ESP search process, since several badly placed cells are 
removed from the current configuration and reallocated 
simultaneously. A number of heuristic measures used to 
determine the goodness value of placement of each cell. 
ESP has achieved impressive results compared to 
TimberW ol f . 

VII. EXPERIMENTAL RESULTS 

7. I. Meta-Genetic Parameter Optiinizatioil 
Table I shows the statistics of the circuits used for the 

experiment. These circuits were obtained from IBM, and 
have been used by other researchers to evaluate their al- 
gorithms [ 151, [ 171. A comprehensive experiment was 
performed to optimize the parameters of GASP- 1 ,  and de- 
termine which crossover and selection method performs 
the best. The experimental method was as follows. At first 
we ran the meta-genetic optimization algorithm on four 
test circuits consisting of 72, 100. and 183 cells, respec- 
tively. The results of this experiment are reported in Ta- 
ble II(a). This table shows the final optimized values of 
crossover rate, inversion rate, and mutation rate, the ini- 
tial and final fitness of the corresponding genetic algo- 
rithm, and the convergence characteristics of the meta- 
genetic algorithm. Table II(b) shows the ranking of the 
various crossover and selection strategies according to the 
final fitness values. The overall winner in this comparison 
was Cycle crossover, with deterministic selection of the 
best configurations. 

The optimum values of the genetic parameters given in 
Table I1 shows a large variation. However, these results 
provide a valuable insight into the acceptable range of pa- 
rameter values. In all cases, the crossover rate was in the 
range 20-40%. The final population of the meta-genetic 
algorithm consisted of individuals with several different 
crossover rates, all with equal fitness. This indicated that 
the genetic algorithm is not very sensitive to slight vari- 
ations in crossover rate, as long as a rate in the above 
range is used. For the mutation rate, in most cases, a very 
low value of 0.5-1.5% proved optimum, 1.5% being pre- 
ferred only for the smallest circuit. The inversion rate 
fluctuated the most, but a value of 0-30% performed the 
best. We have adopted a compromise set of values that 
perform reasonably well with most of the circuits tested. 
These values are: crossover rate 33 % , inversion rate 15 % , 
and mutation rate 0.5 % . 

Table I1 also shows that the meta-genetic optimization 
runs converged in 20-30 generations in most cases. This 
is because of the small search space. There were only 8000 
possible combinations of the three parameters to be 
searched. 

Crossover: In most cases, either PMX or Cycle cross- 
overs performed the best, and Order crossover performed 
the worst. Cycle crossover was found to be slightly better 
than PMX. As mentioned above, Cycle crossover does 
not suffer from any conflicts, and all the cells in the child 
are in the same locations as in one parent or another. This 
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2189 

800 293.5 

TABLE 11 
( a )  RESLLTS 0 1 -  'THE M F T A - G l . Y F T I C  OPrIMI/ATIOV PROCtSS (b) R A Y K I W  

might be a factor in its better performance. Besides, PMX 
crossover results in less disruption of the placement con- 
veyed from the parents as compared to Order crossover. 

Selecrion: In  all cases, deterministic selection of the 
best of the parents and offspring to be included in the next 
generation proved to be better than all other strategies. 
Fig. 8(a)-(e) show the plots of the lowest and average 
wiring cost in each generation as the optimization pro- 
ceeds. Fig. 8(a)-(c) is a comparison of the crossover op- 
erators with deterministic selection, and Fig. 8(c)-(e) is 
a comparison of the selection methods used. The reason 
for the poor performance of the random selection methods 
can be clearly seen. Just as it is possible to combine the 
good features of two parents to form a better offspring, it 
is also possible to combine the bad features to form a far 
worse offspring. If these offspring are accepted on a ran- 
dom basis, the best and average cost in the population will 
oscillate as seen in Fig. 8(d). The losses involved in the 
random process far outweigh any advantage gained, and 
the algorithm takes a much longer time to converge. When 
we allow for the retention of the best solution along with 
random selection, the cost of the best solution is seen to 
decrease monotonically. 
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Fig. 8. The optimization characteristics of various crossover operators and 
selection functions. (a) Order crossover, deterministic selection. (b) PMX 
crossover, deterministic selection. (c) Cycle crossover. deterministic se- 
lection. (d) Cycle crossover. random selection. (e) Cycle crossover, ran- 
dom and best selection 

7.2. Performance of GASP-I 
The performance of the algorithm was compared with 

Timberwolf 3 . 3  for five circuits ranging from 100 to 800 
cells. The algorithm used for this purpose was Cycle 
crossover, with deterministic selection of the best config- 
urations in each generation, and the crossover, mutation, 
and inversion rates given previously. Timberwolf was run 
with the attempts per cell parameter set to zero, which 
allows the algorithm to look up a table for the optimum 
number of iterations to perform. The genetic algorithm 
was run until no significant improvement was obtained. 
The results of this comparison are shown in Table 111. The 
performance measure of the algorithm is taken as the per- 
centage improvement in the wire length starting from a 
random initial configuration. For determining the per- 

TABLE 111 
COMPARISON OF GASP-I A N D  TIMBERWOLF 3 . 3  

6 1 446K 1 14i00 1 I 1 i K  1 2921 

800 I 2808M 1 49405 I 64 2 I 833K I 64400 I 515K 144930  

A = Percentage improvement ui w i r e  length, 
hi, = Estimated nremory r~qr i i red  to store th r  population md offspring 

centage improvement in the genetic algorithm, the best 
individuals in the initial (random) and the final population 
are considered. 

It can be observed from this table that GASP-1 exam- 
ines 9-50 times less configurations compared to 
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Fig. 9 .  The optimization characterlatics of GASP compared to  Timber- 
Wolf. 

TABLE 1V 
DISTRIBUTION OF T I M E  IN CPU-SECONDS F O R  GASP-]  

Timberwolf for achieving the same or better percentage 
improvement of wire length. This illustrates the search 
efficiency of the genetic algorithm. The runtime, how- 
ever, is only marginally less than Timberwolf in all cases. 
This is due to the increased overhead of wire length eval- 
uation. 

The result quality, is better in GASP-I for three cir- 
cuits, and in Timberwolf for two circuits. Thus we can 
conclude that the performance of this algorithm is com- 
parable to Timberwolf 3 .3  both in runtime as well as 
quality of placement. The memory requirements are also 
comparable, but this comparison is unfair for Timber- 
Wolf, which is a more well-developed package, and stores 
much more data on the physical structure of the layout. 
The column M,, of Table I11 gives the amount of memory 
required in GASP-1 to store the population and the off- 
spring of one generation, or in other words, the overhead 
that the genetic algorithm has over simulated annealing. 

Table IV shows the distribution of CPU time between 
the various functions of GASP- 1 .  From this distribution 
it is seen that wire length evaluation is the bottleneck in 
the execution time of the algorithm, and takes 62-67 % of 
the total time. In comparison, crossover takes only 17- 
24% of the total time. Thus by reducing the evaluation 
time, we will obtain a greater speedup. Overlap removal 
takes a very small amount of time as predicted in Section 
111. 

Fig. 9 shows a comparison between the rate of opti- 
mization of GASP and Timberwolf. The 183 cell circuit, 
for which we obtained almost identical performance and 
runtime for both algorithms was used for the comparison. 
It was noted that in the first few high temperature itera- 
tions of Timberwolf, the wire length (and the penalties) 

irzcreased significantly over the initial placement. This in- 
crease causes a greatly increased runtime, but is necessary 
for avoiding local optima. Besides, in almost the first half 
of the runtime, there is no significant improvement in wire 
length. In GASP- 1, the wire length decreases monotoni- 
cally, and the greatest reduction is at the beginning. Thus 
a moderate quality placement can be obtained very 
quickly. The same run can then be continued for a higher 
quality placement. 

VIII. CONCLUSIONS 
The genetic algorithm that was originally invented by 

Holland for adaptive searching in  AI [ 141, has been em- 
ployed in this research for the placement of standard cells. 
Unlike simulated annealing that uses pairwise exchange 
for evolving a new configuration from the current one, the 
genetic algorithm uses three powerful operators to guide 
its search through the solution space concurrently, by 
considering a set of configurations at a time. The place- 
ment problem is represented in the form of a genetic code, 
which is progressively refined, and improved by the op- 
erators. This is a major deviation from the conventional 
placement algorithms that directly apply the transforma- 
tions to the physical layout. However, this feature of the 
genetic algorithm is also a potential problem, and unless 
clever representation is devised, the algorithm may prove 
inefficient. In this research, the standard cell placement 
problem has been represented as an effective genetic code, 
and three powerful crossover operators have been applied 
to generate new configurations. Two other genetic oper- 
ators-inversion and mutation-have also been applied to 
obtain a highly efficient placement algorithm which re- 
quires fewer iterations to converge to a high quality place- 
ment. This has been made possible by applying a meta- 
genetic process which optimizes the controlling parame- 
ters of the genetic algorithm. The algorithm has been 
compared with Timberwolf 3.3 for five different circuits 
with 100 to 800 cells, and it was observed that for similar 
quality of final placement the genetic algorithm described 
here needs to examine about 19-50 times less configura- 
tions as compared to Timberwolf 3.3. The runtimes of 
both algorithms are also comparable. 

We are further optimizing the C code of GASP-1 to 
improve the runtime. We are also experimenting on ways 
to reduce the time required for the evaluation of new con- 
figurations, which is the bottleneck in GASP-1. At the 
same time we are also experimenting with ways to further 
improve the search efficiency of the genetic algorithm by 
improving the algorithm used for crossover, and by vary- 
ing crossover and mutation rates during the optimization. 
With these improvements we expect to speedup the al- 
gorithm considerably. 

We are also developing an efficient genetic representa- 
tion of the standard cell routing problem. The overall ob- 
jective will be to develop theoretical understanding of ge- 
netic algorithms for CAD applications and specifically to 
design a highly efficient tool for standard cell placement 
and routing. 



APPENDIX I 
SCHEMA S U R V I V A L  PROBABILITIES FOR CROSSOVER 

OPERATORS 
The following analysis gives the survival probability of 

the schemata under the various crossover operators [20]. 
A higher survival probability implies a better transfer of 
desirable features from the parents to the offspring, and 
hence, a more efficient search process. Let: 

0 be the order of the schema (the number of defining 

D be the length of the schema (the sum of the number 

K be the length of the cut (for Order and PMX cross- 

L be the length of the string (the number of cells in the 

N be the number of elements taken from parent 1 (for 

elements), 

of defining elements and the don't cares), 

over), 

placement problem), 

Cycle crossover). 

These parameters are illustrated in Fig. IO. 
Order Crossover: The probability of the schema sur- 

viving from parent 1 (from which an entire segment is 
taken) to the offspring is 

PI = 
K - D f l  

L 

The probability of the schema surviving from parent 2 
(from which the rest of the elements are taken in order) is 
the probability that none of the elements of the schema 
have been taken from parent I .  If the length of the schema 
is small compared to the length of the string, then 

Cut for 

I - .  

String Representation 

A ? C B ? ? ? ? ?  
- D +  I 
- K -  

-L- 

Fig. I O .  The parameter5 used in thc analysis ot  the crosso\'cr operators. 

Thus the net probability of the schemata surviving in PMX 
is 

K - D + l  
L 

PPMX(S)  = P ,  + P , P ,  = 

L - K - K + l  
+ ( I  -2)" x L 

P ,  = (e)". 
Cycle Crossover: For large L and small 0, the proba- 

bility of the schemata surviving from parent 1 is 

The probability of the schema surviving from parent 2 is 
similarly 

Thus the probability of survival of the schema from either 
parent is 

Thus the overall probability of survival is 

PMX: The probability of the schema surviving from 
parent 1 (from which all elements in the cut segment are 
taken) is 

K - D +  1 
L 

P ,  = 

The probability of the schema surviving from outside the 
cut segment is 

if the length of the schema is small compared to the length 
of the string. The probability of the schema being com- 
pletely outside the cut segment is 

L - K - D + l  
L p3 = 

These results indicate that the survival probability for 
schemata from parent 1 is the same for Order crossover 
and PMX. The survival probability of very small sche- 
mata from parent 2 is larger in Order crossover than in 
PMX, but it decreases exponentially in Order crossover 
as the length D of the schema increases, while in PMX 
the dependence on the length of the schema is linear, as 
shown in Fig. 1 1 .  Thus the overall survival probability is 
greater for order crossover in case of problems where 
compact schemata are important. Similarly the survival 
probability is greater for the PMX operator in problems 
where compact schemata are less important. In the case 
of Cycle crossover. the probability of survival of sche- 
mata is independent of the length of the schemata, and 
depends only on the order as shown in Fig. 12. 
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Fig. 12. Survival probability of schemata for cycle crossover 
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